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Abstract

We present an extension to masked autoencoders (MAE)
which improves on the representations learnt by the model
by explicitly encouraging the learning of higher scene-level
features. We do this by: (i) the introduction of a perceptual
similarity term between generated and real images (ii) in-
corporating several techniques from the adversarial train-
ing literature including multi-scale training and adaptive
discriminator augmentation. The combination of these re-
sults in not only better pixel reconstruction but also repre-
sentations which appear to capture better higher-level de-
tails within images. More consequentially, we show how
our method, Perceptual MAE, leads to better performance
when used for downstream tasks outperforming previous
methods. We achieve 78.1% top-1 accuracy linear probing
on ImageNet-1K and up to 88.1% when fine-tuning, with
similar results for other downstream tasks, all without use
of additional pre-trained models or data.

1. Introduction
Self-supervision provides a powerful framework for

training deep neural networks without relying on explicit
supervision or labels where learning proceeds by predicting
one part of the input data from another. Approaches based
on denoising autoencoders [45], where the input is masked
and the missing parts reconstructed, have shown to be ef-
fective for pre-training in NLP with BERT [8], and more
recently similar techniques have been applied for learning
visual representations from images [1,4,17,30]. Such meth-
ods effectively use image reconstruction as a pretext task on
the basis that by learning to predict missing patches useful
representations can be learnt for downstream tasks.

One challenge when applying such techniques to images
is that, unlike language where words contain some level of
semantic meaning by design, the pixels in images are natu-
ral signals containing high-frequency variations. Therefore,
image-based denoising autoencoders have been adapted to
avoid learning trivial solutions to reconstruction based on
local textures or patterns. BEiT [1] uses an intermediary

codebook of patches such that pixels are not reconstructed
directly, whilst MAE [17] masks a high proportion of the
image to force the model to learn how to reconstruct whole
scenes with limited context.

In this paper, we build upon MAE and ask how we can
move beyond the implicit conditioning of high masking ra-
tios to explicitly incorporate the learning of higher-order
‘semantic’ features into the learning objective. To do this,
we focus on introducing scene-level information by adding
a perceptual loss term [22]. This works by constraining
feature map similarity with a second pre-trained network,
a technique which has been shown empirically in the gener-
ative modelling literature to improve perceptual reconstruc-
tion quality [54]. In addition, this also provides a mecha-
nism to incorporate relevant scene-level cues contained in
the second network (which could be e.g. a strong ImageNet
classifier or a pre-trained language-vision embedding).

One of the benefits of MAE is that it can rapidly learn
strong representations using only self-supervision from the
images in the target pre-training set. To maintain this prop-
erty, we introduce a second idea: tying the features not with
a separate network, but with an adversarial discriminator
trained in parallel to distinguish between real and generated
images. Both ideas combined result in not only a lower re-
construction error, but also learnt representations which bet-
ter capture details of the scene layout and object boundaries
(see Figure 3) without either explicit supervision or the use
of hand-engineered inductive biases.

Finally, we build on these results and show that tech-
niques from the generative modelling literature such as
multi-scale gradients [24] and adaptive discriminator aug-
mentation [25] can lead to further improvements in the
learnt representation, and this also translates into a further
boost in performance across downstream tasks. We hypoth-
esise that the issues that these methods were designed to
overcome, such as mode collapse during adversarial train-
ing and incomplete learning of the underlying data distribu-
tion, are related to overfitting on low-level image features.

Our contributions can be summarized as follows: (i) we
introduce a simple and self-contained technique to improve
the representations learnt by masked image modelling based
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on perceptual loss and adversarial learning, (ii) we per-
form a rigorous evaluation of this method and variants, and
set new state-of-the-art for masked image modelling with-
out additional data for classification on ImageNet-1K, ob-
ject detection on MS COCO and semantic segmentation on
ADE20K, (iii) we demonstrate this approach can further
draw on powerful pre-trained models when available, re-
sulting in a further boost in performance and (iv) we show
our approach leads qualitatively to more ‘object-centric’
representations and stronger performance with frozen fea-
tures (in the linear probe setting) compared to MAE.

2. Related Work

2.1. Masked Image Modelling

Self-supervised learning has led to learning systems that
do not depend on data labelling, where the raw data it-
self provides the supervisory signal for training. This re-
sults in models with feature representations that are gen-
eralisable to many tasks. Self-supervised learning has
shown considerable success in Natural Language Process-
ing (NLP) [2, 33, 44], where random parts of the input text
are masked and the model is tasked with predicting the in-
visible content. This has become the de facto method of pre-
training NLP models. Compared to this direct-prediction
approach, the first performant approaches to self-supervised
visual representation learning instead used predefined dis-
criminative tasks such as estimating distortions of the in-
put image [13, 15], patch re-ordering [11, 37], re-coloring a
grayscale image input [53], and contrastive learning [5,42].

Recently, inspired by NLP and facilitated by the ad-
vent of Transformer models (Vision Transformers [30] in
particular) masked image modelling (MIM) returns to the
idea of direct-prediction, randomly masking pixels of an
input image before predicting the invisible content. Early
work included iGPT [4] which downsized images and then
directly predicted unknown pixel values in an autoregres-
sive manner. Recent methods have moved towards pre-
dicting full resolution patches in an autoencoder configu-
ration [1, 17, 51]. BEiT [1] relies on an additional gener-
ative model (dVAE [38]) pre-trained on a large corpus of
images (250M) with the pretext task to predict for masked
matches the closest visual token from a pre-trained code-
book. MAE [17] takes a simpler approach, demonstrating
that direct pixel prediction of masked regions using Mean
Squared Error is also effective when a very large proportion
of the image is masked out.

These recent methods produce strong performance when
fine-tuning over downstream tasks, but generally discrimi-
native self-supervision has continued to be more performant
in a linear probe setting [17] suggesting focusing on the
learning of features of the right level of abstraction remains
a challenge. We seek to address this in our work.

2.2. Perceptual Similarity

The aim of perceptual similarity [54] is to mimic human
visual perception. Humans are capable of understanding
images on an abstract level, relying on high level concepts
and semantic cues that define the underlying relationships
between different entities in the frame. Perceptual similar-
ity aims to mimic this human-like judgement by defining
metrics which encode perceptual distance, with this being
higher for image representations that similarly better cap-
ture visual semantic concepts.

Structural Similarity Index (SSIM), an early form of per-
ceptual loss, attempts to capture properties of an image that
when varied are perceived by humans as substantially dif-
ferent. Images are compared on three key features: (i) lu-
minance (i.e. pixel intensity), (ii) contrast and (iii) struc-
ture [48]. Further work extended this to compute similar-
ity at multiple scales [49]. In parallel other similar met-
rics have been proposed such as: Peak Signal to Noise ra-
tio (PSNR) [21], Feature Similarity Index (FSIM) [52] and
HDR-VDP-2 [34].

An alternative approach to capturing perceptual similar-
ity is to not compare differences between pixels but instead
compute the differences between the intermediary features
learnt by a neural network and those extracted from a sec-
ond fixed network pre-trained in a supervised manner on
a large dataset, on the basis that these capture the higher-
level semantically meaningful features required for accu-
rate classification. This is the approach taken by [22] who
pre-train a VGG network on ImageNet and then use this
for learning. Such a feature matching based approach has
been successfully applied to many tasks since in computer
vision [41, 46, 47].

In our work, we draw on the feature matching based ap-
proach to perceptual similarity but remove the requirement
for a pre-trained network, instead learning perceptual simi-
larity dynamically. In parallel to this work, PeCo [12] also
experiments with perceptual loss to prepare a perceptually
aware codebook for masked image modelling. However, in
our case we apply this directly during pre-training which
is much more effective, as it enables the encoder to learn
directly higher-level cues from the second network.

2.3. Generative modelling

If perceptual similarity tries to capture the semantic
structure of images, generative models aim to capture the
underlying distribution of the image data. An example is
Generative Adversarial Networks (GANs) [23–25,27]. The
samples created by a generator model are evaluated by a
separately trained discriminator model which is tasked with
determining real images from generated images. This is
trained in parallel with the generator using an adversar-
ial loss function. Since GANs learn the underlying data
distribution implicitly via a discriminator the original for-
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mulation [16] could produce high-fidelity images but suf-
fered from training instability and mode collapse, where the
network was only able to capture a subset of the variance
present in the data distribution. Subsequent work includ-
ing Pro-GAN [24] and MSG-GAN [23] introduced the idea
of generation at multiple scales to stabilise the generator,
enabling a more complete capture of the underlying data
distribution.

The StyleGAN family of papers [25–27] introduced sev-
eral improvements to the learning of the discriminator fur-
ther designed to improve the stability of generated im-
ages. Perceptual path length regularisation [54] enforces
that small changes in the input latent code (in our work: the
input to the decoder) lead to changes of a similar magnitude
in the feature maps of the discriminator, thus ensuring good
normalisation of the input codes. Adaptive Discriminator
Augmentation (ADA) [25] enables the use of heavy aug-
mentation when training the discriminator, avoiding over-
fitting even with smaller volumes of training data, whilst
ensuring these augmentations do not affect the output of the
generator. Both encourage the underlying feature space to
be more stable to small changes in low-level image statis-
tics. In this work, we explore if these additions, along with
multi-scale learning described above additionally incorpo-
rated into the masked autoencoder architecture, can there-
fore help to learn richer, high-level representations when
using adversarial training for masked image modelling.

An alternative to GANs for generative modelling is pro-
vided by explicit generative models which aim to capture
the underlying data distribution directly. These methods
avoid some of the issues such as mode collapse suffered
by implicit modelling but, given the need to model the full
distribution, generally are more sensitive to the volume of
data used for training. Examples include Variational Auto-
Encoders (VAE) [20, 29], Flow-based models [10, 28] and
Diffusion models [9, 36]. VQ-VAE [43] builds on VAE by
learning a discrete latent space rather than a continuous one
by the creation of a codebook. Recently this was applied
for masked image modelling in BEiT [1], where the rich la-
tent representations learnt by a VQ-VAE model pre-trained
on large data [38] are used as a prediction target. In this
work, we also explore using such a large pre-trained VQ-
VAE model when combined with perceptual similarity loss.

3. Methodology

The learning framework used for this work is based on
MAE [17]. In Section 3.1 we describe how the MAE loss is
extended with a perceptual loss term. In Section 3.2 we then
describe variants of adversarial loss which is also added to
the objective. In Section 3.3 we describe modifications to
the MAE architecture to maximize learning in the encoder
stage when using multi-scale gradients.

3.1. MAE with Perceptual Loss

The pixel reconstruction loss from the original MAE for-
mulation is extended to include a perceptual loss term:

LG = ||G(Im)− I||1 + LG
perceptual (1)

Where G is the MAE model, I is the original image and
Im is the original image randomly masked. We follow the
convention in the generative modelling literature, and use
L1 loss rather than L2 loss for the reconstruction term.

MS-SSIM: Our baseline perceptual loss is based on
structural similarity index, specifically the multi-scale vari-
ant (MS-SSIM) [49]. The multi-scale component aids in
reducing artefacts formed around the edges of the output
reconstructed image I ′. The perceptual loss term is thus:

LG
ssim =

1

N

∑
i,j

α
1− SSIM(G(Im)ij , Iij)

2
(2)

Where i, j are the pixel indexes and N is the total num-
ber of scales, set to 4. We use a 3 × 3 block filter for each
scale. α is a weighting constant, with the L1 error weighted
by the inverse (1− α).

Feature matching: Based on the feature and style re-
construction losses of [22] our second perceptual loss re-
lies on a separate loss network with the decoder network
encouraged to have similar feature representations as each
corresponding layer of the loss network ϕ.

In the original formulation ϕ is a fixed VGG network
pre-trained on ImageNet as described in Section 2.2. To
avoid this dependency on an external pre-trained network,
we instead introduce an additional discriminator network D
which will act as our loss network ϕ. This is trained in an
adversarial setup to distinguish between the reconstructed
image from the decoder G and the original image prior to
masking. The intuition is that the features learnt through
this task also contain higher-order perceptual cues which
can be used to guide training of the decoder.

The perceptual loss comprises two parts. The first trans-
fers high-level semantics (individual features are similar),
with a second style term added which learns overall image
statistics (correlations between features across the image are
similar) giving:

LG
feat =δf

J∑
j=1

1

Nj
[||ϕj(G(Im))− ϕj(I)||1]+

δs

J∑
j=1

1

Nj
[||Ψ(ϕj(G(Im)))−Ψ(ϕj(I))||1]

(3)

Where j is the index of the layer, Nj denotes the num-
ber of elements in each layer, Ψ is the Gram matrix func-
tion [14] and δf and δs are constant weighting factors.
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Additionally, the adversarial loss is added to LG. Any
adversarial loss function can be used, but for our base-
line experiments we use LS-GAN [35] which has shown to
achieve more stable optimisation over the original min-max
classification loss. This gives us the generator-discriminator
loss pair:

LD
adv =

1

2
[(D(I)− 1)2] + [(D(G(Im))2] (4)

LG
adv =

1

2
[(D(G(Im))− 1)2] (5)

The full loss function for the decoder then becomes:

LG = ||G(Im)− I||1 + LG
feat + LG

adv (6)

Beyond the feature matching acting as a learnt percep-
tual loss, adding this term also has the further advantage of
stabilising adversarial training.

dVAE perceptual: To provide a perceptual learning
baseline also using the stronger supervision from a pre-
trained network for comparison, we experiment with fea-
ture matching loss with the discrete variational autoencoder
(dVAE) from [38]. For this, the same feature matching loss
in Equation 3 above is used with the pre-trained dVAE en-
coder model component acting as the loss network ϕ. This
then is the perceptual loss term, giving the full loss function
for the decoder:

LG = ||G(Im)− I||1 + LG
feat (7)

The dVAE was trained for image tokenization on the
DALL-E dataset, comprising 250 million images. There-
fore, the rich features encoded in its weights provide strong
higher-order perceptual cues for decoder training.

3.2. Adversarial Training Variants

For feature matching based perceptual learning, any ad-
versarial loss function can be used. In addition to the LS-
GAN loss used in our baseline model, we experimented
with two further variants, introduced below. Both were for-
mulated to address issues with the original GAN formu-
lation such as training instability and mode collapse [23].
We hypothesize that the richer distributions learnt by these
methods will provide stronger cues for perceptual learning.

MSG-GAN: To stabilise the training of the generator,
MSG-GAN [23] allows for the flow of gradients from the
discriminator to the generator at multiple scales. This is
done by adding skip connections from intermediate layers
of the generator to intermediate layers of the discriminator.
The loss function for training D and G remains unchanged.

StyleGANv2-ADA: We take all modifications made
to the discriminator in the StyleGANv2-ADA [25] paper.
Building on MSG-GAN, perceptual path regularisation be-
tween the decoder input and discriminator feature maps is

added. Adaptive discriminator augmentation is also applied
to all samples during training. The loss function for training
D and G remains unchanged.

3.3. Model Architecture

One issue with the multi-scale GAN formulation used
for both MSG-GAN and StyleGANv2-ADA methods is that
the multi-scale learning occurs via skip connections be-
tween the discriminator D and decoder G. This means
that only the decoder benefits from the multi-scale gradi-
ent penalty during training, and this is removed post pre-
training, leaving only the encoder when adapting to down-
stream tasks.

To distribute the learning more evenly between encoder
and decoder, similar to U-Net [39] we additionally intro-
duce skip connections between intermediate encoder and
decoder layers, as shown in Figure 1. In this modified ar-
chitecture, which we term MSG-MAE, multi-scale signal is
shared also with the encoder. In further detail: mask tokens
are added to the encoder feature maps of dimension d along
with positional embeddings. Via the skip connections, this
is concatenated with the decoder feature map of the match-
ing scale, creating a sequence of length 2d. This combined
feature is passed through a single learnt linear layer to re-
turn the dimension to d. The output is then processed by
the decoder transformer layer, with the result forward prop-
agated to the next layer and simultaneously converted to an
RGB image at the required scale for the multi-scale loss.

4. Implementation Details
Pre-training: We use the ViT-B and ViT-L architectures

from the MAE paper [17], with ViT-B and ViT-L trained for
300 and 1600 epochs respectively over the ImageNet-1K
(IN1K) [7] training set. In each case, the input patch size
is fixed to 16x16 and we mask 75% of input patches during
training. For both ViT-B and ViT-L, the decoder architec-
ture remains consistent. The model dimensions, hyperpa-
rameters and data augmentation strategies follow those of
the original MAE paper [17] and we train with a batch size
of 16. The Adam optimizer is used with a weighted decay,
where the learning rate is 0.00015, weight decay is 0.05
(cosine strategy), 40 warm-up epochs are used and the mo-
mentum parameters β1 and β2 are 0.9 and 0.95.

In our experiments, the weighting factors in LG
feat

(where applied) is given a weighting factor δf of 0.05. The
LG
ssim weighting factor α is set to 0.85. In both cases, the

result is to focus learning on the perceptual term, with the
smaller δs value still resulting in a large weighting once ac-
counting for the larger relative magnitude of the LG

feat term.
The parameter choice is based on other works in the liter-
ature [32, 41, 46]. δs is given a fixed value of 40. In order
to give time for the discriminator to learn new features with
which to compute perceptual similarity, a training schedule
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Figure 1. The Multi-Scale Gradient MAE (MSG-MAE) architecture. Dotted lines denote skip connections and solid forward propagation.

whereby the perceptual loss term LG is applied only on even
numbered epochs is used. This avoids the generator distri-
bution collapsing to that of the discriminator and ensures
well-balanced learning. All experiments were conducted on
a GPU cluster consisting of 8xV100 Nvidia GPUs.

Fine-tuning: For fine-tuning, we take the pre-trained
MAE encoder model and replace the decoder architec-
ture with a task-specific head (initialised with random
weights), similar to [17]. For image classification we re-
place the decoder with the original ViT model classifica-
tion head [30]. For object detection and segmentation on
MS-COCO [31] we use a Mask-RCNN [18] decoder model
and for ADE-20K semantic segmentation [55] we adopt
the UperNet model [50] as our decoder. When transfer-
ring to downstream tasks the intermediate feature maps of
MSG-MAE are not used for the classification tasks. How-
ever, they are used for detection and segmentation, given
the Mask-RCNN and UperNet architectures operate at mul-
tiple scales. All fine-tuned models are trained with an Adam
optimizer with weighted decay. The learning rate is 0.001,
weight decay is 0.05 (cosine strategy), warm-up epochs 5,
and momentum parameters β1 and β2 are 0.9 and 0.95.

5. Experiments
In this section, we evaluate our models following self-

supervised pre-training on the ImageNet-1K (IN1K) [7]
training set. We first explore the main properties of the

Table 1. Image reconstruction quality evaluation on ImageNet-
1K. The ViT-B architecture is used. For columns with red head-
ers, lower value is better and for the columns with green headers,
higher value is better. The best result is highlighted in bold. Meth-
ods with † use the original MAE architecture, otherwise MSG-
MAE is used.

Loss Function L1 PSNR SSIM IS FID

MSE † 0.25 0.38 0.76 6.33 42.7
MS-SSIM + L1 † 0.21 0.41 0.82 8.01 31.6
LS-GAN-P † 0.16 0.53 0.92 16.2 28.2
MSG-GAN-P 0.11 0.55 0.94 32.1 19.0
StyleGANv2-ADA-P 0.06 0.58 0.91 36.8 10.3

learnt representations in Section 5.1 in terms of (i) the fi-
delity of reconstructed output, (ii) the qualitative attention
maps from the pre-trained model and (iii) linear probe re-
sults for downstream classification. Following this, in Sec-
tion 5.2 we show the downstream performance of our mod-
els for transfer learning comparing this to previous work:
fine-tuning on ImageNet-1K for classification, COCO for
object detection and ADE20K for segmentation.

5.1. Main properties

Image reconstruction. In Table 1 we evaluate the re-
construction quality of the decoder stage of our models
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Figure 2. Differences in reconstruction quality of the model variants on samples from the ImageNet-1K validation set. The key areas of
focus are highlighted in green. Columns (A-B) show the ground truth image and masking, (C-G) the reconstructed image for each method.

Table 2. Classification performance on ImageNet1K (IN1K). All models are pre-trained via self-supervision followed by either training
of a linear probe or fine-tuning. Loss functions with ‘-P’ include a perceptual loss term. The best result is highlighted in bold.

Linear probe Fine-tuning
Method Loss Function Pre-training Data ViT-B ViT-B ViT-L

iGPT [4] Cross Entropy IN1K – 66.5 –
DINO [3] Cross Entropy IN1K 78.2 82.8 –

MoCo v3 [6] InfoNCE [42] IN1K 76.7 83.2 84.1

BEiT [1] Negative Log Likelihood IN1K + DALL-E 56.7 83.2 85.2
MAE [17] MSE IN1K 67.8 83.6 a 85.9

MAE MS-SSIM + L1 IN1K 71.2 84.1 86.3
MAE LS-GAN-P IN1K 72.5 84.5 86.5

MSG-MAE MSG-GAN-P IN1K 75.6 85.3 b 87.2
MSG-MAE StyleGANv2-ADA-P IN1K 78.1 86.2 88.1

MAE dVAE-P IN1K + DALL-E 79.8 86.9 88.6

MAE LS-GAN IN1K – 83.3 85.3
MSG-MAE MSG-GAN IN1K – 84.7 c 86.5

MAE MSG-GAN-P IN1K – 83.2 d 85.6
MAE StyleGANv2-ADA-P IN1K – 84.5 86.2

over the IN1K validation set using the following quanti-
tative measures: L1 error, Peak Signal to Noise Ration
(PSNR), Structural Similarity Index (SSIM) [49], Inception
Score (IS) [40] and Fréchet inception distance (FID) [19].
These experiments use the ViT-B variant of the encoder,
pre-trained using each of our perceptual losses.

For each of our methods, we observe a gradual increase
in the fidelity of the reconstructed patches on the pixel-level
measures (L1, PSNR, SSIM). However, what is particularly
striking is the consistent boost of +10% for each method
in FID score (with a similar pattern observed for IS). These
methods compute a higher-level notion of perceptual simi-

larity by comparing intermediary feature maps from a net-
work pre-trained using a supervised objective for real and
generated images, and suggests that through the introduc-
tion of a perceptual loss term the decoder learns a more
generalisable notion of perceptual similarity. Examples of
reconstructed patches are shown in Figure 2.

Self-attention maps. To evaluate qualitatively whether
the features learnt by our approach properly capture the
high-level semantics of the image over low-level details
we visualise the attention maps from the final layer of our
network, shown in Figure 3. Compared to the original
MAE formulation, the combination of perceptual and ad-
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Table 3. Object detection and semantic segmentation performance on MS COCO and ADE20K. All models were pre-trained using
the ImageNet-1K training set (without labels). Loss functions with ‘-P’ include a perceptual loss term. Best results are highlighted in bold.

MS COCO ADE20K
Method Loss Function Pre-training Data mAP Box mAP Mask mIoU

DINO [3] Cross Entropy IN1K – – 44.1
MoCo v3 [6] InfoNCE [42] IN1K 47.9 42.7 47.3

BEiT [1] Negative Log Likelihood IN1K + DALL-E 49.8 44.4 47.1
MAE [17] MSE IN1K 50.3 44.9 48.1

MAE MS-SSIM + L1 IN1K 50.8 45.1 48.8
MAE LS-GAN-P IN1K 51.4 45.4 49.2

MSG-MAE MSG-GAN-P IN1K 52.3 45.8 49.7 b

MSG-MAE StyleGANv2-ADA-P IN1K 53.5 46.1 50.4

MAE dVAE-P IN1K + DALL-E 53.9 46.4 50.9

MAE MSG-GAN-P IN1K 50.9 45.9 49.3 d

MAE StyleGANv2-ADA-P IN1K 51.8 45.5 49.1

versarial loss (LS-GAN) leads to sharper focus on the ob-
ject in the frame despite no supervision being used dur-
ing training. The addition of multi-scale gradients (MSG-
GAN) and adaptive discriminator augmentation and percep-
tual path length regularisation (StyleGANv2-ADA) brings
further improvement.

In particular, with our best method, we achieve similar
qualitative results to DINO [3] a self-supervised method
which takes a contrastive approach to learning and requires
careful balancing of the loss and sampling of image crops
within batches compared to the simpler reconstruction-
based approach used by our method.

Linear probing. To evaluate quantitatively the extent
to which the features learnt by our approach capture use-
ful semantic information, a common approach is to freeze
the backbone of the pre-trained encoder model and train a
simple linear classifier on top. We report the results for this
over the IN1K validation set in Table 2, comparing to the
MAE, BEiT and contrastive learning approach MoCo v3.

Our baseline model variant trained via MS-SSIM
achieves 71.2% accuracy, 3% higher than the original MAE
trained via MSE [17]. StyleGANv2-ADA-P attains 78.1%,
a boost of 10% compared to the original MAE. This signif-
icant increase suggests that our perceptual loss term leads
to much more informative features being learnt without
fine-tuning with labels being necessary. For comparison,
we also include results when using perceptual loss com-
puted instead against a pre-trained network. When adding
this stronger supervision, the accuracy further improves to
79.8%, although this introduces a dependency on an exter-
nal network and training data magnitudes larger than IN1K.

Table 4. Computational cost. The relative time to train per epoch.
All figures computed with the ViT-B architecture using 8xV100s.

MAE LS-GAN-P StyleGANv2-ADA-P

Rel. time / epoch 0.23 0.54 1
# Parameters 113M 113M 119M (+5%)

Computational properties. All experiments were run
on 8xV100s, and took between 1-3 weeks to train to conver-
gence for ViT-B. The relative training times and parameter
counts are shown in Table 4. We also tried training MAE
longer (e.g. 900 epochs instead of 300, to match the total
time for StyleGANv2-ADA-P) and did not observe signfi-
ciant performance improvement.

5.2. Downstream Learning Results

Image classification. We fine-tune our models on IN1K,
with the results shown in Table 2. Using ViT-B, we see a
consistent boost in performance across the board by adding
a perceptual loss term, obtaining an accuracy of 86.2% with
our best method (StyleGANv2-ADA-P) and outperforming
MAE and BEiT by 2.6% and 3% respectively.

Moving to ViT-L architecture, we obtain 88.1% accu-
racy, outperforming all previous methods training only on
IN1K data and in particular resulting in comparable accu-
racy to that reported by MAE of 87.8% using the much
larger ViT-H448 architecture (632M parameters vs 86M pa-
rameters, with input image of size 448 rather than 224).

If we use a pre-trained network with dVAE-P, we obtain
a further boost of our best accuracy to 88.6%

Object detection and semantic segmentation. For ob-
ject detection, we fine-tune a Mask R-CNN head on MS-
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Figure 3. Attention maps of models pre-trained on ImageNet-1K without labels. We visualise the self-attention of the [CLS] token of the
last layer. Sample images were selected randomly from the ImageNet-1K validation set. Column (A) is the original input image, (B-F) the
outputs from our different losses and (G) is the output from DINO for comparison.

COCO with the results shown in Table 3. Our best method
achieves 53.5 APbox using a ViT-B architecture, which out-
performs the previous best reported result of MAE trained
with ViT-B by 3.2. Similarly, for semantic segmentation,
we fine-tune an UperNet head on ADE20K with the results
shown also in Table 3. Again using a ViT-B architecture,
here we obtain up to 50.4 mIOU, 1.2 higher than for MAE.

Impact of perceptual loss term. When training a base-
line LS-GAN without a perceptual loss term, we are unable
to train a model that performs better than the baseline MSE
loss [17] and observe clear stability issues during training.
However, with an MSG-GAN loss training is much more
stable. Referring to Table 2, for ViT-B with adversarial and
reconstruction loss only we obtain a 1.1% boost (a vs. c)
over the baseline MSE loss for image classification. How-
ever, this remains less than the 1.7% boost (a vs. b) with per-
ceptual component added. An even larger gap is observed
for ViT-L (0.6% vs. 1.3% boost). This suggests the percep-
tual loss term plays an important role not only for training
stability but also is a large driver of performance.

Impact of multi-scale MAE. Training with a multi-
scale loss without updating the MAE architecture as de-
scribed in Section 3.3 results in a drop of performance of
over 2% for image classification as seen in Table 2 (b vs. d),

with a similar drop also observed for object detection and
semantic segmentation in Table 3 (b vs. d).

6. Conclusion
We explored a method for incorporating the learning of

higher-level features from images explicitly into the learn-
ing objective of a masked autoencoder. By introducing a
perceptual loss term and adversarial training, we showed
how the representations learnt by MAE [17] could be
improved, boosting transfer performance for downstream
tasks such as image classification, object detection and se-
mantic segmentation. In particular, this performance boost
is observed not only when fine-tuning, but also in the linear
probe setting where contrastive methods have historically
done better. This suggests that by combining the rich super-
vision of the pixel reconstruction task with a more focused
higher-level learning signal we can greatly improve the data
efficiency of the masked autoencoder approach.

This work also helps to start to address one of the key
differences between the use of masked modelling for im-
ages and text: that images and image patches do not have
inherent semantic meaning. Many questions remain about
how to learn cues of the right level of abstraction directly
from image data.
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