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Abstract

Vector font synthesis is a challenging and ongoing prob-
lem in the fields of Computer Vision and Computer Graph-
ics. The recently-proposed DeepVecFont [27] achieved
state-of-the-art performance by exploiting information of
both the image and sequence modalities of vector fonts.
However, it has limited capability for handling long se-
quence data and heavily relies on an image-guided outline
refinement post-processing. Thus, vector glyphs synthesized
by DeepVecFont still often contain some distortions and ar-
tifacts and cannot rival human-designed results. To address
the above problems, this paper proposes an enhanced ver-
sion of DeepVecFont mainly by making the following three
novel technical contributions. First, we adopt Transform-
ers instead of RNNs to process sequential data and design a
relaxation representation for vector outlines, markedly im-
proving the model’s capability and stability of synthesizing
long and complex outlines. Second, we propose to sample
auxiliary points in addition to control points to precisely
align the generated and target Bézier curves or lines. Fi-
nally, to alleviate error accumulation in the sequential gen-
eration process, we develop a context-based self-refinement
module based on another Transformer-based decoder to re-
move artifacts in the initially synthesized glyphs. Both qual-
itative and quantitative results demonstrate that the pro-
posed method effectively resolves those intrinsic problems
of the original DeepVecFont and outperforms existing ap-
proaches in generating English and Chinese vector fonts
with complicated structures and diverse styles.
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(b) DeepVecFont w/ refinement

(c) Ours

(d) Ground Truth

(a) DeepVecFont  w/o refinement

Figure 1. Visualization of the vector glyphs synthesized by Deep-
VecFont and Ours, where different colors denote different drawing
commands. (a) DeepVecFont w/o refinement suffers from location
shift. (b) DeepVecFont w/ refinement has both over-smoothness
(see green circles) and under-smoothness (see blue circles). (c)
Our method can directly synthesize visually-pleasing results with
compact and coordinated outlines. Zoom in for better inspection.

1. Introduction

Vector fonts, in the format of Scalable Vector Graph-
ics (SVGs), are widely used in displaying documents, arts,
and media contents. However, designing high-quality vec-
tor fonts is time-consuming and costly, requiring extensive
experience and professional skills from designers. Auto-
matic font generation aims to simplify and facilitate the font
designing process: learning font styles from a small set of
user-provided glyphs and then generating the complete font
library. until now, there still exist enormous challenges due
to the variety of topology structures, sequential lengths, and
styles, especially for some writing systems such as Chinese.

Recent years have witnessed significant progress [5, 17]
made by deep learning-based methods for vector font gen-
eration. Nevertheless, vector fonts synthesized by these
existing approaches often contain severe distortions and
are typically far from satisfactory. More recently, Wang
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and Lian [27] proposed DeepVecFont that utilizes a dual-
modality learning architecture by exploiting the features
of both raster images and vector outlines to synthesize
visually-pleasing vector glyphs and achieve state-of-the-art
performance. However, DeepVecFont tends to bring lo-
cation shift to the raw vector outputs (Fig. 1(a)), which
are then further refined according to the synthesized im-
ages. Specifically, DeepVecFont adopts a differentiable ras-
terizer [14] to fine-tune the coordinates of the raw vector
glyphs by aligning their rasterized results and the synthe-
sized images. However, after the above process, the refined
vector outputs tend to be over-fitted to the inherent noise in
the synthesized images. Thus, there often exist suboptimal
outlines (Fig. 1(b)) with over-smoothed corners (green cir-
cles) or under-smoothed adjacent connections (blue circles)
in the final synthesized vector fonts, making them unsuited
to be directly used in real applications.

To address the above-mentioned issues, we propose a
new Transformer-based [25] encoder-decoder architecture,
named DeepVecFont-v2, to generate high-fidelity vector
glyphs with compact and coordinated outlines. Firstly,
we observed that the commonly used SVG representation,
which shares the same starting and ending points between
adjacent drawing commands, is more suitable for the learn-
ing process of RNNs [9] than Transformers [25]. RNNs
simulate a recurrent drawing process, where the next move-
ment is determined according to the current hidden state fed
with the current drawing command. Therefore, the start-
ing point of the following drawing command can be omit-
ted (replaced by the ending point of the current drawing
command). On the contrary, Transformers make drawing
prediction based on the self-attention operations performed
on any two drawing commands, whether adjacent or not.
Therefore, to make the attention operator receive the com-
plete information of their positions, the starting point of
each drawing command cannot be replaced by the ending
point of the previous command. Based on the above ob-
servation, we propose a relaxation representation that mod-
els these two points separately and merges them via an ex-
tra constraint. Secondly, although the control points of a
Bézier curve contain all the primitives, we found that the
neural networks still need more sampling points from the
curve to perform a better data alignment. Therefore, we
sample auxiliary points distributed along the Bézier curves
when computing the proposed Bézier curve alignment loss.
Thirdly, to alleviate the error accumulation in the sequential
generation process, we design a self-refinement module that
utilizes the context information to further remove artifacts
in the initially synthesized results. Experiments conducted
on both English and Chinese font datasets demonstrate the
superiority of our method in generating complicated and di-
verse vector fonts and its capacity for synthesizing longer
sequences compared to existing approaches. To summarize,

the major contributions of this paper are as follows:

- We develop a Transformer-based generative model,
accompanied by a relaxation representation of vector
outlines, to synthesize high-quality vector fonts with
compact and coordinated outlines.

- We propose to sample auxiliary points in addition
to control points to precisely align the generated
and target outlines, and design a context-based self-
refinement module to fully utilize the context informa-
tion to further remove artifacts.

- Extensive experiments have been conducted to verify
that state-of-the-art performance can be achieved by
our method in both English and Chinese vector font
generation.

2. Related Work
Font generation methods can be roughly classified into

approaches that aim to synthesize fonts consisting of raster
images and vector glyphs, respectively.

In recent years, glyph image synthesis methods typically
draw inspirations from recent advances in deep generative
models such as VAEs [12] and GANs [7]. Tian et al. [24]
and Lyu et al. [18] employed the framework of pix2pix [11]
based on cGAN [19] to transfer a template font to target
fonts with desired styles. Zhang et al. [29] proposed EMD
to explicitly separate the style and content features of glyph
images. Mc-GAN [2] and AGIS-Net [6] decomposed the
pipeline of artistic font generation into glyph image syn-
thesis and texture transfer. Wang et al. [26] presented At-
tribute2font, a cGAN-based network to synthesize fonts ac-
cording to user-specified attributes and their corresponding
values. For Chinese font generation, Park et al. [20] and
Kong et al. [13] proposed to fully exploit the component and
layout information in Chinese glyphs. Xie et al. [28] pro-
posed a deformable generative network which can synthe-
size target glyph images without direct supervision. Tang
et al. [23] adopted a cross-attention mechanism for a fine-
grained local style representation to generate target glyph
images.

There is growing interest in the task of vector font syn-
thesis, which can directly deliver results with scale-invariant
representation. Suveeranont and Igarash [22] proposed to
represent the user-defined character example as a weighted
sum of the outlines and skeletons from the template fonts,
and apply the weights to all characters to generate the new
font. Campbell and Kautz [4] aimed to learn a font manifold
from existing fonts and create new font styles by interpola-
tion and extrapolation from the manifold. SketchRNN [8]
employed a sequence VAE based on bi-directional RNNs
to generate sketches. Easyfont [15] decomposed the hand-
writing style into the shape and layout style of strokes to
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generate personal handwriting Chinese characters. SVG-
VAE [17] developed an image autoencoder architecture to
learn style vectors of fonts, and then used LSTMs [9] fol-
lowed by a Mixture Density Network [3] to generate the
SVG drawing sequence. DeepSVG [5] adopted a hierarchi-
cal generative network based on Transformers to generate
vector icons with multiple paths. Im2Vec [21] can directly
generate vector graphics from raster training images with-
out explicit vector supervision. DeepVecFont [27] exploited
both the image and sequence modalities to facilitate the syn-
thesis of vector glyphs. Liu et al. [16] proposed to repre-
sent glyphs implicitly as shape primitives enclosed by sev-
eral quadratic curves, followed by a style transfer network
to render glyph images at arbitrary resolutions. More re-
cently, Aoki and Aizawa [1] introduced AdaIn [10] into the
pipeline of DeepSVG to synthesize Chinese vector fonts.
However, there still often exist non-negligible distortions
and artifacts on the vector glyphs synthesized by the above-
mentioned existing approaches.

3. Method
In this section, we present the details of our proposed

DeepVecFont-v2. Specifically, we first introduce the data
structure and the learned SVG embeddings of vector glyphs.
Then, we describe the overview of our network architecture
and the implementation details of each module.

3.1. Data Structure and SVG Embeddings

A vector font is a set of vector glyphs {G1, ..., GNchar},
where Nchar denotes the number of character cate-
gories. As shown in Fig. 3, a vector glyph Gi can
be viewed as a sequence of drawing commands, de-
noted as Gi = [Ci,1, ..., Ci,Nc

], where Nc is the total
length of commands. The drawing command Ci,j

is a tuple (zi,j , pi,j), where zi,j and pi,j denote the
command type and command coordinates, respec-
tively. The drawing sequence starts from the top-left
command. We consider 4 command types, i.e., zi ∈
{MoveFromTo, LineFromTo,CurveFromTo,EOS}.
MoveFromTo means moving the drawing position to
a new location, which is used for starting a new path.
LineFromTo and CurveFromTo mean drawing a
straight line and a three-order Bézier curve, respectively.
EOS means ending the drawing sequence.

Typically, pi,j is made up of Np pairs of coordinates:
pi,j = [(x1

i,j , y
1
i,j), ..., (x

Np

i,j , y
Np

i,j )], known as the control
points, where Np is determined by the order of Bézier
curves. In the typical SVG representation, the starting point
is omitted so that the number of curve order is equal to Np,
namely, Np = 3 for the three-order Bézier curve and Np = 1
for the line (equal to the one-order Bézier curve).

Relaxation Representation Different from SVG-VAE
and DeepVecFont, we assign each drawing command

with individual starting and ending points. Therefore,
the number of coordinate pairs Np in CurveFromTo
is set to 4. Specifically, p1i,j and p4i,j are the start-
ing and ending points, respectively; p2i,j and p3i,j are
two intermediate control points. We pad the length
of other commands to that of CurveFromTo: for
zi,j ∈ {MoveFromTo, LineFromTo}, only (x1

i,j , y
1
i,j)

and (x4
i,j , y

4
i,j) (starting and ending points) are used; for

zi,j = EOS, no argument is used. Afterwards, we render
those vector glyphs to obtain the rasterized glyph images.

An illustration of the difference between an existing
SVG representation and ours can be found in Fig. 4. Our
proposed representation describes each drawing command
separately, which is well-suited for the Transformer’s atten-
tion mechanism to exploit the long-range dependencies of
drawing commands. In the training stage, we force the end-
ing point of Ci to be consistent with the starting point of
Ci+1 using an extra constraint calculated by Eq. 10. In the
inference stage, we merge these two points by averaging
their positions.

Embedding We first project the drawing command into
a common continuous dE-dimensional embedding space.
Specifically, each Ci,j is projected into a vector ei,j ∈ RdE

via the sum of four embeddings:

ei,j = ecmd
i,j + eargsi,j + ew,h

i,j + eposi,j . (1)

For the command type embedding ecmd
i,j , we use a learn-

able matrix Wcmd ∈ RdE×4 to convert the command
type into a dE-dimensional vector, which is formulated as
ecmd
i,j = Wcmdδ

c
i,j ∈ RdE , where δci,j ∈ R4 is a one-hot

vector for the four command types.
For the argument (coordinate) embedding eargsi,j , we first

quantize the continuous coordinates into discrete integers
and convert the integer into a one-hot vector with 256 di-
mensions. Then, we stack all the 8 coordinate parameters
into a matrix δpi,j ∈ R256×8, and embed each parameter us-
ing a learnable matrix W b

args ∈ RdE×256. After that, we ag-
gregate all the parameter embeddings through a linear pro-
jection layer W a

args ∈ RdE×8dE , which is formulated as:

eargsi,j = W a
argsflatten

(
W b

argsδ
p
i,j

)
, (2)

where flatten(·) means flattening the input into a vector.
The third term ew,h

i,j encodes the height and width of the
glyph area to capture global styles. We discretize the height
and width into discrete integers and project them into the
continuous space to obtain ewi,j and ehi,j . Then we concate-
nate them by element-wise addition to get ew,h

i,j .
The fourth term (positional embedding) eposi,j encodes the

position and order information of all commands in a draw-
ing sequence. Similar to [25], we use the absolute positional
encoding to compute the eposi,j ∈ RdE for each command.
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Figure 2. The pipeline of our DeepVecFont-v2. The inputs are reference glyphs in both raster images and vector outlines. (a) A dual-branch
architecture based on Transformers and CNNs aims to synthesize the target vector glyph. (b) The self-refinement module is designed to
remove artifacts in the initially synthesized vector glyphs. (c) In addition to control points, auxiliary points are sampled to align the
synthesized glyph with the corresponding target via the Bézier curve alignment loss.

<MoveFromTo>: 
14.3 6.4 ∅ ∅ ∅ ∅ 14.3 6.3

<CurveFromTo>: 
14.3 6.4 15.9 14.2 18.8 19.1 23.0 21.2

<LineFromTo>: 
23.0 21.2 ∅ ∅ ∅ ∅ 20.3 22.4

<CurveFromTo>: 
20.3 22.4 16.8 19.1 14.4 13.8 13.1 6.5

<EOS>: 
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 

<LineFromTo>: 
13.1 6.5 ∅ ∅ ∅ ∅ 14.3 6.4

(13.1, 6.5)

(20.3, 22.4)

(13.1, 6.5)
(14.3, 6.4)

(14.3, 6.4)

(23.0, 21.2)

(14.3, 6.4)

(20.3, 22.4)
(23.0, 21.2)

Figure 3. An illustration of our data structure used to describe vec-
tor glyphs. The command type and coordinates are shown below
each canvas. The origin of the axes is at the top left of each canvas
and “∅” denotes the unused argument.

3.2. Dual-branch Pipeline

Fig. 2 shows the pipeline of our DeepVecFont-v2. Given
randomly sampled Nr (typically set to 4) reference glyphs
as input, the model generates a target glyph with the same
font style as input samples, which is further refined by
a self-refinement module. Similar to DeepVecFont [27],
the proposed model also adopts a dual-branch architecture
which, however, employs several new techniques and mod-
ules. More details are presented as follows:

Encoder The encoder of our DeepVecFont-v2 is made

E1’ (S2’) : (138,152)

Example:

E1’ (S2’)  

E1(S2)  

E1(S2): (138,123)

Example: Example:

E1’  (148,138)

S2’  (148,138)
(a) (b) (c)

E1’  

S2’ 

Figure 4. A demonstration of different SVG representations. (a)
The ground truth. If the previous blue segment is wrongly pre-
dicted, (b) the commonly used representation in SVG-VAE [17]
shares the connected points (E1 and S2), resulting in location
shift. (c) The proposed relaxation representation models these two
points separately, which is more robust against outliers.

up with an image encoder and a sequence encoder. The im-
age encoder is a CNN, outputting the image feature fimg ∈
RdE . Different from DeepVecFont, the sequence encoder
is a Transformer encoder composed of six layers of Trans-
former encoder blocks. For each vector glyph Gi, it re-
ceives as input the sequence embedding [ei,0, ei,1, ..., ei,Nc ],
where [ei,1, ..., ei,Nc

] is the embedding of Nc drawing com-
mands and ei,0 denotes an auxiliary learnable “token” for
performing dual-modality fusion. The output of our Trans-
former encoder is denoted as e′i = [e′i,0, e

′
i,1, ..., e

′
i,Nc

] ∈
RdE×(Nc+1). Next, we calculate the holistic sequence-
aspect style feature fseq = [fseq

0 , fseq
1 , ..., fseq

Nc
], where

fseq
j is aggregated from all the j-th tokens in e′ of Nr ref-

erence glyphs via linear projection.
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Modality fusion We use the modality token fseq
0 to rep-

resent the style feature of vector glyphs, and combine it with
the image feature fimg by a linear projection layer to get the
fused feature f :

f = Linear
([
f img; fseq

0

])
, (3)

then f is normalized by using the reparametrization trick
introduced in VAE [12].

Decoder The image decoder is a Deconvolutional Neural
Network. We send f into the image decoder to generate the
target glyph image It. Then we employ the L1 loss and
perceptual loss to compute the image reconstruction loss:

Limg =
∥∥∥Ît − It

∥∥∥
1
+ Lpercep

(
Ît, It

)
. (4)

We feed the sequence decoder with the input of
[f, fseq

1 , ..., fseq
Nc

], where the original modality token fseq
0

is replaced with the fused feature f . An MLP layer is
appended on top of the Transformer decoder, predicting
the command types and coordinates of the target glyph as
[ẑt,1, ...ẑt,Nc ] and [p̂t,1, ...p̂t,Nc ], respectively. Here we de-
fine the loss between the initially generated glyph and its
corresponding ground truth as:

Linit
CE =

NC∑
j=1

wcmdℓ (zt,j , ẑt,j) + ℓ (pt,j , p̂t,j) , (5)

where ℓ denotes the Cross-Entropy loss, all the coordinates
(p) are quantized to be optimized by ℓ, wcmd means the loss
weight for command type prediction, and all the unused ar-
guments are masked out in the second item.

3.3. Context-based Self-refinement

In the inference stage, Transformers follow the sequen-
tial generation process adopted in RNNs: taking the pre-
vious predicted results as the condition to predict the fol-
lowing steps. However, a prediction error generated in a
certain step of the sequential process might finally lead to
the accumulation of large errors and bring significant dis-
tortions in the synthesized glyphs. We notice that there are
strong priors and correlations in the geometries of glyphs,
such as symmetry and smoothly varied stroke widths, and
these context information can be used as strong clues to en-
hance the glyph synthesizing performance.

Therefore, we propose a self-refinement module to
refine the initial predictions by analyzing their con-
text information, i.e., ((z̄t,1, p̄t,1), . . . , (z̄t,Nc

, p̄t,Nc
)) =

Fr((ẑt,1, p̂t,1), . . . , (ẑt,Nc
, p̂t,Nc

)), where Fr denotes the
function of our refinement module which is actually a 2-
layer Transformer decoder. The multi-head attention oper-
ation (Fmha) used in our decoder layers is formulated as:

Fmha = softmax

(
QK⊤

C(Q)
+M

)
V, (6)

Mij =

{
0, i <= N̂c

−∞, i > N̂c

, (7)

where N̂c is the length of the predicted sequence; C is
the feature dimension of queries for normalization; Q ∈
RdE×Nc consists of the embeddings of the initially pre-
dicted sequence (ẑt,1, p̂t,1), . . . , (ẑt,Nc , p̂t,Nc); K,V ∈
RdE×(Nc+1) denote the linear projections of memories used
in the previous sequence decoder; M is used to perform
self-attention only on the valid positions of the initially pre-
dicted sequence. Finally, we refine the command types and
coordinates (z̄t,j , p̄t,j) again via the supervision of the cor-
responding ground truth by minimizing:

Lrefine
CE =

NC∑
j=1

(wcmdℓ (zt,j , z̄t,j) + ℓ (pt,j , p̄t,j)) . (8)

3.4. Bézier Curve Alignment Loss

Through our experiments, we found that it is still insuffi-
cient by only employing the control points (p) to supervise
the alignment of Bézier curves/lines. Therefore, we pro-
pose to sample more points from each drawing command
Ct,j . As we know, a Bézier curve built upon control points

p is defined as: B =
∑n

k=0

(
n
k

)
rk(1−r)n−kp, where n

denotes the number of curve order,
(

n
k

)
denotes the bi-

nomial coefficients, and r is the position parameter. Thus,
we can calculate the Bézier curve alignment loss by:

Lbézier =
∑
r∈rp

(B̂t,j(r)−Bt,j(r))
2+(B̄t,j(r)−Bt,j(r))

2,

(9)
where rp = {0.25, 0.5, 0.75} represents the parameters of
the auxiliary points we sampled. Note that “LineFromTo”
can be formulated as a special case of “CurveFromTo”,
where all the control points are uniformly distributed on a
line segment.

3.5. Merging Relaxed Drawing Commands

Ideally, the starting point of the current drawing com-
mand (LineFromTo or CurveFromTo, l or c for short)
should coincide with the previous one’s ending point for
both initially synthesized and refined sequences. Thereby,
we try to minimize the L2 distance between the predicted
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+ Relaxation 
Representation

+ Self-
Refinement

Base model

Ground Truth

+ Bézier Curve
Alignment Loss

Figure 5. The ablation study of our method. Blue circles indicate
the shortcomings of each incomplete configuration.

ending point of command Ci−1 and the starting point of Ci:

Lcons = 1zt,j∈{l,c}

Nc∑
j=2

(
x̂1
t,j − x̂4

t,j−1

)2
+
(
ŷ1t,j − ŷ4t,j−1

)2
+
(
x̄1
t,j − x̄4

t,j−1

)2
+
(
ȳ1t,j − ȳ4t,j−1

)2
.

(10)

3.6. Overall Objective Loss

Combining all losses mentioned above, we train the
whole model by minimizing the following objective:

Limg + Linit
CE + Lrefine

CE + Lcons + Lbézier + Lkl, (11)

where the last term represents the KL loss normalizing the
latent code f . For brevity, the weight of each term is omitted
from the equation.

4. Experiments
4.1. Dataset and Implementation Details

The dataset used in our experiment for generating En-
glish fonts is the same as [27], which includes 8035 fonts
for training and 1425 fonts for testing. For Chinese font
synthesis, we built a dataset consisting of 212 and 34 fonts
for training and testing. To directly apply the same model
in two datasets, here we only randomly selected 52 Chi-
nese characters with relatively simple structures. Since the
scale of our dataset for Chinese fonts is relatively small, we
augmented the training set by applying the affine transfor-
mation, enlarging it by ten times.

We conduct the experiments by following the experi-
mental settings of DeepVecFont [27] for fair comparison.
Specifically, the numbers of reference glyphs are chosen as
4 and 8 for English and Chinese font generation, respec-
tively. We employ the Adam optimizer with an initial learn-
ing rate of 0.0002. The image resolution is chosen as 64×64

in both the training and testing stages. When inferencing,
we first add a noise vector distributed by N (0, I) to the
sequence feature, to simulate the feature distortion caused
by the human-designing uncertainty (as observed in Deep-
VecFont). Then, we sample Ns (10 for English and 50 for
Chinese) synthesized vector glyphs as candidates and select
the one as the final output that has the highest IOU value
with the synthesized image. The reconstruction errors (de-
noted as “Error”) in our quantitative results are obtained by
computing the average L1 distance between the rasterized
image of each synthesized vector glyph and its correspond-
ing ground-truth glyph image (at the resolution of 64× 64)
in the testing set. In our experiments, the weight values of
different losses in Eq.11 are set to 1.0, 1.0, 1.0, 10, 1.0, and
0.01, respectively from left to right.

4.2. Ablation Study

We conduct qualitative and quantitative experiments to
examine the impact of each module in our proposed model.
In Tab. 5, the base model is modified from DeepVecFont by
simply replacing the LSTM networks with Transformers,
then we evaluate each module by adding them successively
to the base model. As shown in Fig. 5, the base model using
the SVG representation in SVG-VAE [17] tends to gener-
ate incomplete glyphs with severe distortions. By employ-
ing the relaxation representation, semantic information can
be preserved and the smooth connection between adjacent
drawing commands is guaranteed. However, there still ex-
ist suboptimal curves with slight distortions. After adding
the Bézier curve alignment loss to the current model, most
distortions on the synthesized curves can be eliminated. Fi-
nally, we perform self-refinement to remove artifacts in the
initially synthesized glyphs, resulting in high-quality glyphs
with compact and coordinated outlines. Tab. 1 shows some
quantitative results of our ablation study, further demon-
strating the superiority of our proposed modules.

4.3. Parameter Study

We also conduct parameter studies to find the best choice
of the number of sampling points distributed along the
Bézier curves, and the results are shown in Tab.3. we
can see that the model’s performance will be markedly im-
proved when the number of sampling points changes from 0
to 3, while the performance is just slightly enhanced when
we increase the point number from 3 to 9. This is mainly
due to the fact that 3 sampling points are sufficient enough
to precisely align two Bézier curves/lines. Therefore, we
choose to sample 3 points for each Bézier curve/line to
achieve a balance between the effectiveness and efficiency
of our method. Furthermore, we also conduct parameter
studies to examine the performance of our method under
different numbers of input reference glyphs. Please refer to
the supplemental materials for more details.
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DeepVecFont

Ours

Ground Truth

DeepSVG

Figure 6. Comparison of few-shot font generation results for DeepSVG, DeepVecFont, and our method. Our method shows superiority in
generating high-quality English vector fonts with various styles. Please zoom in for better inspection.

DeepSVG

DeepVecFont

Ours

Ground Truth

Figure 7. Comparison of few-shot Chinese vector font generation
results obtained by different methods.

Model Error-EN↓
Base model 0.0588
+ Relaxation Representation 0.0557
+ Bézier Curve Alignment Loss 0.0529
+ Self-Refinement 0.0519

Table 1. Comparison of reconstruction errors for our methods un-
der different configurations.

4.4. Font Interpolation

Our method can be used to achieve smooth interpolation
between two vector fonts. Specifically, given two vector
fonts a and b, an interpolated style feature between them
can be calculated by:

finter = (1− λ) · f(a) + λ · f(b). (12)

Then, we feed the interpolated feature into the sequence and
image decoders to generate the interpolated vector glyphs
and the corresponding glyph images. Fig. 8 shows two font
interpolation results for English and Chinese vector fonts,
respectively. We can see that glyphs in the source styles
can smoothly morph to the target ones, demonstrating the

Font a

Font b

Font c

Font d

! = 0.25

! = 0.50

! = 0.75

! = 0.25

! = 0.50

! = 0.75

Figure 8. English and Chinese vector font interpolation results,
where the weight, width and styles change smoothly.

Model Error-EN↓ Error-CN↓
DeepSVG 0.125 0.167
DeepVecFont 0.056 0.086
Ours 0.052 0.080

Table 2. Comparison of reconstruction errors for different meth-
ods. “EN” and “CN” denote the English and Chinese testing
datasets, respectively.

Point Num Error-EN↓ Point Num Error-EN↓
0 0.0557 6 0.0526
1 0.0543 9 0.0524
3 0.0529 12 0.0520

Table 3. Comparison of reconstruction errors under different num-
bers of sampling points. “EN” denotes the English testing dataset.

effectiveness of our method in vector font interpolation.
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Figure 9. Comparison of more vector fonts synthesized by DeepVecFont (DVF) and our DeepVecFont-v2 in the task of few-shot font
generation. The input reference glyphs are filled in black. Please zoom in for better inspection.

4.5. Comparison with the State of the Arts.
We compare the performance of our DeepVecFont-v2

with other existing methods (i.e., DeepSVG [5] and Deep-
VecFont [27]) on English and Chinese vector font datasets.
Some qualitative results are shown in Fig. 6, Fig. 7, and
Fig. 9. The quantitative results are shown in Tab. 2.

English vector font generation. From Fig. 6, we can
see that the vector glyphs synthesized by DeepSVG of-
ten contain severe distortions (marked in yellow). This is
mainly because the hierarchical architecture of DeepSVG
was originally designed for synthesizing vector icons with
multiple separated short-length paths, while a vector glyph
typically consists of several long-range outlines. The syn-
thesized glyphs of DeepVecFont filled with black pixels
generally look visually pleasing. However, there still ex-
ist some problems in the synthesis results regarding the de-
tails of outlines: 1) the refinement post-processing tends to
over-fit the initially synthesized vector glyph with the corre-
sponding raster image, resulting in suboptimal outlines with
over-smoothed corners (marked in red); 2) when a sequence
with redundant drawing commands is predicted, the outline
tends to be staked together with self-interactions (marked in
gray); 3) structurally-incorrect glyphs might be synthesized
for some special styles (e.g., “F” in the green box). On
the contrary, our method can synthesize high-quality vector
glyphs for almost all kinds of font styles. Fig. 9 shows more
results obtained by our method and DeepVecFont. From
Fig. 9, we can also observe that our DeepVecFont-v2 some-
times can even generate vector glyphs whose font styles
are more consistent with the input samples compared to the
ground truth (marked in blue).

Chinese vector font generation. Chinese glyphs typ-
ically contain complex shapes and structures, making the
task of Chinese vector font synthesis much more challeng-
ing. As shown in Fig. 7, DeepSVG tends to generate
glyphs with inconsistent styles and severe artifacts, and

DeepVecFont may obtain fragmented results when synthe-
sizing glyphs with multiple closed paths (marked in green).
In contrast, our method synthesizes visually pleasing vec-
tor fonts, mainly due to the utilization of Transformers and
our specifically-designed modules to guarantee the smooth-
ness of outlines. Fig. 9 shows more results obtained by our
method and DeepVecFont. The quantitative results shown
in Tab. 2 further demonstrate the superiority of our method
when handling fonts consisting of glyphs with more com-
plex topologies and longer drawing-command sequences.
More synthesized results can be found in our supplemental
materials.
4.6. Limitations

Our model fails to synthesize correct results when han-
dling complex glyphs that contain large amounts of long
drawing paths (e.g., “霸” shown in our supplemental ma-
terials). One possible reason is that longer sequences in-
herently exist more uncertainties generated during the hu-
man font-designing process [27], bringing more challenges
to train the model. Another reason is the possible existence
of complicated topological changes for a Chinese charac-
ter in different styles, making it hard to learn stable SVG
embeddings. We leave these issues as our future work.

5. Conclusion
This paper proposed a novel method, DeepVecFont-v2,

to effectively handle the challenging task of vector font
synthesis. Specifically, we replaced RNNs adopted in the
original DeepVecFont by Transformers and adopted sev-
eral specifically-design modules, including relaxation rep-
resentation, the Bézier curve alignment loss, and context-
based self-refinement. Thus, vector fonts with higher qual-
ity can be directly synthesized by our method in an end-to-
end manner. Experimental results demonstrated the superi-
ority of our DeepVecFont-v2 compared to the state of the
art in the applications of English and Chinese vector font
synthesis.
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