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Abstract

This paper presents a method to reconstruct a complete
human geometry and texture from an image of a person with
only partial body observed, e.g., a torso. The core challenge
arises from the occlusion: there exists no pixel to reconstruct
where many existing single-view human reconstruction meth-
ods are not designed to handle such invisible parts, leading
to missing data in 3D. To address this challenge, we intro-
duce a novel coarse-to-fine human reconstruction framework.
For coarse reconstruction, explicit volumetric features are
learned to generate a complete human geometry with 3D con-
volutional neural networks conditioned by a 3D body model
and the style features from visible parts. An implicit network
combines the learned 3D features with the high-quality sur-
face normals enhanced from multiviews to produce fine local
details, e.g., high-frequency wrinkles. Finally, we perform
progressive texture inpainting to reconstruct a complete ap-
pearance of the person in a view-consistent way, which is not
possible without the reconstruction of a complete geometry.
In experiments, we demonstrate that our method can recon-
struct high-quality 3D humans, which is robust to occlusion.

1. Introduction
How many portrait photos in your albums have the whole

body captured? Usually, the answer is not many. Taking a
photo of the whole body is often limited by a number of
factors of occlusion such as camera angles, objects, other
people, and self. While existing single-view human recon-
struction methods [3,43] have shown promising results, they
often fail to handle such incomplete images, leading to sig-
nificant artifacts with distortion and missing data in 3D for
invisible body parts. In this paper, we introduce a method
to reconstruct a complete 3D human model from a single
image of a person with occlusions as shown in Figure 1.
The complete 3D model can be the foundation for a wide
range of applications such as film production, video games,
virtual teleportation, and 3D avatar printing from a group-
shot photo. 3D human reconstruction from an image [2, 16]

Input: incomplete image Output: complete 3D human model

Figure 1. The complete reconstruction results using our method
from the image of a person with occlusion by other people.

has been studied for two decades. The recent progress in
this topic indicates the neural network based implicit ap-
proach [3, 44] is a promising way for accurate detail recon-
struction. Such an approach often formulated the 3D human
reconstruction problem as a classification task: an implicit
network is designed to learn image features at each pixel,
e.g., pixel-aligned features [18, 43, 44], which enable con-
tinual classification of the position in 3D along the camera
ray. While the implicit approaches have shown a strong per-
formance to produce the geometry with high-quality local
details, the learning of such an implicit model is often char-
acterized as 1) reconstructive: it estimates 3D only for the
pixels that are captured from a camera, i.e., no 3D recon-
struction is possible for missing pixels of invisible parts; and
2) globally incoherent: the ordinal relationship (front-back
relationship in 3D) of the reconstructed 3D points is often
not globally coherent, e.g., while the reconstruction of the
face surface is locally plausible, its combination with other
parts such as torso looks highly distorted. These properties
fundamentally limit the implicit network to reconstruct the
complete and coherent 3D human model from the image
with a partial body.

In this paper, we overcome these fundamental limitations
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of the implicit network by modeling generative and globally
coherent 3D volumetric features. To this end, we use a 3D
convolutional neural network that can explicitly capture the
global ordinal relation of a human body in the canonical 3D
volume space. It generates volumetric features by encoding
an incomplete image and a 3D body model, i.e., SMPL [30,
37], where the 3D body model provides the unified guidance
of the body pose in the coherent 3D space. These volumetric
features are jointly learned with a 3D discriminator in a way
that generates a coarse yet complete 3D geometry.

The complete 3D geometry enables the coherent render-
ing of its shape over different viewpoints, which makes it
possible to enhance surface normals and inpaint textures
in a multiview-consistent way. Specifically, for surface nor-
mal enhancement, a neural network takes as input a coarse
rendering of the surface normal and style features; and out-
puts the fine surface normal with plausible high-frequency
details. We design a novel normal fusion network that can
combine the fine surface normals from multiviews with the
learned volumetric features to upgrade the quality of local
geometry details. For texture inpainting, a neural network
conditioned on the fine surface normal and an incomplete
image generates the complete textures. The inpainted tex-
tures are progressively combined from multiviews through
the 3D geometry.

Unlike previous methods [43, 43, 44, 52] which have uti-
lized the surface normals from limited views (e.g., front and
back), our multiview normal fusion approach can produce
more coherent and refined reconstruction results by incorpo-
rating fine-grained surface normals from many views.

Our experiments demonstrate that our method can ro-
bustly reconstruct a complete 3D human model with plausi-
ble details from the image of a partial body, outperforming
previous methods while still obtaining comparable results in
the full-body case.

The technical contributions of this work include (1) a
new design of generative and coherent volumetric features
which make an implicit network possible to reconstruct a
complete 3D human from an incomplete image; (2) a novel
multiview normal fusion approach that upgrades the quality
of local geometry details in a view-coherent way; and (3) an
effective texture inpainting pipeline using the reconstructed
3D geometry.

2. Related Work
Monocular human reconstruction with explicit shape
models. One of the primary challenges in human mod-
eling is reconstructing accurate and high-fidelity explicit
3D surfaces. However, due to the limited availability of
3D human explicit geometry data, achieving high-quality
human reconstruction with various styles remains a long-
term problem. One effective approach to address this chal-
lenge is to use explicit shape models: there is a wide

range of explicit 3D shape representations including vox-
els [21, 49], point clouds [10, 27, 40, 41, 48, 54] or para-
metric meshes [2, 13, 23, 30, 50, 61]. Voxel-based methods
are often limited by low resolution and difficulty in pre-
dicting shape details. Point clouds, on the other hand, have
advantages in achieving topological modeling, but require
tedious point estimation for obtaining fine surface details.
In human modeling, 3D parametric shape models play a
crucial role, particularly in single-view 3D human recon-
struction. Human body templates can overcome occlusion
problems and avoid fundamental depth ambiguity. These
approaches [23–25, 38, 39, 57, 58] can estimate SMPL [30]
shapes and coefficients from a given image. However, the
given 3D parametric model only provides an occlusion-free
full-body geometry, lacking garment shape and style infor-
mation. This results in less detailed surface reconstruction.

Pixel-aligned implicit function. The field of image-based
human modeling [3, 16, 18, 19, 43, 44, 52] has enabled the
generation of a wide range of human models. Utilizing
implicit functions, the reconstructed mesh is independent
of the volume resolution. Implicit shape functions such
as [28, 33, 36, 53] can represent 3D surfaces in a continu-
ous SDF or occupancy field, which requires dense sampling
around the mesh for detailed surface reconstruction. These
single-view human body reconstruction methods [18, 43],
take advantage of the 2D pixel-aligned features to encode
the occupancy values of each sampling point, and can recon-
struct a clothed human body with rich surface detail. Despite
advancements in pixel-aligned implicit functions, feature
ambiguity and lack of global shape robustness still pose chal-
lenges. Additionally, when given input images are largely
occluded, these functions are unable to handle full-body
reconstruction. While some recent works [3, 44, 52] have
attempted to adapt to higher resolution inputs or complex
poses, none of them have been able to achieve partial image
human body reconstruction due to the inherent limitations
of pixel-aligned local features.

Existing methods often lack global consistency and heav-
ily rely on local image features, resulting in unnatural body
shapes or missing parts in occluded areas. To address this,
recent works [15, 60] combine explicit 3D models, such as
SMPL or voxel features, with pixel-aligned implicit func-
tions to regularize global shape and ensure consistency. How-
ever, generating local details in occluded parts remains chal-
lenging.

2D and 3D generative model for occlusion. Recent ad-
vances in Generative Adversarial Networks (GANs) [20]
and Diffusion Models [17, 17, 42, 47] have enabled high-
fidelity image synthesis. Previous 2D human generative mod-
els [1, 6, 12, 26, 32, 45] have demonstrated impressive results
in generating synthetic human images. However, these meth-
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Figure 2. The overview of our approach. Given an image I of a person with occlusion and a guiding 3D body pose P, we reconstruct a
complete 3D human model Gf in a coarse-to-fine manner: we first build the volume of image features F by extracting the 2D image features
and copying them in a depth direction. This image feature volume is concatenated with the 3D body pose P recorded on the volume. Our 3D
CNN G3d generates complete and coherent volumetric features whose generative power is enabled by jointly learning with 3D discriminator
D3d with explicit shape prediction S3d. The coarse MLP C produces the coarse yet complete occupancy of the continually sampled 3D
points and their intermediate global features F∗ where we represent the 3D surface by using 0.5 level-set occupancy field. The fine MLP
Cf combines F∗ and surface normals enhanced from multiviews to output fine-grained occupancy. We also complete the appearance by
performing view-progressive texture inpainting.

ods are based on 2D reasoning and do not guarantee 3D
consistency. In addition, current 2D human-specific inpaint-
ing models struggle with large hole completion as it is a
challenging task to complete the structure in 2D. Conse-
quently, the 3D geometry obtained from these methods often
has low fidelity for the occluded regions due to erroneous
inpainting results.

Recently, a 3D human generative model (gDAN) [5] has
been developed to directly generate various 3D avatars in
3D space with unconditional style. Motivated by gDAN and
other 3D shape generative models [7, 35, 46], we propose
a coarse-to-fine 3D generative model that reconstructs hu-
man bodies from single-view incomplete images. And our
generative style conditioned on the incomplete image.

3. Method

We design a novel coarse-to-fine 3D generative frame-
work to achieve a complete 3D human body reconstruc-
tion from a single incomplete image. Figure 2 illustrates an
overview of our framework. The input to our system is a
single image of a person with a partial body, and we assume
the unclothed 3D body mesh, i.e., SMPL [30, 37] model,
aligned with the image is given. We develop generative vol-
umentic features using a 3D convolutional neural network
by learning to reconstruct a coarse yet complete 3D human
geometry with a 3D discriminator (Section 3.1). We further
improve the high-frequency details of the coarse geometry
by generating fine-detailed surface normals from multiviews
and combining them through an implicit fusion network
(Section 3.2). Finally, we perform view-progressive 2D ap-
pearance inpainting to obtain fully textured and coherent 3D
human avatar (Section 3.3).

3.1. Learning Generative Volumetric Features

We cast the single-view 3D reconstruction problem as a
binary feature classification of a 3D point:

F = E(I), C(Fxp
;Xp) → [0, 1], (1)

where I ∈ Iw×h×3 is the image of a person with partial
body, E is the feature extraction function often enabled by
an encoder-decoder network, F ∈ Rw×h×c is the 2D map
of image features, C is an implicit classifier which classifies
a continually sampled 3D point X ∈ R3 into 0 (inside) and
1 (outside), so that the 3D surface can be represented as a
0.5 level-set of continuous occupancy field [31]. x ∈ R3

is the 2D projection of X, i.e., ΠX = x where Π is the
projection matrix, p ∈ P is the index of the points set on
the visible body parts. For the pixels lying on invisible body
parts xq where q ∈ Q is the index of the invisible points set,
C always classifies the features as outside the surface, i.e.,
C(Fxq

;Xq) = 1, due to the missing data in the image: there
exists no pixel information (e.g., black patches) to encode
onto the image features.

One can augment this incomplete image features by prop-
agating the features from the visible to invisible parts with
the joint learning of a 2D shape discriminator for generative
adversarial training:

G(F) = Fg, S(Fg) = S, D(S) → [0, 1], (2)

where G is the generative function that generates the com-
plete features Fg, S is the function that predicts 2D binary
shape mask S ∈ [0, 1]w×h (0 is background, 1 is foreground),
D is the 2D discriminator that distinguishes the real and fake
of a complete human shape. By taking advantage of a gener-
ative framework, the augmented image features allows C to
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classify the 3D points on the invisible body parts in a way
that construct a complete human, i.e., C(Fg

xq
;Xq) → [0, 1].

While now the image features are complete, they are
holding a significant pose ambiguity: any plausible body
poses for invisible parts that harmonize with visible ones can
be possible. We disambiguate it by further conditioning pose
information:

G(F;P) = Fg, S(Fg) = S, D(S;P) → [0, 1],

where P ∈ Rw×h×m is the map of a guiding 2D body
pose, e.g., keypoints [4] and densepose [14]. Conditioning
P enables the features to be aware of the global body poses,
leading to shape generation without pose ambiguity.

Still, however, since the augmented features Fg are mod-
eled totally from 2D space, it is not possible to capture the
global ordinal relationship of a human body in 3D, e.g.,
while the generated 3D surface of a leg looks plausible, its
combination with visible torso is highly distorted. To capture
such a global relationship, we propose to upgrade the entire
featuring modeling pipeline from 2D to 3D:

G3d(F;P3d) = Fg
3d, C(Fg

3d,X;X) → [0, 1], (3)

S3d(F
g
3d) = S3d, D3d(S3d;P3d) → [0, 1],

where S3d, P3d, and Fg
3d are defined in the canoncial volume

space. The generation of the volumetric features Fg
3d allows

C to reconstruct the globally coherent and complete 3D
human geometry. Fg

3d is learned by minimizing the following
objectives:

Lfeat = Lc + λgLg + λcGANLcGAN, (4)

where λ balances the contribution of each loss. Lc makes a
direct supervision on the implicit classifier:

Lc =
∑
i

∥C(Fg
3d,X;X)− Cgt(X)∥2, (5)

where Cgt : R3 → {0, 1} outputs ground-truth label of the
3D occupancy. Lg supervise the 3D shape prediction by com-
paring with ground truth volume, Lg =

∑
∥S3d − S3d,gt∥.

LcGAN is the conditional adversarial loss [20] where we use
{S3d,P3d} for fake {S3d,gt,P3d} for real inputs.

Implementation details. We enable the features extraction
function with a 2D convolutional neural network (e.g., U-
net [34]) which takes as an input image I and produces
pixel-aligned features F. We use a 3D convolutional neural
network (e.g., 3D U-net [9]) to design G3d that generates 3D
volumetric features Fg

3d from a 3D body pose P and F. In
practice, to build the input volumes for G3d, we discretize
the vertices of the posed SMPL body model and record them
on a canonical volume (128× 128× 128); F is copied over
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Figure 3. The overview of our multiview surface normal fusion.

the three-dimensional direction; and the two volumes for P
and F are concatenated.

The volumetric features are decoded in two ways: explicit
and implicit. For explicit decoding S3d, 3D convolutional
networks reconstruct a complete occupancy S3d at each
voxel grid, whose geometric distribution are classified by
a 3D discriminator D3d [51]. For implicit decoding C, we
utilize multilayer perceptron (MLP) to classify the learned
volumetric features of a 3D query point X (which is the re-
sultant of dynamic sampling around the ground truth mesh),
where we perform trilinear interpolation of the volumeric
features that are neighboring the query point to construct
the continuous features representation. Inspired by existing
multi-level MLP processing [5], we further design C in a way
that produces not only occupancy but also its intermediate
feature representation as shown in Figure 2:

C(Fg
3d,X;X) → { [0, 1], F∗

X } (6)

where F∗
X ∈ R256 is the intermediate feature that captures

the structure and visibility of the 3D point in the context of
the global body pose. We show the detailed network structure
in the supplementary material.

3.2. Multiview Surface Normal Fusion

We improve the quality of local geometric details of the
coarse reconstruction from Section 3.1 by combining fine-
detailed surface normals:

Fn = En(Nf ), Cf (Fn
x;F

∗
X,X) → [0, 1], (7)

where Nf is the surface normal map with high-frequency
details, En is a surface normal encoder that produces pixel-
aligned normal features, Cf is the fine classifier that classifies
the in/out occupancy status of the 3D point X, and F∗ is
the intermediate features of the coarse classifier, i.e., C (see
implementation details in Section 3.1).
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Figure 4. The details of our surface normal enhancement network.

To obtain Nf , existing methods (e.g., [44]) have often
utilized a human surface normal detection from an image.
However, for the single input image with occlusion, Nf is
missing two elements, 1) body parts: there exists no pixel to
detect, and 2) viewpoints: only single-view input is available,
so thus, the surface normal from other views is unknown.
Those missing data prevent Cf from performing fine-grained
occupancy reconstruction for the invisible parts. For these
reasons, we reformulate the surface normal detection prob-
lem as generation:

R(Gc; vi) = Nc
vi , Nf

vi = Gn(Nc
vi ; I), (8)

where R is the function that renders the surface normal Nc
vi

from the coarse geometry Gc ∈ Rn×3 (obtained from C in
Section 3.1) and a specific viewpoint vi, G is the genera-
tion function that generates high-frequency normal details
from Nc

vi . The input partial image I is used to guide the
appearance style of the person in the latent space.

Importantly, our coarse geometry Gc is complete, and
therefore, rendering the coarse surface normal from any view
is always possible. This allows us to combine the features of
fine surface normals from multiviews:

Cf ({Fn
v1,x1

, ..,Fn
vi,xi

};F∗
X) → [0, 1]; (9)

where Ff is the outcome of the feature extraction (Eq. 7) i
is the number of views and we use i = 4 in practice (front,
back, right, and left).

We enable En and Cf using multiview fusion networks
and Gn using normal enhancement networks whose details
and training objectives are in below.

Multiview Surface Normal Fusion Network Figure 3
shows the overall framework for our multiview normal fu-
sion pipeline. An encoder-decoder network En extracts the
pixel-aligned features from the fine surface normal Nf at

Input Prediction Front Right Left Back

Figure 5. Results of our view-progressive texture inpainting pipeline
(right side) which are effectively combined through the complete
geometry predicted from our method. We use an existing human
inpainting model [55] with minor modification.

each view. We enable the surface normal fusion function
Cf using multilayer perceptron (MLP). For each dynami-
cally sampled 3D point X, it takes as input surface normal
features from multiviews and global intermediate features
F∗

X, and outputs fine-grained occupancy where F∗
X is from

coarse MLP as shown in Figure 3, which captures image fea-
tures and viewpoints in the context of global geometry. We
reconstruct the fine geometry Gf by applying 0.5 level-set
marching cube algorithm. En and Cf are trained by minimiz-
ing the following loss:

Lfusion =
∑
i

∥Cf ({Fn
v1,x1

, ..,Fn
vi,xi

};F∗
X)− Cgt(X)∥2.

Surface Normal Enhancement Network Figure 4 de-
scribes the overall framework for our surface normal en-
hancement network. This enables Gn. In practice, it takes
as input a coarse surface normal Nc, the surface normal of
a 3D body model Np, and the input image I. Np guides
the global human pose, and an encoder encodes I to extract
style features from latent space. Only for the input view, we
concatenate I (otherwise, black image) with other surface
normal maps {Nc, Np} to allow the network G to preserve
the local patterns from visible texture. Gn is trained by mini-
mizing the following objectives:

Lenhance = L1 + λvggLvgg + λAdvLAdv, (10)

where λ controls the weight of each loss. L1 measure the
difference between the prediction Nf and ground truth Nf

gt:
L1 = ∥Nf −Nf

gt∥ where we render Nf
gt from the ground

truth geometry. Lvgg is designed to penalize the difference of
Nf

gt and Nf from their VGG features space [22] to capture
both high-frequency details and semantic validity. λAdv is
the unconditional adversarial loss [11] to evaluate the plau-
sibility of the surface normal where we use Nf

gt as real and
Nf as fake, and we apply a patch discriminator [20].

3.3. View-Progressive Texture Inpainting

Given a complete geometry and partial input image, we
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Input image Ground truth Ours ICON PIFuHD PIFu

Figure 6. Comparisons to the single view human body reconstruction models. SOTA methods such as PIFu, PIFuHD, and ICON currently
face challenges in reconstructing full body models from incomplete images, especially under challenging conditions such as large occlusion
or half-body images. We evaluate our model with other frameworks on the unseen objects from Thuman2.0 [56] dataset. The first column
displays partial body images randomly cropped from the original ones. In the second column, we show the ground truth geometry. The third
column shows the output of our reconstruction, which ensures that the whole body is completed from the occluded image.

Full Body Image Reconstruction Evaluation
Method SMPL Chamfer ↓ P2S ↓ Normal ↑
PIFu ✗ 3.268 3.320 10.407
PIFuHD ✗ 2.890 2.631 11.567
ICON ✓ 0.965 0.848 12.596
Ours ✓ 0.798 0.808 12.441

Table 1. Comparison with SOTA on Human Modeling.

generate the full texture of human by synthesizing the image
of a complete human from many viewpoints in a progres-
sive way: we iterate the surface rendering, texture inpainting,
and 3D warping to other views. By starting from the in-
put view, for each view, we render the fine surface normal
using the reconstructed 3D geometry from our method (in
Section 3.1-3.2). A human inpainting network generates a
complete human image by taking as input a partial image
and the surface normal (as shape guidance). We warp the
generated texture to other views that are close to the current
one through the 3D geometry by combining the textures in
3D and projecting them to other views. This allows us to
render a partial body image from other views in a geometri-
cally plausible way. We iterate these three steps to obtain a
full texture in 3D as shown in Figure 5. For the inpainting
model, we adopt an existing human inpainting network [55]
with minor modifications. Additional details and results are
available in the supplementary materials.

4. Experiment
We validate the performance of our coarse-to-fine frame-

work quantitatively and qualitatively for the task of a com-
plete 3D human reconstruction from a single image of a
partial body.

Training details. During the training process, we train our
model on our partial body images rendered from a human
body dataset [56], and use Adam optimization with an initial
learning rate lr = 0.0005. For the coarse model, we set the
parameters in Eq. 4 with λg = 1 and λcGAN = 0.01, and
in Eq. 10 with λvgg = 1 and λAdv = 0.01. We show the de-
tailed network structure and parameters in the supplementary
material.

Datasets. We use Thuman2.0 data [56] for both training
and testing, which includes high-resolution photogrammetry
scans as well as fitted SMPL mesh. We use 400 subjects
for training and 20 subjects for evaluation. We create input
images by performing weak perspective rendering of the 3D
scan from 180 multiple viewpoints. We synthesize partial
body images by masking the original images with random
holes parameterized by occlusion ratio. We also use Multi-
Thuman dataset [59] for testing as cross-dataset validation.
This dataset includes the case with natural occlusion by ob-
jects and people and provides 3D surface ground truth and
fitted SMPL for each person. For in-the-wild testing, we use
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Figure 7. In-the-wild testing results. We present our reconstruction results, which demonstrate the accuracy of our approach in preserving
local details while generating a complete model from an incomplete image. Our approach can generate highly-realistic human models from
both incomplete and full-body images, even under challenging conditions such as large occlusions or half-body images in real-world settings.

an internet photo where we obtain the 3D body model by
applying existing fitting method [57, 58].

Baseline. We compare our method with recent single-view
human body reconstruction works: PIFu [43], PIFuHD [44]
and ICON [52] where all their methods are based on implicit
models. ICON uses parametric 3D models (SMPL) during
training and inference. For the fair comparison, we retrained
the baseline methods using the same dataset we used under
the same experimental setting. We use ground truth SMPL
during the comparison for ours and ICON. One effective
approach for obtaining a complete human model is to per-
form 2D inpainting followed by 3D reconstruction. However,
when dealing with larger holes in the image, 2D inpainting
methods often struggle to produce realistic human structures,
leading to artifacts such as distortion that can affect the final
reconstruction results. In the supplementary materials, we
provide a comparison of 2D inpainting-to-3D reconstruction
results to further demonstrate this issue.

Metrics. We measure the reconstruction quality through
three metrics: Chamfer, P2S, and surface normal errors. For
Chamfer, we measure the bi-directional point-to-surface dis-
tances between the reconstruction and ground truth. For P2S,
we measure the closest distance from the ground truth to the
reconstruction with uniform sampling. For surface normal
errors, we measure the distance between the rendered sur-

Reconstruction from Occluded Images

Occlusion ratio

C
ha

m
fe

r d
is

ta
nc

e 
(c

m
)

Figure 8. A cumulative occlusion-to-reconstruction test. This
figure shows different models and their performance to reconstruct
the human body from the occluded image. For a given input whole-
body image, we first test the whole-body reconstruction with our
method and other baselines, which is 0% occlusion. We then gener-
ate holes within the human body bounding box, and the generated
holes will cover 20% 40% and 60% of the human body area. We
then test the occluded images with different baseline models. When
the occlusion area increases, our model is able to have a more ro-
bust reconstruction capability than other models.

face normal and ground truth from four views (one input and
three synthetic views) in a PNSR space. For Chamfer and
P2S, the lower score means better, while for normal error,
the opposite.

Results. We summarize the quantitative comparison in
Table 1 for the full-body testing cases and Figure 8 for the

8754



Method Chamfer↓ P2S↓ Normal↑
Ours - coarse MLP - fine MLP 1.978 1.720 6.320
Ours - fine MLP 0.818 0.926 10.704
Ours w/o GT SMPL 1.224 1.062 12.106
Ours 0.798 0.808 12.441

Table 2. Ablation study results. We show the average values of
Chamfer distance, P2S, and normal PSNR over testing subjects.

partial body. The qualitative results are shown in Figure 6.
For the cross-dataset validation on MultiHuman-Dataset [59],
please refer to the supplementary document. Please also
refer to the supplementary material for our texture inpainting
results.

From Table 1, we can see that our method shows a strong
performance even for the full-body testing case: our volumet-
ric features allow our implicit model to reconstruct a globally
coherent 3D human reconstruction, leading to the best qual-
ity in terms of Chamfer and P2S. While our method shows
the second best under Normal metrics, it is still comparable
to the best one (ICON). It implies that our globally coherent
volumetric features slightly sacrifice the local details.

For the occlusion scenario shown in Figure 6, we can see
that our method achieved high-quality 3D human body re-
construction from a partial body image, while other methods
are struggling to handle the occlusions. Based on the graph
in Figure 8, the performance gap between our method and
others is largely magnified as the occlusion ratio increases.

We evaluate the performance of our model in real-world
scenarios using the DeepFashion dataset [29]. Fig. 7 presents
the quantitative results of our in-the-wild testing where our
model is capable of effectively handling occlusions.

Ablation Study We conduct an ablation study on our
coarse-to-fine human reconstruction framework to analyze
the effect of each module. We study the following model
combinations: (1) Ours - corase MLP - fine MLP: only
an explicit model is only trained with a 3D convolutional
neural network whose prediction result is explicit volumetric
occupancy with 128 × 128 × 128 voxel resolution (due to
the limit of GPU resources). We use occupancy volumes as
supervision. (2) Ours - fine MLP: we combine the explicit
volume representation with coarse MLP. (3) Ours: this is our
final model that combines explicit volume with both coarse
and fine MLP with multiview surface normal enhancement
as shown in Figure 2. (4) Ours w/o GT SMPL: to verify the
effect of the accuracy of global 3D pose prior, we replace the
ground truth 3D SMPL model to the fitted 3D SMPL from
existing single-view prediction methods [57, 58].

Table 2 shows the summary of the performance of our
ablation study. The explicit model ensures the general con-
tour of the reconstructed mesh, but the quality of its local
details is highly limited by the voxel resolution, bringing out
significant discretized artifacts as shown in Figure 9. Com-

Input image Explicit prediction Coarse prediction Fine prediction

Figure 9. Ablation study on explicit, coarse and fine model.

bining a MLP with explicit volumes, i.e., Ours - fine MLP,
somewhat addresses this discretization issue by ensuring
continual point sampling, but the limited resolution nature of
volume features still prevents the coarse MLP from produc-
ing high-frequency details. The comparison of our approach
and other ablation baselines demonstrates that combining the
multiview fine surface normals is highly effective to upgrade
the high-frequency details of the local 3D model surface as
shown in Figure 9. Finally, Ours w/o GT SMPL implies that
inaccurate 3D model fitting propagates its errors to our 3D
reconstruction results.

Application Our method can also enable complete 3D re-
construction of people in a group-shot image. Please refer to
the supplementary materials for more details and examples.

5. Conclusion

We present a method to reconstruct a complete human 3D
model from a single image of a person with a partial body.
To address the core occlusion problem, we introduce a new
design of a coarse-to-fine human reconstruction framework.
We learn generative and globally coherent volumetric fea-
tures to reconstruct a coarse yet complete 3D human geom-
etry using 3D generative adversarial networks. An implicit
fusion network upgrades the quality of local geometry by
combining the learned volumetric features and fine-grained
multiview surface normals enhanced from coarse geometry.
The evaluation on diverse subjects with various testing se-
tups demonstrates that our framework performs well on the
scenes with occlusion, showing a significant improvement
over existing methods. We also show that the complete and
high-quality geometry from our method makes it possible to
reconstruct fully textured 3D human appearance by applying
an existing inpainting model in a view-progressive way.

Limitation The requirement of an accurate 3D body model
for our method is the main limitation. While it is possible
to predict a 3D body model from a partial body image [8],
the 3D pose prediction errors affect the global structure of
our 3D reconstruction results. Our models sometimes face
domain gap problems when tested on the image of a person
with highly fashion styles, particularly loose clothing and
complex hairstyles.
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