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Abstract

Videos stored on mobile devices or delivered on the In-
ternet are usually in compressed format and are of various
unknown compression parameters, but most video super-
resolution (VSR) methods often assume ideal inputs result-
ing in large performance gap between experimental set-
tings and real-world applications. In spite of a few pio-
neering works being proposed recently to super-resolve the
compressed videos, they are not specially designed to deal
with videos of various levels of compression. In this pa-
per, we propose a novel and practical compression-aware
video super-resolution model, which could adapt its video
enhancement process to the estimated compression level.
A compression encoder is designed to model compression
levels of input frames, and a base VSR model is then condi-
tioned on the implicitly computed representation by insert-
ing compression-aware modules. In addition, we propose
to further strengthen the VSR model by taking full advan-
tage of meta data that is embedded naturally in compressed
video streams in the procedure of information fusion. Ex-
tensive experiments are conducted to demonstrate the ef-
fectiveness and efficiency of the proposed method on com-
pressed VSR benchmarks. The codes will be available at
https://github.com/aprBlue/CAVSR

1. Introduction
Video super-resolution aims at restoring a sequence

of high-resolution (HR) frames by utilizing the comple-
mentary temporal information within low-resolution (LR)
frames. There have been many efforts [1–3, 7, 13, 15–18,
20, 24, 35, 38, 47] made on this task, especially after the
rise of deep learning. Most of these methods, however,
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Figure 1. Motivation of this work. (a) Application scenario of
the VSR task this work focuses on, (b) performance of existing
VSR methods on compressed VSR task, and (c) performance of
previous VSR models trained on videos of different compression.

assume an ideal input such as directly taking either bicu-
bicly downsampled frames or Gaussian smoothed and dec-
imated ones as the degraded inputs. In real world, videos
stored on mobile devices or delivered on the Internet are
all in a compressed format with different compression lev-
els [10, 11, 14, 25, 30, 33, 41, 45]. Unless the compression is
very lightweight, directly applying an existing VSR model
would give unsatisfactory results with magnified compres-
sion artifacts, as shown in Fig. 1(a). One straightforward so-
lution is to first apply a multi-frame decompression method
[5, 9, 41, 45] to remove blocking artifacts and then feed the
enhanced frames to an uncompressed VSR model. How-
ever, as shown in Fig. 1(b), the performance is still not good
with artifacts remained. In addition, the decompression net-
work usually cannot handle video frames of different com-
pression levels adaptively, which will cause over-smoothing
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and accumulate errors in super-resolution stage.
Recently a few pioneering works have been proposed to

investigate the video super-resolution task on compressed
videos. In [46], Yang et al. took into consideration com-
plex degradations in real video scenarios and built a real-
world VSR dataset using iPhone 11 Pro Max. A special
training strategy is proposed to handle misalignment and il-
lumination/color difference. In RealBasicVSR [3], Chan et
al. synthesized real-world-like low-quality videos based on
a combination of several degradations and proposed a two-
stage method with an image pre-cleaning module followed
by an existing VSR model. COMISR [22] and FTVSR [27]
are proposed to address streamed videos compressed in dif-
ferent levels rather than degradations like noise and blur.

Although COMISR and FTVSR have improved perfor-
mance on compressed videos, they are not specially de-
signed to deal with videos of various levels of compres-
sion. Being aware of compression with input videos would
allow a model to exert its power on those videos adap-
tively. Otherwise, video frames with less compression
would be oversmoothed while the ones with heavy com-
pression would still remain magnified artifacts, as shown in
Fig. 1(c). These methods feed themselves with only com-
pressed video frames as input, however, meta data such as
frame type, motion vectors and residual maps that are nat-
urally encoded with a compressed video are ignored. Mak-
ing full use of such meta data and the decoded video frames
could help further improve super-resolution performance on
compressed videos.

Based on the above observations, we propose a
compression-aware video super-resolution model, a com-
pression encoder module is designed to implicitly model
compression level with the help of meta data of a com-
pressed video. It would also take into account both frames
and their frame types in computing compression represen-
tation. A base bidirectional recurrent-based VSR model
is then conditioned on that representation by inserting
compression-aware modules such that it could adaptively
deal with videos of different compression levels. To fur-
ther strengthen the power of the base VSR model, we take
advantage of meta data in a further step. Motion vectors
and residual maps are employed to achieve fast and accu-
rate alignment between different time steps and frame types
are leveraged again to update hidden state in bidirectional
recurrent network. Extensive experiments demonstrate that
the specially designed VSR model for compressed videos
performs favorably against state-of-the-art methods.

Our contributions are summarized as follows:
• A compression encoder to perceive compression levels

of frames is proposed. It is supervised with a ranking-
based loss and the computed compression representa-
tion is used to modulate a base VSR model.

• Meta data that comes naturally with compressed

videos are fully explored in fusion process of spatial
and temporal information to strengthen the power of a
bidirectional RNN-based VSR model.

• Extensive experiments demonstrate the effectiveness
and efficiency of the proposed method on compressed
VSR benchmarks.

2. Related work
2.1. Video Super-Resolution

Most existing state-of-the-art VSR methods work on
videos without much compression artifacts. They can
be divided into two categories according to the way of
temporal information aggregation: sliding-window-based
and recurrent-based methods. Sliding-window-based meth-
ods [34, 35, 38, 42] compute optical flow or use deformable
convolutions to align neighboring frames on either pixel-
level or feature-level. Some methods [15, 18, 21, 48] also
perform VSR without explicit motion compensation by us-
ing carefully designed networks based on 3D convolutions
or non-local based modules. Recurrent-based VSR methods
could exploit long-range temporal information accumulated
over time, working in an online fashion. Uni-directional
recurrent-based VSR methods [7, 12, 31] propagate history
information to the current time step for restoration, working
in an online fashion; while BasicVSR [1], GOVSR [47] and
BasicVSR++ [2] aggregate temporal information from two
directions for performance improvement. All these sliding-
window-based and recurrent-based methods are trained and
evaluated on bicubicly downsampled video frames with-
out considering compression. In this work, we build our
work on top of a bidirectional VSR model and achieve
compression-aware VSR by modeling compression with the
proposed compression encoder.

2.2. Compressed Video Quality Enhancement

There have been several attempts made to enhance the
quality of compressed videos by removing the artifacts in-
troduced by the codec. MFQE [9, 45] presents a mod-
ule for peak quality frames (PQFs) detection and uses a
lightweight multi-frame CNN to enhance other low-quality
frames. It also alleviates the problem of quality fluc-
tuation over frames with those single-frame-based meth-
ods [43, 44]. To reduce the influence of inaccurate optical
flow, STDF [5] incorporates a spatial-temporal deformable
convolution to aggregate temporal information. TSAN [41]
aims at transcoded video restoration and achieves it using
temporal deformable alignment and pyramidal spatial fu-
sion.

Super-resolving compressed frames is a more challeng-
ing task, which requires both artifact removal and detail en-
hancement. A few pioneering works have made attempts
at this task. COMISR [22] presents a bi-directional VSR
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Figure 2. Pipeline of the proposed compression-aware VSR model. From the meta data of bitstream, we extract the frame types, motion
vectors and residual maps. These additional information will be processed by our compression encoder to upsample the features of the
current frame. Using the motion vector and residual maps, the meta-assisted alignment module aggregate information from the previous
frame and merge it with the SR features of the current frame by the temporal feature fusion module. Finally, we obtain the SR results
through the upsampling decoder. The meta data and the aggregated SR features of the current frame are also used to update the hidden
state to assist the SR process of the next frame.

framework that include a detail-aware flow estimation mod-
ule to recover HR flow, and a Laplacian enhancement mod-
ule to add high-frequency details. FTVSR [27] projects
video frames into the frequency domain and designs a
Frequency-Transformer that conducts self-attention in joint
space-time-frequency space to recover high-frequency de-
tails. RealBasicVSR [3] focuses on video shooting scenar-
ios and takes into account noise and blur in addition to com-
pression in their setting. A specially designed pre-cleaning
module is added in front of BasicVSR for detail enhance-
ment and artifact suppression. However, these methods are
not specially designed to deal with input videos of various
compression levels. In addition, rich metadata that is en-
coded in the bitstream could benefit the super-resolution
process but has not been fully exploited. Very recently,
CIAF [49] directly takes MVs to approximate optical flow
for motion compensation and employs residual map to com-
pute a mask for adaptive inference, which gives an initial
attempt in employing metadata in the VSR task.

In this work, we focus on leveraging metadata to per-
form compression-aware video super-resolution, which is
achieved by conditioning a base VSR model on an implic-
itly computed compression representation.

3. Method
In this work, we design a compression encoder to model

compression of a frame in an implicit way and train it in

a ranking-based manner. The computed compression rep-
resentation is then employed to modulate a bidirectional
recurrent-based VSR model such that it is able to adap-
tively deal with various compressions. To further strengthen
the VSR model, metadata that is naturally encoded with a
compressed video is fully explored to improve alignment
between frames and hidden state update in bidirectional re-
current network. The overall architecture of the proposed
framework could be found in Fig. 2.

3.1. Preliminary

We begin by briefly outlining several basic concepts
about video codecs. Modern video encoders adopt Group of
Pictures (GOP) as basic structure, which includes three dif-
ferent frame types: I-frames, P-frames and B-frames. Typ-
ically, I-frame (Intra-coded picture) is less compressed and
its compression is similar to standalone image compression.
P-frame (Predicted picture) holds only change in the image
from the previous frame. Therefore, the encoder does not
need to store the unchanging background pixels in P-frame,
thus saving more space. B-frame (Bidirectional predicted
picture) saves even more space by using the difference from
both the preceding and following frames to encode its con-
tent. Block-wise motion vectors (MVs) and residual maps
are stored in P- and B-frames for motion compensation and
decoding. Obviously, even for the same video, different
types of frames contain different levels of information and
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Figure 3. Compression encoder and its training strategy. With our
pairwise training strategy and learning-to-rank paradigm, subtle
compression differences can be learned effectively which allows
our method to be sensitive to different compression levels.

compression.
Modern codecs also allow users to adjust compression

levels by tuning its perceptual quality. A common way is to
tune the Constant Rate Factor (CRF), which is a number in
[0, 51]. CRF0 denotes lossless encoding and larger number
means heavier compression and worse perceptual quality.
Note that although we focus on the use of H.264 [40] in
this work, the proposed method also applies to other codecs
such as H.265 [32] and AVS [8].

3.2. Compression Encoder

To make the VSR model adaptive to various compres-
sion, we design a compression encoder to implicitly model
compression in a video frame by taking into account both
frame type and compressed perceptual quality. However,
making an encoder sensitive to compression level is dif-
ficult because the differences across frame types and very
closed CRF is very subtle. Thus, in this work compression
representation learning is treated as a learning-to-rank task,
as shown in Fig. 3. Specifically, video frame pairs are pre-
pared in two ways in terms of compression. One subset is
composed of frame pairs with the same CRF but with differ-

(a) Contrastive-based Learning (CRF)

(c) Ranking-based Learning (CRF) (d) Ranking-based Learning (CRF+IBP)

(b) Contrastive-based Learning (CRF+IBP)

Figure 4. Visualization of compression representation learned with
different strategies using t-SNE [36]. Ten videos are compressed
with a set of different CRFs. All compressed videos include I-,
B- and P-frames, except that those compressed with CRF0 include
only I- and P- frames.

ent frame types, and the other subset is composed of frame
pairs with the same frame type but with different CRFs. The
compression encoder is taught to become aware of the com-
pression level of different frame types from the former sub-
set and learn to distinguish compression caused by a small
CRF from a large one.

It consists of two input branches, i.e., frame type branch
and frame branch. As for the frame type branch, a one-
hot vector is assigned to each frame type and a token em-
bedding is used to represent that information. As for the
frame branch, the frame decoded from a video codec is fed
to a few convolutional layers. The feature maps from the
frame branch and the token embedding from the frame type
branch are combined as the compression representation of
this frame, which is denoted as Ct ∈ RC.

To teach the encoder to be compression-aware, a pair
of frames and their frame types are sent to a siamese-like
architecture. In that architecture, a pair of compression
representations are obtained from the shared compression
encoder and two scores are further computed after a few
shared ranker layers. The ranker predicts a ranking score
s for an LR frame. The ranking loss [50] is applied to
learn the ranking orders about compression level. For con-
venience, we define a score Qf = {0, 1, 2} for each frame
type {I, P,B} according to the amount of compression, and
define another score Qc = CRF number for the other kind
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Figure 5. Illustration of compression-aware feature extraction.

of compression factor. The pairwise margin-ranking loss is
adopted and is defined below.

LR = max(0, (si − sj) ∗ κ+ ξ)

where

{
κ = 1 if Qf/c(i) < Qf/c(j)

κ = −1 if Qf/c(i) > Qf/c(j),

(1)

where κ indicates the ground-truth order between the pair,
ξ is the margin, Qf or Qc is chosen depending on the used
subset. By encouraging the ranking scores to have the cor-
rect order, degradation representation learns to encode in-
formation about degradation within it, which is the key to
achieving compression-aware video super-resolution.

3.3. Compression-Aware VSR

Compression-aware modulation. Once compression rep-
resentation is computed, it is employed to encourage a base
VSR model to perform adaptively under various compres-
sion. Feature extraction component of the base VSR model
is composed of several convolutional layers and residual
blocks. In this work, a simple compression-aware modu-
lation (CAM) module is inserted before each convolutional
layer in the feature extraction process. Similar to [39],
the modulation is instantiated as an affine transformation
whose parameters γi and βi are computed spatially adap-
tively based on the compression representation, as shown in
Fig. 5 and Eq. 2.

CAM(F|γi, βi) = γi ⊙ F+ βi, (2)

where, F represents the features generated by the i-th con-
volutional layer. The spatial dimension of γi and βi are the
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Figure 6. Illustration of the proposed meta-assisted alignment.

same as F, and ⊙ denotes element-wise multiplication. In
this way, estimated compression information is injected into
the base VSR model to achieve compression-aware video
super-resolution.

Meta-assisted alignment. Motion compensation plays a
key role in the VSR process. A common practice is to es-
timate optical flow between frames and apply that in im-
age or feature alignment. However, computing optical flow
would bring in extra computation and inaccurate optical
flow prediction would have negative influence on VSR per-
formance. Optical flow estimation is challenging especially
when video is seriously compressed. In this work, we make
full use of two kinds of additional meta data that naturally
come with compressed videos, i.e.motion vectors (MVs)
and residual maps, in the alignment procedure. Directly
taking MVs as an alternative of optical flow might not be
optimal since they are computed block-wisely in the video
codec. As shown in Fig. 6, here we take MVs as initial off-
sets and further refine them with the help of the input frame
and the residual map. The estimated motion information is
used to align hidden states to the current time step in the
temporal feature fusion stage. Warped hidden state repre-
sentation is then combined with frame feature to compute
residual offsets. In the codec process, extracted residual
maps represent how well the reconstruction is. An atten-
tion map is computed based on the residual map in order
to refine motion represented by MVs. Regions with larger
reconstruction errors imply larger alignment errors and rely
more on refinement. The final motion M̂ is computed as the
sum of MVs M and the estimated residual offsets.

Meta-assisted Propagation. Since content in B-frame is
heavily compressed, the hidden state computed for that
frame may contain less information than others, hence caus-
ing performance degradation in the propagation process
over time. To ameliorate this issue, we propose to update
the hidden state of B-frame as a momentum-based moving
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Table 1. Quantitative comparison on compressed video of Vid4 [23] for 4× VSR. The PSNR (dB) and SSIM are calculated on Y-channel.
Red text indicates the best and blue text indicates the second best performance. The Runtime is calculated on an HR image size of
1280× 720. These model are carefully trained using the provided code.

Method Params Runtime Per clip with Compression CRF25 Average of clips with Compression
(M) (ms) calendar city foliage walk CRF15 CRF25 CRF35

EDVR [38] 20.6 378 21.76/0.676 25.74/0.665 24.12/0.624 27.42/0.811 26.53/0.794 24.76/0.694 22.39/0.544
IconVSR [1] 8.7 70 21.45/0.661 25.76/0.659 24.25/0.629 26.99/0.804 26.84/0.809 24.61/0.688 22.10/0.520
BasicVSR++ [2] 7.3 77 22.31/0.693 26.24/0.670 24.53/0.635 27.08/0.830 27.17/0.826 25.04/0.707 22.21/0.532
RealBasicVSR [3] 6.3 63 21.86/0.683 25.85/0.672 24.22/0.631 27.55/0.819 26.94/0.813 24.87/0.701 22.39/0.531
STDF [5]+BasicVSR [1] 7.0 95 22.20/0.682 25.93/0.658 24.60/0.633 27.15/0.819 26.82/0.805 24.97/0.698 22.52/0.540
COMISR [22] 6.2 73 22.87/0.718 25.95/0.657 24.72/0.662 27.02/0.814 26.66/0.801 25.14/0.713 22.62/0.546
FTVSR [27] 10.8 850a 23.09/0.745 26.43/0.693 25.07/0.659 27.45/0.831 27.50/0.826 25.51/0.732 22.79/0.561
Ours 8.9 93 22.99/0.747 26.48/0.709 24.92/0.668 28.20/0.842 27.42/0.833 25.65/0.742 22.84/0.574

aSince FTVSR takes much GPU memory, we follow a similar way as mentioned in the original paper and divide an image into 4 patches and pass each
patch through the model. Therefore the final runtime is the total time of inference on all these patches.

average with its previous frame, as shown in Eq. 3.{
ht = α ∗ h̃t + (1− α) ∗ ĥt−1 if Tt = B

ht = h̃t otherwise,
(3)

where, h̃t is the hidden state estimated in current time step
t. ĥt−1 means the hidden state which is calculated in the
previous time step t − 1 and aligned to current time step
t by using MVs. α means a momentum coefficient. We
find that α = 0.5 is a optimal value for different levels of
compression.

4. Experiments

4.1. Implementation Details

Compressed Datasets. In this work, we use the popular
Vimeo-90k dataset [42] for training. The training set con-
sists of about 65K 7-frame video clips with various mo-
tion types. To generate the compressed LR frames, the
HR frames are first smoothed by a Gaussian kernel with
a standard deviation of 1.5 and downsampled by a scale of
4. Then, we use the H.264 encoder to generate the com-
pressed video with popular FFmpeg 4.3 [6]. We set the
CRF to 0, 15, 25, and 35, following [22] and [27]. To
write out the bitstream, we modified the decoder of FFm-
peg and will release the code publicly to encourage oth-
ers to work with compressed video. Finally, we feed com-
pressed frames as LR sequences and corresponding meta
data to the VSR models to obtain super-resolution results.
Following [22] and [27], we adopt the Vid4 dataset [23]
as our test set and compress it with the same degradation
and compression method as Vimeo-90K. The SR results are
evaluated in terms of PSNR and SSIM on the Y channel of
YCbCr space. Moreover, we further evaluate our method
on the downloaded Vid4 from YouTube to simulate more
realistic video streaming scenario, similar to [22].

Training Setting. The proposed CAVSR has 5
compression-aware modulation residual blocks (CAMRB)
for compression-aware feature extraction and 25 residual
blocks for temporal feature fusion. The batch size and the
patch size of LR images are set to 16 and 64 × 64 during
training. We also use random rotation, flipping and tem-
poral reverse operation as the data augmentation technique
during training to avoid overfitting. In our experiments, we
set ξ = 0.5 and α = 0.5. The overall network is trained in
two stages The Cosine Annealing scheme [26] and Adam
optimizer [19] with β1 = 0.9 and β1 = 0.999 are used. In
stage one, we only train the compression encoder and ranker
by optimizing Eq. 1 for 100K iterations. The initial learning
rate is set to 1 × 10−4. In stage two, we freeze the com-
pression encoder and train the reset parts which are super-
vised by Charbonnier penalty loss function [4]. The initial
learning rate is set to 1 × 10−4. The total number of itera-
tions is 400K. During training, videos with CRF0 and com-
pressed videos with CRF15/25/35 are randomly fed to the
VSR model with a probability of 0.5. All experiments are
implemented with PyTorch on a server with V100 GPUs.

4.2. Comparison with State-of-the-Arts

In this section, we compare our method with several
state-of-the-art VSR approaches, including EDVR [38],
IconVSR [1], BasicVSR++ [2], RealBasicVSR [3],
STDF [5] + BasicVSR [1], COMISR [22], FTVSR [27].
The first three methods are VSR methods originally pro-
posed to deal with ideal degradation, e.g., bicubic or Gaus-
sian bicubic. The last five are the methods of working on
compressed videos. The results of these methods are ob-
tained by carefully training on our training set. Our method
outperforms most of the previous VSR methods on the three
compression levels both in PSNR and SSIM. Our method
obtains comparable performance with latest FTVSR model.
However, its model size is larger and its speed is much
slower than ours because of its heavy computation and GPU
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Figure 7. Qualitative comparison on the compressed Vid4 [23] test set for 4× VSR. Zoom in for better visualization.

memory usage. The qualitative comparison with other state-
of-the-art methods is shown in Fig. 7. Our method produces
higher quality HR image including finer details and sharper
edges. Other methods are either prone to generate some ar-
tifacts (e.g., wrong stripes on clothes) or can not recover
missing details (e.g., small windows of the building).

Experiments on real-world compressed videos. We also
evaluate these methods on real-world compressed videos
following [22]. Uncompressed videos are first generated
from the raw frames, and are then uploaded YouTube. Var-
ious VSR models are applied to the downloaded videos for
evaluation. Fig. 8 shows that the proposed method gives
visually better results.

BasicVSR++ RealBasicVSR COMISR Ours GTFTVSR

Figure 8. Qualitative comparison on Vid4 [23] downloaded from
YouTube for × 4 VSR.

Table 2. Ablation studies of the proposed CAVSR on the com-
pressed Vid4 with CRF15, CRF25 and CRF35. ’CAM’ means the
proposed compression-aware modulation. ’MA’ and ’MH’ repre-
sents the proposed meta-data-assisted alignment and hidden state
updating, respectively.

Model # CAM MA MH CRF15 CRF25 CRF35

1 26.76 24.54 22.06

2 ✓ 27.25 25.41 22.74
3 ✓ ✓ 27.40 25.60 22.80
4 ✓ ✓ ✓ 27.42 25.65 22.84

4.3. Ablation Study

Ablation on the components of CAVSR. In this section,
we examine the effectiveness of each component of the
proposed CAVSR on the compressed Vid4, as shown in
Tab. 2. We adopt the BasicVSR [1] framework as our
baseline (Model 1), which achieves 26.76dB, 24.54dB and
22.06dB on CRF 15, 25 and 35, respectively. By inserting
the compression-aware modules before each convolutional
layer in the feature extraction, Model 2 surpasses Model
1 by +0.49dB, +0.87dB and +0.68dB on CRF 15, 25 and
35, respectively. Such improvement could be attributed
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Table 3. Ablation studies of the proposed CAM with different
compression-aware representations. ’CL’ and ’RL’ means the
training of compression-aware encoder with contrastive loss and
ranking loss, respectively. ’CRF’ represents the training data us-
ing the different kinds of CRF but the same frame types. ’IBP’ is
the training data using different kinds of frame types but the same
CRF.

Model # Loss Data CRF15 CRF25 CRF35
CL RL CRF IBP

5 26.98 24.74 22.17

6 ✓ ✓ 27.20 25.49 22.62
7 ✓ ✓ ✓ 27.32 25.58 22.77

8 ✓ ✓ 27.27 25.54 22.69
9 ✓ ✓ ✓ 27.42 25.65 22.84

to the compression-aware design which allows the model
to exert its power adaptively on different videos. With
the proposed meta-assisted alignment (Model 3), we ob-
tain extra performance gains, e.g., from 27.25/25.41/22.74
to 27.40/25.60/22.80. By using the meta-assisted propa-
gation, the performance of Model 4 further increases to
27.42/25.65/22.84. The performance gain of Model 3 and
Model 4 implies that making full use of the information
from meta data is beneficial to VSR.

Ablation on the compression-aware modulation. We try
two kinds of the losses for compression encoder, ’CL’ de-
notes the contrastive learning loss in [37] while ’RL’ de-
notes the proposed ranking loss. We also use two kinds of
input data for training the compression encoder. (1) ’CRF’
means the input frame pair have different CRF level but the
same frame types. (2) ’IBP’ means the input frame pair are
the different frame types but the same CRF level. Tab. 3
shows the results of using compression-aware representa-
tions obtained with two different losses in the modulation.
Specifically, the compression encoder is supervised by ei-
ther contrastive loss or the proposed ranking loss. Model 5
is a base model with the proposed meta-assisted alignment
and propagation modules. We observe that as long as the
compression-aware modulation is conducted, the VSR per-
formance would be improved no matter whether the com-
pression encoder is trained with contrastive loss or rank-
ing loss. But we also notice that different kinds of learn-
ing strategies for compression representation do have an in-
fluence on performance. Improvements from Model 8 to
Model 9 show that informing the model about the rank-
ing order is more helpful in compression-aware modulation
than only teaching it to distinguish one from the other. We
also find that using more diverse input pairs can improve
the performance, e.g., Model 6 vs. Model 7 and Model 8
vs. Model 9.

Table 4. Ablation studies of the proposed Meta-assisted Align-
ment. ’OF’, ’MV’ and ’RMV’ represents the Optical Flow [28],
Motion Vector and the proposed Refined Motion Vector, respec-
tively. The Runtime(ms) is calculated on an HR image size of
1280×720.

OF MV RMV #Param. Runtime CRF15 CRF25 CRF35

✓ 9.9M 114 27.53 25.69 22.74
✓ 8.5M 87 27.36 25.57 22.79
✓ ✓ 8.9M 93 27.42 25.65 22.84

Ablation on the meta-assisted q1. We examine our
method with different alignment methods, as shown in
Tab. 4. We adopt the SPyNet [29] as an alternative way
to perform alignment at the feature level. We can observe
that the optical flow indeed boosts the performance on CRF
15 and CRF 25 by a large margin, while it suffers a perfor-
mance drop on larger compression level, i.e., CRF 35. The
explanation for that is the larger compression level would
result in severe blocking in the frame which would influence
the accuracy of optical flow estimation. The model with op-
tical flow still comes with considerable computational ex-
pense. Compared to that, MVs are not only cheap to obtain
but also bring consistent improvement on all testing CRFs.
Although such block-wise alignment is not accurate as the
pixel-wised optical in CRF 15 and CRF 25, the proposed
refined MVs with minimal computation increase could help
achieve comparable performance with the optical flow.

5. Conclusion

In this work, we focus on addressing the task of
video super-resolution on compressed videos. A novel
compression-aware video super-resolution approach is pro-
posed to deal with various compression. The key of this
method is the design of a compression encoder, which can
implicitly model compression in a video frame into a com-
pression representation. The learning of compression rep-
resentation is treated as a learning-to-rank task on the con-
structed pairs. A compression-aware modulation modules
conditioned on that representation are inserted to base VSR
models to achieve compression-aware VSR. Metadata such
as MVs and residual maps, which are naturally encoded in
the video, are leveraged in motion compensation and prop-
agation modules to further improve the VSR performance.
Extensive experiments demonstrate the effectiveness of the
proposed method.
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