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Abstract

Despite the significant results on synthetic noise un-
der simplified assumptions, most self-supervised denoising
methods fail under real noise due to the strong spatial noise
correlation, including the advanced self-supervised blind-
spot networks (BSNs). For recent methods targeting real-
world denoising, they either suffer from ignoring this spatial
correlation, or are limited by the destruction of fine textures
for under-considering the correlation. In this paper, we
present a novel method called LG-BPN for self-supervised
real-world denoising, which takes the spatial correlation
statistic into our network design for local detail restora-
tion, and also brings the long-range dependencies model-
ing ability to previously CNN-based BSN methods. First,
based on the correlation statistic, we propose a densely-
sampled patch-masked convolution module. By taking more
neighbor pixels with low noise correlation into account, we
enable a denser local receptive field, preserving more use-
ful information for enhanced fine structure recovery. Sec-
ond, we propose a dilated Transformer block to allow dis-
tant context exploitation in BSN. This global perception
addresses the intrinsic deficiency of BSN, whose receptive
field is constrained by the blind spot requirement, which
can not be fully resolved by the previous CNN-based BSNs.
These two designs enable LG-BPN to fully exploit both
the detailed structure and the global interaction in a blind
manner. Extensive results on real-world datasets demon-
strate the superior performance of our method. https:
//github.com/Wang-XIaoDingdd/LGBPN

1. Introduction
Image denoising is a fundamental research topic for low-

level vision [7, 36]. Noise can greatly degrade the quality
of the captured images, thus bringing adverse impacts on
the subsequent downstream tasks [22, 32]. Recently, with
the rapid development of neural networks, learning-based
methods have shown significant advances compared with
traditional model-based algorithms [5, 8, 10, 11].
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DnCNN [36] C2N [15] R2R [26]
31.17/0.778 28.09/0.706 30.37/0.770

CVF-SID [25] AP-BSN [20] LG-BPN (Ours)
28.56/0.792 31.92/0.826 32.76/0.897

Figure 1. Visual comparison of various methods on the SIDD val-
idation [1] dataset. Compared with DnCNN [36], C2N [15] and
R2R [15], LG-BPN can be trained in a self-supervised manner
without extra data. CVF-SID [25] still contains noise in the out-
put, and AP-BSN [20] suffers from the loss of details.

Unfortunately, learning-based methods often rely on
massive labeled image pairs for training [2, 34, 35]. This
can not be simply addressed by synthesizing additive white
Gaussian noise (AWGN) pairs, since the gap between
AWGN and real noise distribution severely degrades their
performance in the real world [2, 12]. To this end, several
attempts have been made for collecting real-world datasets
[1, 4]. Nonetheless, its application is still hindered by the
rigorously-controlled and labor-intensive collection proce-
dure. For instance, capturing ground truth images requires
long exposure or multiple shots, which is unavailable in
complex situations, e.g., dynamic scenes with motion.

To alleviate the constraint of the large-scale paired
dataset, methods without the need for ground truth have at-
tracted increasing attention. The pioneer work Noise2Noise
(N2N) [21] uses paired noisy observations for training,
which can be applied when clean images are not available.
Still, obtaining such noisy pairs under the same scene is
less feasible. To make self-supervised methods more prac-
tical, researchers seek to learn from one, instead of pairs of
observations. Among these methods, blind-spot networks
(BSNs) [3, 17, 19, 30] show significant advances to restore
clean pixels by utilizing neighbor pixels, with a special
blind spot receptive field requirement. Despite their promis-
ing results on simple noise such as AWGN, these methods
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usually work under simplified assumptions, e.g., the noise
is pixel-wise independent. This obviously does not hold for
real noise, where the distribution can be extremely complex
and present a strong spatial correlation.

Accordingly, a few methods have been proposed for self-
supervised real noise removal. Recorrupted-to-Recorrupted
(R2R) [26] tries to construct noisy-noisy pairs, while it can
not be directly applied without extra information, which is
not practical in real situations. CVF-SID [25] disentangles
the noise components from noisy images, but it assumes
the real noise is spatially invariant and ignores the spatial
correlation, which contradicts real noise distribution.

Recently, AP-BSN [20] combines pixel-shuffle down-
sampling (PD) with the blind spot network (BSN). Though
PD can be utilized to meet the noise assumption of BSN,
simply combining PD with CNN-based BSN is sub-optimal
for dealing with spatially-correlated real noise. It causes
damage to local details, thus bringing artifacts to the sub-
sampled images, e.g., aliasing artifact, especially for large
PD stride factors [20, 38]. Also, though more advanced de-
signs of BSNs have been proposed [18,19,31], CNN-based
BSNs fail to capture long-range interactions due to their
convolution operator, which is further bounded by the lim-
ited receptive field under the blind spot requirement.

In this paper, we present a novel method, called LG-
BPN, to address these issues on self-supervised real im-
age denoising, including the reliance on extra information,
the loss of local structures by noise correlation, and also
the lacking of modeling distant pixel interaction. LG-BPN
can be directly trained without external information. Fur-
thermore, we ease the destruction of fine textures by care-
fully considering the spatial correlation in real noise, at
the same time injecting long-range interaction by tailoring
Transformers to the blind spot network. First, for local in-
formation, we introduce a densely-sampled patch-masked
convolution (DSPMC) module. Based on the prior statis-
tic of real noise spatial correlation, we take more neighbor
pixels into account with a denser receptive field, allowing
the network to recover more detailed structures. Second,
for global information, we introduce a dilated Transformer
block (DTB). Under the special blind spot requirement, this
greatly enlarges the receptive field compared with previous
CNN-based BSNs, permitting more neighbors to be utilized
when predicting the central blind spot pixel. These two de-
signs enable us to fully exploit local and global informa-
tion, respectively. Extensive studies demonstrate that LG-
BPN outperforms other state-of-the-art un-/self-supervised
methods on real image denoising, as shown in Figure 1. We
summarize our contributions as follows:

• We present a novel self-supervised method called LG-
BPN for real-world image denoising, which can effec-
tively encode both the local detailed structure and the
capture of global representation.

• Based on the analysis of real noise spatial correlation,
we propose DSPMC module, which takes advantage of
the higher sampling density on the neighbor pixels, en-
abling a denser receptive field for improved local tex-
ture recovery.

• To establish long-distance dependencies in previous
CNN-based BSN methods, we introduce DTB, which
aggregates global context while complying with the
constraint of blind spot receptive field.

2. Related Work
2.1. Supervised Image Denoising

DnCNN [36] is the first attempt to apply deep learning
techniques to the image denoising task, where the train-
ing pairs are synthesized by additive white Gaussian noise
(AWGN). Following DnCNN, several methods have been
proposed for AWGN noise removal. For instance, FFD-
Net [37] advances it by taking the noise map as additional
input. While achieving superior performance on AWGN re-
moval, recent studies [2, 12] reveal the poor generalization
ability of these models when applied to real noise, due to
the gap between the noise distribution. The primary ob-
struction of real image denoising lies in the deficiency of
real noisy-clean pairs. To this end, some real-world denois-
ing datasets are collected under carefully considered condi-
tions [1,4]. Based on these datasets, several methods [7,12]
train the network directly on the real image pairs. Despite
the decent performance, data collection can be extremely
expensive and labor-intensive. Also, it is infeasible to col-
lect clean images under complex scenes containing motion.

2.2. Unsupervised Image Denoising

Another line of research focuses on the situation where
paired data is unavailable, including i) generating pseudo
noisy-clean image pairs, ii) generating pseudo noisy-noisy
image pairs, and iii) training directly on noisy images.
Generating pseudo noisy-clean image pairs. In situations
where unpaired noisy-clean data is available, generation-
based methods seek to synthesize real noise on clean im-
ages for aligned training data, which can be used for super-
vised methods. Inspired by the generative adversarial net-
work (GAN), GCBD [6] synthesizes realistic noisy images
to train the denoising network, while its performance is lim-
ited by the inaccurate consideration of noise components.
UIDNet [31] takes a step further by combining the distilled
knowledge of the self-supervised denoising network and ex-
tra information from synthetic pairs. C2N [15] considers
various noise components in real-world scenarios for more
accurate noise synthesis. However, dealing with the gap be-
tween unpaired data is still challenging. The mismatch in
scene distribution can result in inaccurate generation, thus
degrading the quality of synthesized data.
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Figure 2. The overall architecture of LG-BPN. Our method is composed of two branches, aiming at extracting local textures and global
interactions, respectively. For each branch, the input first goes through a DSPMC module, then further processed for the deep feature.
Finally, the output of two branches is fused for the denoised result. 1

Generating pseudo noisy-noisy image pairs. The semi-
supervised method Noise2Noise [21] uses multiple noisy
images for training, which can be applied without clean im-
ages. However, the acquisition of multiple independent ob-
servations under the same scene is still less practical. There-
fore, several methods seek to construct noisy-noisy pairs
from a single noisy image. Neighbor2Neighbor [14] gen-
erates two sub-sampled images under simplified noise as-
sumptions. To handle complex noise distribution in real im-
ages, several methods have been proposed, including Nois-
ier2Noise [24], NAC [33] and R2R [26]. Still, these meth-
ods either require prior knowledge or are limited by spe-
cific constraints, which can be impractical in real situations.
Specifically, Noisier2Noise [24] requires noise distribution
when synthesizing noisy/noisy pairs. NAC [33] works un-
der the assumption that the noise level is relatively weak.
R2R [26] also uses additional information, e.g., noise level
function (NLF) and image signal processing (ISP) function.

Training directly on noisy images. Another type of
method follows a self-supervised manner, which can be di-
rectly trained on the noisy images and free of synthesizing
pseudo image pairs. Noise2Void [17] and Noise2Self [3]
propose the self-supervised blind-spot strategy by masking
the corresponding central pixel. Laine19 [19] and D-BSN
[31] are further proposed for advanced BSN designs, while
the convolution-based architecture limits their exploitation
for long-range dependencies. To ease the information loss
by the blind spot, Blind2Unblind [30] introduces a novel
re-visible loss term. Unfortunately, the above-mentioned

methods work under the assumption that noise is pixel-wise
independent, thus inevitably learning identity mapping un-
der spatially-correlated real noise. Towards real image de-
noising, CVF-SID [25] disentangles the noise components
from the clean images, but it assumes the noise is spatially-
uncorrelated, which does not match the real noise distribu-
tion. Asymmetric pixel shuffle downsampling BSN (AP-
BSN) [20] combines the pixel shuffle downsampling (PD)
with a CNN-based BSN [31]. While achieving promising
results, local structures are damaged by directly applying
the PD operation to the image. Sub-sampled images are
corrupted by various artifacts, e.g., aliasing artifacts, which
are more pronounced under a large PD stride factor [20,38].
Also, adopting the CNN-based BSN leads to a limited re-
ceptive field. Since BSN recovers the central pixels based
on its neighbors, fewer available neighbor pixels inevitably
lead to performance loss. In summary, this results in the in-
adequate utilization of information with respect to both lo-
cal and global contexts. Instead, our method benefits from
a denser sampling density for improved local detail extrac-
tion, and also enjoys the distant pixel modeling ability for
the enlarged receptive field.

3. Method
We first illustrate the overall architecture of LG-BPN in

Figure 2, then elaborate on our motivation, and demonstrate
our two core designs: DSPMC and DTB.

1We use ‘global’ to differentiate from our ‘local’ branch. Though a
more accurate term is ‘non-local’, we follow the usage of ‘global’ as [35].
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Figure 3. Comparison of receptive field for the central pixel of AP-
BSN and our method. Green pixels contribute to the restoration of
central pixel. Blue pixels represent convolution kernel. We realize
a denser receptive field by utilizing more neighbor pixels. 2

3.1. Motivation and Modeling

Despite the decent results on simple synthetic noise re-
moval, the performance of self-supervised denoising meth-
ods declines significantly when dealing with real noise, due
to its strong spatial noise correlation. This easily breaks
the assumption on which most state-of-the-art methods are
based, i.e., noise is pixel-wise independent. These methods
assume the clean signal of the central pixel is dependent on
neighbors, while the noise is independent instead. Thus un-
der real scenarios, they inevitably misinterpret the spatially-
dependent noise as clean signals, and fail to recover the un-
derlying clean images. Consequently, careful consideration
of the spatial correlation is a must for self-supervised real
noise removal. While the existing methods either struggle
with poor results when completely ignoring this correlation,
or suffer details loss from ill consideration. For example,
AP-BSN [20] meets the assumption of the powerful BSN
by adopting PD on the input image. As shown in Figure
3, though this breaks the spatial correlation, the sampling
density is dramatically decreased by the PD. This severely
degrades the extraction of fine details based on the Nyquist-
Shannon sampling theorem, i.e., the fidelity of the results
shows a positive correlation to sampling density.

Besides, though BSN is already adapted for state-of-the-
art performance [20], its potential is still heavily hampered
by their inherent shortage, i.e., the limit on the receptive
field by the masked pixels for avoiding identity mapping.
Despite the recent advanced BSN designs [19, 31], CNN-
based BSNs are still unable to fully address this issue due to
their local convolution operator and fail to model the long-
distance dependencies. This adversely affects the perfor-

2We adopt 9×9 DSPMC in the local branch. Here, the 11×11 size is
shown for illustration purposes to better compare the receptive field.
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Figure 4. Visualization of spatial correlation in real noise. (a)
Bar plot of spatial correlation calculated by the correlation coeffi-
cient. Note that we scale the height by log norm for better visu-
alization. The higher bar indicates a stronger correlation. (b) The
mask of high-correlation pixels. Locations with 0 mean this pixel
is strongly correlated to the central pixel, while 1 means not.

mance of BSN, as the number of neighbors around the blind
spot used for inferring is dramatically reduced.

We aim to tackle both of these challenges in our meth-
ods. First, we realize better extraction for detailed textures
from the perspective of sampling density. As shown in Fig-
ure 3, DSPMC enables a denser sampling rate by leverag-
ing more neighbor pixels, which raises the upper limit of
reconstruction quality. Second, by tailoring normal Trans-
formers to a blind fashion, DTB is introduced for its pow-
erful global modeling ability to compensate for the limited
receptive field of CNN-based BSNs.

Based on these two modules, we now introduce the over-
all architecture of our method. As shown in Figure 2, LG-
BPN is mainly composed of two branches in parallel, aim-
ing at local and global contexts reconstruction respectively.
For the local feature extraction branch, we first apply the
9 × 9 DSPMC module. The densely extracted features are
then down-sampled to break the spatial correlation. Then,
the feature maps go through dilated convolution with a di-
lation of 2. For the global branch, the input image first goes
through a 21× 21 DMPMC module with a larger receptive
field, which is then processed by DTBs. Finally, the local
and global information from the two branches is fused to-
gether for the final output.

3.2. Densely-Sampled Patch-Masked Convolution

Neither adopting a low sample rate nor sampling all
neighbor pixels can be an optimal choice for BSN when
tacking real noise. In DSPMC, we aim to extract as much
local information as possible, at the same time avoiding
misinterpretation by these strongly-correlated neighbor pix-
els. To this end, we start by presenting the relationship be-
tween spatial correlation and the relative position, as shown
in Figure 4. Following previous works [20, 38], we use
Pearson’s correlation coefficient to depict the relationship.
Specifically, we first obtain the noise map by subtracting the
clean images from the noisy images in SIDD medium [1]
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(a) Kernel location dur-
ing training

(b) Shifted kernel loca-
tion during testing

(c) Shifted kernel loca-
tion during testing with
dilation

Figure 5. Illustration of shifting kernel strategy and dilation of
DSPMC. The blue and green points are the kernel locations during
training and testing respectively. Yellow arrows indicate the shift
direction. This avoids the strongly correlated pixels when training,
sampling pixels closer to the center when testing for more details.

dataset. Then, correlation coefficient can be calculated by:

ρNcen,Nnei =
cov(Ncen, Nnei)

σNcenσNnei

, (1)

where Ncen and Ncen represent the noise of the central
pixel and neighbor pixels respectively. In Figure 4(a), we
find that there exist more neighbor pixels which can also be
leveraged for prediction. These pixels are not strongly cor-
related to the center pixel, thus bringing useful information,
instead of misinterpretation to BSN. Then, the DSPMC ker-
nel can be calculated as:

KDSPMC = Kn ⊙Maskcor, (2)
where KDSPMC is the kernel of DSPMC, Kn is the kernel
of the normal convolution, and Maskcor is the mask for
filtering out highly-correlated pixels shown in Figure 4(b).
By integrating this noise distribution prior to sampling lo-
cations, our module can effectively take more neighbor pix-
els while avoiding the strongly correlated pixels. This en-
ables the extracted feature to contain more fine details, and
a denser receptive field as well. Also, as shown in Figure 3,
since the extracted high-dimension feature already gathers
the rich local details, the subsequent feature-level PD can
save more useful information compared with the previous
image-level PD.

However, directly applying this module is not an optimal
choice: i) the inference stage requires more details com-
pared with training, so directly using the same architecture
can damage high-frequency details [20], ii) a large kernel
can cause computational inefficiency.
Kernel shift strategy. As shown in Figure 5(b), for the
first concern, we need to obtain more details while testing,
focusing on local detailed information closer to the center
pixel. Inspired by the deformable convolution [9], we apply
a set of fixed offsets on the kernel for each location, which
enforce that the kernels are more gathered in the center:

y(p0) =

K∑
k=1

wk · x (p0 + pk +∆pk) ,

∆pk = Ratio ∗ (pk − p0),

(3)

(a) Noisy input (b) AP-BSN [20] (c) LG-BPN (Ours)

Figure 6. The comparison of the feature map visualization of our
method and AP-BSN [20] in the training phase. Our feature map
shows clearer edges, validating the superiority of local details ex-
traction of DSPMC by imposing denser sampling locations.

where K is the kernel sampling locations, wk is the kernel
weight, x(p) and y(p) denote the features at p in input fea-
ture x and output feature y, and ∆p is the applied kernel
offset. Ratio is the extent we shift the kernel while testing.
By adding offsets to the kernel, we can shrink the kernel
and capture finer details while testing.
Dilation in DSPMC. As shown in Figure 5(c), for the sec-
ond concern, we further decrease the computational cost
by adding dilation to the convolution kernel. This imposed
sparsity makes our DSPMC computationally efficient espe-
cially for large kernel size, at the same time maintaining the
dense receptive field for capturing detailed structures.
Visualization of the extracted feature map. To validate
that our DSPMC module achieves a denser receptive field
and is thus better at extracting local high-frequency struc-
tures, we present the visualization of the feature map. We
select the output feature of the local extraction branch, and
the corresponding location in AP-BSN. All channels are av-
eraged and normalized for visualization. As shown in Fig-
ure 6, in AP-BSN [20], the local fine texture is damaged due
to the insufficient use of neighbor signals. Instead, by lever-
aging more neighbor pixels, our feature map shows shaper
edges and preserves more details.

3.3. Dilated Transformer Block

The receptive field of BSN is restricted by the imposed
blind spots, while the local operator in CNN-based BSNs
further prevents it from gathering global interaction. How-
ever, under the special blind spot constraint on the receptive
field, it is non-trivial to directly introduce normal Trans-
former blocks to the BSN. Inspired by the D-BSN [31], we
aim to design the Transformer block without information
exchange between spatially-adjacent pixels, which satisfies
the blind spot requirement when combined with DSPMC.
Under these requirements, we carefully consider the de-
sign of two core components in the Transformer: the self-
attention calculation and the feed-forward layer.

First, for the self-attention layer, spatial-wise attention
enables spatial information exchange and thus does not
meet our receptive field requirement. Recently, a grid-like
self-attention can meet our requirement [28], while the grid
pattern further narrows the receptive field that the blind spot
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(a) AP-BSN [20] (b) LG-BPN (Ours)

Figure 7. The comparison of the receptive field between AP-BSN
[20] and our method. We calculate the gradient response to the
central pixel. The brighter color represents the higher contribution
for recovering the central pixel.

has reduced. Instead, we adopt channel-wise attention [35]
for its unawareness of spatial location and global perception
as well. Furthermore, to enhance the local context while
preventing information of adjacent pixels, we introduce di-
lated depth-wise convolution before computing feature sim-
ilarity. For the input feature X, the Query (Q), Key (K)
and Value (V) matrix is thus calculated by Q = gQ(X),
K = gK(X), V = gV (X), where gQ(·), gK(·) and gV (·)
denote the dilated 3 × 3 depth-wise convolution. Given
the Q, K and V matrix, the channel interaction can be ob-
tained by the dot-product, where the attention map is of size
RC×C , and C is the number of channels. The overall self-
attention layer is represented as:

Attention(Q,K,V) =V Softmax(KQ),

X̂ = Attention(Q,K,V) +X,
(4)

where X and X̂ denote the input and output features.
Second, for the feed-forward layer, adjacent informa-

tion exchange can be simply avoided by adopting 1 × 1
convolutions only. Nonetheless, this fails to capture local
context, which can be critical for restoring high-frequency
details. We address this issue by also introducing dilation
into the normal 3× 3 convolution in the feed-forward layer.
Then, features extracted by dilated depth-wise convolution
go through a gating unit for the non-linearity. This gating
unit is the element-wise product of two parallel paths, with
one of them activated by the GELU unit. The overall pro-
cess of the feed-forward layer is formulated as:

G1 = g1(LN(X)),

G2 = g2(LN(X)),

X̂ = GELU (G1)⊙G2 +X,

(5)

where ⊙ is element-wise multiplication, LN denotes layer
normalization, g1(·) and g2(·) represent the 3 × 3 dilated
depth-wise convolution. An additional benefit is that, com-
pared to the normal 3× 3 convolution, the introduced dila-
tion can also enlarge the receptive field.

To prove the effectiveness of the introduced global de-
pendencies, we also plot the receptive field for recovering
the central pixel of our method and the CNN-based BSNs

in Figure 7. By injecting the long-range interaction into the
blind spot network, more neighbor pixels are activated for
restoring the central pixels in our method, offering a broader
receptive field compared to the previous CNN-based BSNs.

4. Experiments
4.1. Dataset and Setup Details

We train and evaluate our method on two real-world
datasets, i.e., SIDD [1] and DND [27]. Note that for the
SIDD benchmark dataset and DND benchmark dataset, we
submit the output to the website for online evaluation.
Smartphone Image Denoising Dataset (SIDD) [1] con-
tains paired images for real-world denoising by five smart-
phone cameras. For training, we use the sRGB images from
SIDD-Medium including 320 pairs. For validation and eval-
uation, we use the sRGB images from the SIDD validation
set and benchmark set respectively. Each includes 1280
patches of size 256 × 256, where the ground truth images
are also provided for the validation set.
Darmstadt Noise Dataset (DND) [27] contains 50 noisy
images for benchmarking without the ground truth pro-
vided, and the results can only be obtained via the on-
line submission system. Therefore, we enjoy a fully self-
supervised manner and directly train our method on the test
set without extra eternal data.

4.2. Training Details

During training, we keep the same setting as the previ-
ous work [20]. Specifically, a batch size of 8 is used in
the experiment. We adopt L1 loss between ground truth
and output for training. The learning rate starts with 1e-4,
where Adam optimizer is adopted. The network is trained
with 20 epochs until it fully converges. We implement the
method in PyTorch 1.8.0, and train our model on the Nvidia
RTX 3090. Two metrics are utilized to evaluate the per-
formance of methods, including peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [29]. The larger
value of PSNR and SSIM implies better fidelity.

4.3. Evaluation of Real-world Denoising

We validate the effectiveness of our method for real-
world image denoising on the commonly-used SIDD bench-
mark dataset and DND benchmark dataset. Table 1 shows
the comparison of various methods on SIDD and DND
benchmark datasets. Visualization results of several meth-
ods addressed in Table 1 on SIDD and DND datasets can be
found in Figure 8 and Figure 9. We achieve better results
in quantitive and qualitative metrics than previous un-/self-
supervised methods. Compared with unsupervised methods
trained on unpaired clean-noisy data, LG-BPN does not rely
on extra data for synthesizing training pairs, also avoiding
the misalignment between the scene distribution. For the
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SIDD DNDType of supervision Training data Method PSNR SSIM PSNR SSIM

Non-learning based None BM3D [8] 25.65 0.685 34.51 0.851
WNNM [11] 25.78 0.809 34.67 0.865

Supervised

Synthesized Pairs
DnCNN [36] 23.66 0.583 32.43 0.790
CBDNet [12] 33.28 0.868 38.05 0.942
AWGN-M [38] 33.99⋆ 0.896⋆ 38.40 0.945

Real pairs

DnCNN [36] 35.34⋆ 0.885⋆ 37.83⋆ 0.929⋆

AINDNet [16] 38.84 0.951 39.34 0.952
RIDNet [2] 38.70 0.950 39.25 0.952
DIDN [34] 39.82 0.973 39.62 0.954

Unsupervised

Noisy-clean pairs

GCBD [6] - - 35.58 0.922
UIDNet [13] 32.48 0.897 - -
C2N [15] + DIDN [34] 35.35 0.937 36.38 0.887
D-BSN [31] + MWCNN [23] - - 37.93 0.937

Noisy-noisy pairs
Noise2Self [3] 29.56† 0.808† - -
NAC [33] - - 36.20 0.925
R2R [26] 34.78 0.898 - -

Single noisy
observation

Noise2Void [17] 27.68† 0.668† - -
CVF-SID [25] 34.71 0.917 36.50 0.924
AP-BSN [20] 35.97 0.925 38.09 0.937
LG-BPN (Ours) 37.28 0.936 38.43 0.942

Table 1. Quantitative comparison of various methods on SIDD and DND benchmark datasets. Though several supervised methods achieve
better results using noisy/clean image pairs, our methods use noisy RGB images only. Results with ⋆ mean these are reproduced and
evaluated by ourselves, since they are not evaluated on the dataset we use in their original paper. The results marked with † are reported
from R2R [26]. Otherwise, we report the official results from SIDD and DND benchmark websites.

self-supervised methods, NAC [33] works under the weak
noise level assumption, while R2R [26] can not be directly
applied to sRGB images without extra NLF and ISP func-
tions, both of which harm their performance in real-world
situations. In contrast, LG-BPN can be directly applied and
not restricted by these assumptions. For methods leveraging
single noisy observations, CVF-SID [25] does not consider
the strong spatial correlation property in real noise, thus real
noise can not be fully removed as shown in Figure 8. AP-
BSN [20] suffers from inadequate sample locations with a
limited receptive field, so details are blurred as shown in
Figure 9. Instead, LG-BPN carefully integrates the spatial
correlation into the network design, simultaneously model-
ing distant context dependencies.

4.4. Analysis of the Proposed Method

Dilation factor in densely-sampled convolution. Directly
introducing densely-sample convolution can be computa-
tionally expensive. To balance the efficiency and the perfor-
mance, we further introduce the sparsity to the convolution
kernel by adding dilation to the original DSPMC. Figure
5(c) shows the illustration of the dilation.

To explore the better trade-off between performance
and efficiency, we provide ablation studies on the dilation
rate for our DSPMC in both local and global extraction
branches. As shown in Table 2(a), a dilation of 1 for 9 × 9
DSPMC and 2 for 21×21 DSPMC achieve a better balance.

We claim its reason is that the difference in kernel size re-
sults in focusing on varied scales of information. This im-
poses different sensitivity to the dilation, i.e., sampling den-
sity. For relatively small 9 × 9 kernels, it focuses more on
the local textures, thus adding dilation can notably lower its
ability when reconstructing detailed structures. While for
the 21× 21 kernel, the larger kernel size makes it aim at the
global context more. Thus, the introduced dilation does not
severely harm its global extraction ability, at the same time
reducing the computational cost.
The exploitation of local and global information. LG-
BPN consists of two branches in parallel. Specifically, we
combine the small 9 × 9 DSPMC with dilated convolution
and the large 21 × 21 DSPMC with DTB, focusing on lo-
cal and global context processing respectively. To validate
the reasonableness of our network architecture, we conduct
ablation studies on these components. Table 2(b) shows the
results of different combinations.

It can be seen that removing the DSPMC of size 9×9 and
21×21 in either branch severely degrades the performance.
It is on account of the insufficient sampling density, which
limits the reconstruction quality according to the Nyquist-
Shannon sampling theorem. In this situation, the sampling
density is made severely sparse, which causes insufficient
utilization of input signals. This performance drop demon-
strates the effectiveness of our DSPMC module.

Furthermore, we validate that the different sizes of
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SIDD benchmark input

N2V [17] DnCNN [36] AWGN-M [38] C2N [15]

R2R [26] CVF-SID [25] AP-BSN [20] LG-BPN (Ours)

Figure 8. Visual quality comparison on SIDD benchmark dataset. Note that the quantitative results are not available.

9x9 DSPMC
dilation

21x21 DSPMC
dilation PSNR SSIM FLOPS (G) Params (M)

1 1 37.23 0.885 88.6 1.35
1 2 37.32 0.886 29.8 0.45
1 3 37.23 0.883 17.1 0.26
2 1 36.85 0.879 84.6 1.23
2 2 36.84 0.875 25.8 0.39
2 3 36.99 0.873 13.1 0.20

(a) Ablation studies on dilation rates. Different dilation rate combinations are explored
on the DSPMC in the local branch and global branch.

Method PSNR SSIM

w/o 9×9 DSPMC 35.82 0.855
w/o 21×21 DSPMC 36.21 0.869

Replacing Conv with DTB 36.90 0.880
Replacing DTB with Conv 36.82 0.875

w/o kernel shift 35.64 0.857
LG-BPN (Ours) 37.32 0.886

(b) Ablation studies on our proposed method. Improvements
can be found with our proposed modules and network design.

Table 2. The analysis of our method on the SIDD validation dataset. Experimental results prove the effectiveness of our method design.

DND benchmark input

NAC [36] C2N [15] AWGN-M [38]
28.50/0.777 29.20/0.793 29.26/0.797

CVF-SID [25] AP-BSN [20] LG-BPN (Ours)
30.22/0.855 32.94/0.889 33.37/0.897

Figure 9. Visual quality comparison on DND benchmark dataset.

DSPMC in local and global feature extraction branches
make them focus on various scales of features. Such dis-
crepancy across the scale demands us to treat scale-specific
characteristics in a different way. When replacing the di-
lated convolution in the local branch with our DTB, the lack
of local connectivity brings inferior performance. Similarly,
when replacing the DTB in the global branch with the di-
lated convolution, the network is built by convolutions only.
It induces a lack of long-range interaction, which greatly
limits their recovery quality as well. This proves the supe-
rior design of our architecture. By exploiting the locality
of convolution with a small DSPMC, also the global de-
pendencies of DTB with a large DSPMC, our architecture
enjoys more reasonable exploitation for multi-scale context.

The effect of kernel shift strategy. Since the requirement
for pixel-wise independent noise is different in training and
testing, directly applying the same kernel of the training
phase while testing will lose image details [20]. We pro-
posed a kernel shift strategy, as illustrated in Figure 5(b).
In Table 2(b), the lack of kernel shift causes 1.68 dB drops,
proving the effectiveness of our shifting paradigm.

5. Conclusion
In this paper, we propose LG-BPN for self-supervised

real image denoising, aiming to address the details lost by
the coarse consideration for real noise correlation, and the
lack of global interaction by the inherent constraint on the
receptive field for BSN. First, we propose DSPMC to fully
preserve the local structures. Owing to a denser receptive
field, we ease the destruction of fine textures and can thus
better reconstruct details. Second, we propose DTB, inject-
ing distant interactions into the previously CNN-based blind
spot networks. Since blind spot networks rely on neigh-
bor signals for predicting, more clues can be provided by
activating more neighbor pixels. Extensive results on real-
world datasets reveal the superior performance of LG-BPN.
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