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Abstract

Salient object detection (SOD) aims to mimic the human
visual system (HVS) and cognition mechanisms to identify
and segment salient objects. However, due to the complex-
ity of these mechanisms, current methods are not perfect.
Accuracy and robustness need to be further improved, par-
ticularly in complex scenes with multiple objects and back-
ground clutter. To address this issue, we propose a novel
approach called Multiple Enhancement Network (MENet)
that adopts the boundary sensibility, content integrity, it-
erative refinement, and frequency decomposition mecha-
nisms of HVS. A multi-level hybrid loss is firstly designed
to guide the network to learn pixel-level, region-level, and
object-level features. A flexible multiscale feature enhance-
ment module (ME-Module) is then designed to gradually
aggregate and refine global or detailed features by chang-
ing the size order of the input feature sequence. An iter-
ative training strategy is used to enhance boundary fea-
tures and adaptive features in the dual-branch decoder of
MENet. Comprehensive evaluations on six challenging
benchmark datasets show that MENet achieves state-of-the-
art results. Both the codes and results are publicly available
at https://github.com/yiwangtz/MENet.

*The corresponding authors

1. Introduction

Salient object detection (SOD) aims to identify the most
visually conspicuous regions in an image that are consis-
tent with the human visual system (HVS) and cognition
mechanisms [9,13,40]. SOD can eliminate redundant infor-
mation and improve computational performance for many
high-level computer vision tasks, such as action recognition
[4, 60], image segmentation [3, 33], image captioning [52],
object tracking [14], and video summary [58]. Fully con-
volutional networks (FCNs) [25] based SOD models have
been particularly effective at improving SOD performance
in recent years [40]. However, accurately segmenting com-
plex object boundaries remains a challenging task for SOD.
This is especially true when the geometry and/or boundaries
of these objects are complex, or when scenes are chaotic or
cluttered [9, 10], as shown in Fig. 1.

An intuitive solution for addressing this problem is to
explore the mechanisms of the human vision system (HVS)
[55] and some of which have been used to improve SOD
models, as described below. (i) A human tends to enhance
recognition by alternating between viewing the entire object
and the details of complex scenes, which has been utilized
for various visual tasks [16, 17, 22, 36]. (ii) HVS is sen-
sitive to both boundary/contour and structural information,
so dual-branch feature refinement structures have been de-
veloped to incorporate extra-edge information to enhance
salient feature learning [11, 22, 24, 43, 47, 53, 57]. Some
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Figure 1. Illustration of MAE (left part) and some visual results
(right part) for the proposed MENet with some recent state-of-
the-art SOD methods: EDN [45], AADFNet [57], SAC [16], and
ICON [59]. Please refer to Sec.5 for detailed experimental set-
tings. The MENet model achieves the lowest MAE score with the
most precise and complete boundaries.

structural similarity measurements (e.g., Structural Simi-
larity Index (SSIM) [41]) and regional similarity measure-
ments (e.g., Intersection over Union (IoU) [35] and Dice
[12]) are also adopted by SOD models [32, 42, 43, 47, 59]
in the loss functions. (iii) Human vision is indeed holistic
and continuous so that it perceives objects and scenes as or-
ganized wholes [18], which are composed of parts that are
meaningful and coherent in relation to each other. ICON
[59] proposes to improve the integrity from both macro-
and micro-level perspectives by enhancing integrity infor-
mation hidden in channels of features. EDN [45] employs
a powerful down-sampling technique to learn a global view
of the whole image effectively. (iv) According to the hu-
man visual spatial frequency model [30], an image can be
decomposed into or synthesized by high-spatial frequency
and low-spatial frequency parts. As a starting point in this
work, we intend to use the mechanisms outlined above to
further improve SOD performance for complex scenes.

In this work, we propose a multi-enhancement network
(MENet) that effectively integrates the above HVS mecha-
nisms in a U-Net-like [37] encoder-decoder framework to
produce more accurate SOD for complex scenes. Foremost,
MENet employs the image frequency decomposition idea to
design a two-stream feature learning decoder for boundaries
(high frequencies) and inner body regions (low frequen-
cies). This setting is different from the existing two-branch
(or edge-aware) methods [11, 22, 47, 51, 53, 56, 57] that use
one branch for the boundary and the other one for the entire
object, such as EGNet [53] and AFNet [11]. Particularly,
there is no interaction between the intermediate features of
the two branches of MENet, so it reduces the interference of
inaccurate boundary information with global features. This
is because boundary features need to be highly discrimi-
native against the background, while global features need
consistency and robustness. Although LDF [43] also learns
internal regional features in one branch, its detailed map and
body map cannot be computed accurately and efficiently for

geometrically complex objects.
Then, we propose an iterative training strategy to pro-

gressively enhance features by alternately aggregating high-
and low-level features to mimic HVS bottom-up and top-
down refinement mechanisms. To produce high- and low-
level features flexibly, we design a multiscale feature en-
hancement module (ME-Module) as the core of each branch
by leveraging atrous spatial pyramid pooling (ASPP) [34]
and global-local attention [6].

In addition, we introduce the HVS holistic and continu-
ous mechanism to loss function design. We present a multi-
level hybrid loss, which evaluates the pixel-, region-, and
object-level similarities between predicted saliency maps
and ground-truth (GT) saliency maps. For pixel-level loss,
we also use Binary Cross Entropy (BCE) [7] loss to ensure
network accuracy and convergence speed. As for region-
level loss, we divide a saliency map into four sub-regions
of equal size and then calculate the sum of weighted re-
gional similarities through SSIM and IoU. Then, inspired
by SSIM and S-measure [5], an object-level loss is designed
by the contrast and distribution statistics of the foreground
between the GT map and the predicted map. A similar hy-
brid loss is reported in BASNet [32], but it uses a simple
combination of BCE, IoU, and SSIM for the whole saliency
map without partitioning regions. Following is a summary
of our contributions.

• We propose to leverage not only pixel-level but also
region-level and object-level similarity measures in
loss to increase prediction accuracy and integrity, and
then design a multi-level hybrid loss to implement this
proposal.

• We design a multiscale feature enhancement module
(ME-Module) to mimic HVS bottom-up and top-down
refinement mechanisms. ME-Module can gradually
propagate and produce comprehensive global or de-
tailed features by changing the size and order of the
input features.

• We propose a novel Multiple Enhancement Network
(MENet) for dealing with SOD in complex scenes by
integrating multiple HVS mechanisms into the net-
work structure and loss function. Specifically, a two-
branch decoder equipped with ME-Modules is de-
signed to incrementally refine the boundary and adap-
tive features by an iterative training strategy and the
proposed multilevel hybrid loss.

The results of quantitative and qualitative experiments
on six datasets demonstrate MENet outperforms the state-
of-the-art methods by a large margin, as shown in Fig. 1.
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Figure 2. Illustration of the overall architecture and the pipeline of the MENet.

2. Related Work

In recent years, salient object detection (SOD) ap-
proaches based on encoder-decoder and feature aggregation
architecture have achieved high performance [13, 26, 40].
Below, we briefly review related models to this work.

MLMSNet [44] exploits the supervision of foreground
boundary detection and edge detection. AFNet [11] de-
velops an attentive feedback module to better explore tar-
get structure. EGNet [53] uses complementary information
about salient edges and salient objects to propose an edge
guidance network. CPDNet [46] proposes a partial decoder
to refine high-level features to generate precise saliency
maps. BASNet [32] has a fine prediction model via se-
quentially stacking two U-Nets [37] with different config-
urations. AADFNet [57] is designed to use an attentional
dense ASPP-based network to selectively use small dilated
rate convolutions and big dilated rate convolutions to get
local and global saliency information. GateNet [54] de-
signs a gated dual-branch structure to establish a cooper-
ative relationship between features of different levels to in-
crease network discriminability. U2Net [31] puts forward a
novel ReSidual U-block (RSU), which can obtain intrastate
multi-resolution features without reducing feature map res-
olution. MINet [50] proposes to enhance the feed-forward
neural network by adopting a refinement mechanism for
multiple stages. LDF [43] designs a two-branch decoder
to predict saliency maps by utilizing the complement of
body and detail information of objects. SAC [16] imple-
ments a spatial attenuation context module to propagate and
aggregate salient features through two rounds of recurrent

translations. CANet [36] presents a context-aware attention
module, which detects salient regions by simultaneously
establishing links between each pixel and its surrounding
global and local contexts. KRN [47] uses intermediate edge
supervision in its coarse locating module. ICON [59] in-
troduces three diverse feature aggregations, integrity chan-
nel enhancement, and part-whole verification to SOD. EDN
[45] uses an extreme down-sampling method to effectively
learn global features and Scale-Correlated Pyramid Convo-
lution in the decoder to recover local details. When a scene
has low contrast and is blurred, it is still challenging to dis-
cern the fine boundaries (or contours) of salient objects. In
our work, we draw inspiration from the above-mentioned
methods (e.g., two-branch decoders, ASPP, attention, and
iterative refinement), but our model employs these methods
uniquely.

3. Methodology
3.1. Framework Overview

The proposed MENet utilizes the encoder-decoder struc-
ture, as shown in Fig. 2. The initial encoding part consists
of a backbone (e.g., ResNet-50 [15]), a gradient feature en-
coder (GF-Encoder), and an adaptive feature encoder (AF-
Encoder). Specifically, a 3-channel image of size [W×H] is
fed directly into the backbone network, and then N (e.g.,
N = 5 in Resnet-50) multistage feature maps (denoted
by B={bi}Ni=1) are extracted. Then, B is squeezed into
64-channel features gB={gbi}Ni=1 and aB={abi}Ni=1 by the
GF-Encoder and the AF-Encoder, respectively. Then, gB
and aB are passed to a gradient ME-Module (GME) and
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an adaptive ME-Module (AME) to learn gradient features
(i.e., boundary features) EgB={Egbi}Ni=1 under the supervi-
sion (L(k)

g ) and adaptive features (i.e., inner body features)
EaB={Eabi}Ni=1, respectively. Afterward, EgB and EaB are
concatenated as an enhanced feature block EagB which is
then fed to an Enhanced GF-Encoder and an Enhanced AF-
Encoder to be squeezed into 64-channel again then put into
the GME and AME together with gB and aB for the next it-
eration, respectively. A four-iteration enhancing procedure
alternates propagating and aggregating high- and low-level
EgB and high- and low-level EaB, in parallel, with the pro-
posed multilevel hybrid loss Ls.

3.2. Multiscale Feature Enhancement

Figure 3 demonstrates the ME-module composition. By
utilizing ASPP [34] and ME-Attention, ME-Module gradu-
ally propagates and fuses features in five stages. Each stage
first receives and makes a pixel-wise addition for a specific
size of the sub-features Fbij of the input feature block from
three input ports {#1, #2, #3} and the output of the pre-
vious stage, where i is the port index and j is the corre-
sponding sub-feature number to the five stages in the three
input feature blocks. After that, ASPP focuses on diver-
sifying visual fields, while the ME-Attention module em-
phasizes salient object location through global and detailed
attention [21]. An ’Interpolator’ performs up-sampling and
down-sampling operations, accordingly, to match the scale
of features of the next stage. ME-Module is versatile in that
it can output global or detailed features simply by adjusting
the spatial order of multiscale feature maps.

Figure 3. Illustration of the proposed ME-Module.

3.3. Iterative Enhancement

Because the ME-Module can be used as either a global
feature enhancer or a detailed feature enhancer, we can al-
ternately change the input sequence of the feature maps and
make them complement one another.

Given gradient and adaptive backbone feature blocks gB

and aB, our first step is to sort their sub-features from small
to large, respectively. Afterward, we iteratively enhance
their global and local features by changing their input order
through four rounds of iteration, respectively. The features
after each round of enhancement are denoted as EgB(k) and
EaB(k) (k ∈ [1, 4]), respectively. The entire enhancement
process is summarized in Eqs. 1,2,3. The pipeline is illus-
trated in Fig. 2.

EgB(k) = GME(V(gB),V(EgB(k−1)),V(EgB(k−2))), (1)

where the GME(p1, p2, p3) represents the Graduate ME-
Module and V( ) is used to get the reverse of the feature
list. If k ≤ 0, we let pi = Null.

EaB(k) = AME(V(aB),V(EaB(k−1)),V(EaB(k−2))), (2)

where AME(q1, q2, q3) represents the Adaptive ME-
Module. If k ≤ 0, we let qi = Null.

S(k) = Linear(Concat(EgB(k),EaB(k)), (3)

where Linear( ) is the linear layer and Concat( , ) is the
concatenation operation.

Figure 4 shows two visual examples of the saliency map
S(k) in each iteration. The odd number iteration extracts
global features, which are then refined by the even number
iterations. Thus, the global and detailed features comple-
ment each other and promote each other.

Figure 4. Examples of the saliency map (S(k)) in each iteration.

4. Supervision Strategy
In MENet, we set two supervisions in each enhancement

round, as shown in Fig. 2. One is gradient supervision in the
GME module with a BCE loss (denoted by L(k)

g ). The other
supervision is for the overall saliency maps (S(k)) with the
proposed multilevel hybrid loss (denoted by L(k)

s ). We do
not assign any supervision for the Adaptive ME-Module, so
the overall training loss L of MENet is defined by

L =

4∑
k=1

(α1
(k)L(k)

g + α2
(k)L(k)

s ), (4)

where we set α(k)
1 = α

(k)
2 = 0.5 in the implementation.
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Lg in each round is a pixel-wise BCE loss defined by

Lg = −
∑

(GglogSg + (1−Gg)log(1− Sg)), (5)

where Gg ∈ [0, 1] is the gradient map of the GT map
G ∈ [0, 1], and Sg ∈ [0, 1] is the gradient map of the pre-
dicted saliency map S ∈ [0, 1]. Gg is the high-frequency
part of the GT map, which can direct the learning of bound-
ary features.

The multilevel hybrid loss Ls in each round, composed
of a pixel-level loss (Lsbce ), a region-level loss (Lsreg ), and
an object-level loss (Lsobj ), is defined by

Ls = β1Lsbce + β2Lsreg + β3Lsobj , (6)

where we set β1 = β2 = 0.4 and β3 = 0.2 in the imple-
mentation.

Pixel-level Loss: Lsbce is a BCE loss and can be com-
puted by

Lsbce = −
∑

(GlogS + (1−G)log(1− S)), (7)

Region-level Loss: We design LsReg
based on a struc-

tural measure SSIM [41] and a regional measure IoU [35]
of images. Particularly, we divide S and G evenly into four
equal sub-regions (i.e., Si and Gi, i ∈ [1, 4]), respectively,
which can be processed as a batch in implementation. Then
LReg can be represented by

LsReg
= 1−

4∑
i=1

ωi(θ1SSIMi + θ2IoUi), (8)

where θ1 = θ2 = 0.5, and ωi is the ratio of the predicted
foreground (i.e., the salient regions) to the corresponding
GT foreground in each region.

The SSIMi between a pair of regions Si and Gi can sim-
ply be formulated as a product of three components [1, 41]:
the luminance comparison, the contrast comparison, and the
structure comparison by

SSIMi =
2µSiµGi + c1
µ2
Si

+ µ2
Gi

+ c1
· 2σSiσGi + c2
σSi

2 + σGi
2 + c2

· σSiGi + c3
σSi

σGi
+ c3

,

(9)
where µSi

and µGi
are the means, σSi

and σGi
are the stan-

dard deviations, and σSiGi is the covariance of the predicted
regional saliency map Si and regional GT map Gi, respec-
tively, and c1, c2, and c3 are small quantities introduced for
numerical stab [1].

Additionally, we also measure the overlap of spatial
regions between predictions and labels using the IoU in
LsReg

, which is defined as

IoUi =

∑∑
(SiGi)∑∑

(Gi + Si −GiSi)
. (10)

Object-level Loss: Inspired by SSIM and S-measure
[5], we introduce object-level image similarity measure-
ment to the object-level loss Lsobj . Since GT maps usually
have sharp foreground-background contrast and a uniform
distribution, the predicted saliency maps should also have
these properties [5] [41]. We use the luminance component
of SSIM and the coefficient of variation (i.e., the ratio of
mean to deviation) to model these two properties, respec-
tively. Since accurate foreground is the primary objective
in training the whole network, we only consider the fore-
grounds (denoted by So and Go, respectively) of S and G
and compute the foreground distribution. This is the differ-
ence from the S-measure that considers both the distribu-
tions of the foregrounds and the backgrounds of S and G.
Thus, Lsobj is defined by

Lsobj = 1− 1

(
µ2
So

+µ2
Go

2µSoµGo
+ λ

σSo

µSo
)
, (11)

where µSo
and µGo

denote the means of So and Go, re-
spectively, σSo

is the standard deviation of So, and λ is the
weight. Since µGo

is exactly 1 in practice, Eq.11 can be
simplified by

Lsobj = 1− 2µSo

µ2
So

+ 1 + 2λσSo

. (12)

5. Experiments
5.1. Experimental Settings

Training and Testing Strategy: We use ImageNet [19]
to pre-train the backbone network and then use the DUTS-
TR [39] to fine-turn the proposed MENet. Other MENet
parameters are initialized randomly in a normal distribution.
Inputs are scaled to [352× 352], [320× 320], [288× 288],
[256 × 256], and [224 × 224] for data augmentation. We
utilize the stochastic gradient descent (SGD) optimizer [2]
and set the maximum learning rate of the backbone network
to 0.00025 and other parts to 0.0025. The momentum is set
to 0.9, the weight decay is set to 0.0005, and the batch size
is set to 24. The ‘poly’ learning rate strategy is also adopted.
Our network is built on PyTorch 1.12 on a computer server
with AMD EPYC 7742 (2.25GHz) and an NVIDIA A100
GPU (with 40 GB of memory). The network is trained for
99 epochs. Inference for a testing image scaled to [352 ×
352] takes just 0.022s (45 fps).

Testing Datasets: We evaluate all methods on the fol-
lowing six popular SOD benchmark datasets. OMRON [49]
has 5,168 images of salient objects with relatively complex
backgrounds. DUTS-TE is part of DUTS [39] designed for
testing, including 5,019 images. HKU-IS [20] has 4,447
images, primarily containing multiple scattered salient ob-
jects. PASCAL-S [23] is a subset of PASCAL-VOC 2010,
containing 850 images, and has less bias than most saliency
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OMRON [49] (5,168 images) DUTS-TE [39] (5,019 images) SOD [28] (300 images)

Year Method Backbone MAE ↓ MaxF ↑ mF ↑ mEm ↑ Sm ↑ MAE ↓ MaxF ↑ mF ↑ mEm ↑ Sm ↑ MAE ↓ MaxF ↑ mF ↑ mEm ↑ Sm ↑
2019 MLMSNet [44] VGG-16 0.0635 0.7740 0.7455 0.8387 0.8093 0.0484 0.8511 0.8137 0.8631 0.8618 0.1060 0.8517 0.8291 0.8019 0.7898
2019 AFNet [11] VGG-16 0.0573 0.7972 0.7766 0.8595 0.8263 0.0453 0.8623 0.8340 0.8929 0.8672 - - - - -
2019 EGNet [53] VGG-16 0.0564 0.8087 0.7855 0.8642 0.8357 0.0431 0.8764 0.8472 0.8927 0.8786 0.1100 0.8589 0.8426 0.8209 0.7882
2019 EGNet [53] ResNet-50 0.0528 0.8155 0.7942 0.8738 0.8412 0.0386 0.8880 0.8597 0.9040 0.8873 0.0969 0.8778 0.8610 0.8422 0.8067
2019 CPD [46] VGG-16 0.0567 0.7935 0.7800 0.8685 0.8178 0.0425 0.8638 0.8458 0.9038 0.8669 0.1125 0.8480 0.8365 0.8124 0.7715
2019 CPD [46] ResNet-50 0.0560 0.7966 0.7807 0.8726 0.8248 0.0429 0.8649 0.8431 0.9009 0.8691 0.1097 0.8568 0.8376 0.8174 0.7711
2019 BASNet [32] ResNet-34 0.0565 0.8053 0.7906 0.8691 0.8362 0.0472 0.8589 0.8416 0.8790 0.8660 0.1124 0.8487 0.8368 0.7793 0.7721
2020 AADFNet [57] ResNet-50 0.0488 0.8143 0.8050 0.8744 0.8389 0.0314 0.8993 0.8911 0.9225 0.8914 0.0903 0.8677 0.8579 0.8051 0.7929
2020 GateNet [54] VGG-16 0.0613 0.7940 0.7691 0.8534 0.8209 0.0448 0.8695 0.8388 0.8856 0.8705 - - - - -
2020 GateNet [54] ResNet-50 0.0552 0.8180 0.7914 0.8682 0.8382 0.0399 0.8870 0.8552 0.9004 0.8852 - - - - -
2020 GateNet [54] ResNet-101 0.0547 0.8210 0.7944 0.8736 0.8449 0.0380 0.8919 0.8615 0.9075 0.8910 - - - - -
2020 U2Net [31] RSU 0.0544 0.8226 0.8023 0.8716 0.8467 0.0443 0.8719 0.8479 0.8840 0.8738 0.1061 0.8588 0.8428 0.7993 0.7891
2020 MINet [50] VGG-16 0.0572 0.7936 0.7755 0.8644 0.8218 0.0395 0.8761 0.8550 0.9070 0.8753 - - - - -
2020 MINet [50] ResNet-50 0.0559 0.8098 0.7911 0.8734 0.8329 0.0373 0.8833 0.8597 0.9132 0.8842 - - - - -
2020 LDF [43] ResNet-50 0.0517 0.8199 0.8015 0.8814 0.8392 0.0336 0.8968 0.8779 0.9232 0.8924 - - - - -
2021 SAC [16] ResNet-101 0.0523 0.8287 0.8092 0.8833 0.8487 0.0339 0.8944 0.8732 0.9208 0.8957 0.0934 0.8804 0.8695 0.8482 0.8087
2021 CANet [36] CNN 0.0581 0.8101 0.7796 0.8593 0.8356 0.0437 0.8755 0.8382 0.8896 0.8781 0.0992 0.8650 0.8406 0.8331 0.8007
2021 SGL-KRN [47] ResNet-50 0.0492 0.7961 0.7830 0.8783 0.8464 0.0337 0.8833 0.8649 0.9311 0.8929 - - - - -
2021 PA-KRN [47] ResNet-50 0.0496 0.8101 0.7956 0.8880 0.8533 0.0328 0.8945 0.8761 0.9353 0.9005 - - - - -
2022 ICON [59] ResNet-50 0.0569 0.8254 0.8013 0.8791 0.8445 0.0370 0.8917 0.8665 0.9142 0.8889 0.0841 0.8790 0.8711 0.8516 0.8238
2022 EDN [45] VGG-16 0.0565 0.7818 0.7686 0.8628 0.8376 0.0410 0.8636 0.8457 0.9118 0.8829 - - - - -
2022 EDN [45] ResNet-50 0.0494 0.7992 0.7880 0.8774 0.8495 0.0351 0.8784 0.8634 0.9250 0.8924 - - - - -
2023 MENet(Ours) ResNet-50 0.0450 0.8337 0.8178 0.8911 0.8496 0.0281 0.9123 0.8930 0.9368 0.9049 0.0874 0.8780 0.8684 0.8381 0.8089

Table 1. Quantitative comparisons on OMRON [49], DTUS-TE [39], and SOD [28] datasets. The best results are marked in bold. The
symbols ’↓ / ↑’ indicate the lower/higher the evaluation metric, the better the model is. The symbol ’-’ means that the model is not
available. Overall, the proposed MENet has superior performance.

HKU-IS [20] (4,447 images) PASCAL-S [23] (850 images) ECSSD [48] (1,000 images)

Year Method Backbone MAE ↓ MaxF ↑ mF ↑ mEm ↑ Sm ↑ MAE ↓ MaxF ↑ mF ↑ mEm ↑ Sm ↑ MAE ↓ MaxF ↑ mF ↑ mEm ↑ Sm ↑
2019 MLMSNet [44] VGG-16 0.0387 0.9207 0.8891 0.9379 0.9066 0.0736 0.8552 0.8254 0.8447 0.8443 0.0446 0.9284 0.9007 0.9161 0.9112
2019 AFNet [11] VGG-16 0.0358 0.9226 0.8998 0.9475 0.9055 0.0700 0.8629 0.8409 0.8851 0.8494 0.0418 0.9350 0.9157 0.9414 0.9135
2019 EGNet [53] VGG-16 0.0345 0.9273 0.9050 0.9503 0.9100 0.0776 0.8585 0.8371 0.8714 0.8475 0.0405 0.9434 0.9232 0.9408 0.9193
2019 EGNet [53] Resnet-50 0.0309 0.9352 0.9122 0.9564 0.9180 0.0740 0.8653 0.8437 0.8772 0.8521 0.0374 0.9474 0.9288 0.9469 0.9246
2019 CPD [46] VGG-16 0.0333 0.9239 0.9075 0.9501 0.9042 0.0721 0.8612 0.8441 0.8837 0.8446 0.0402 0.9360 0.9233 0.9433 0.9103
2019 CPD [46] ResNet-50 0.0342 0.9250 0.9047 0.9503 0.9056 0.0706 0.8595 0.8414 0.8873 0.8484 0.0371 0.9393 0.9244 0.9494 0.9182
2019 BASNet [32] ResNet-34 0.0322 0.9284 0.9113 0.9458 0.9090 0.0758 0.8539 0.8344 0.8527 0.8380 0.0370 0.9425 0.9274 0.9210 0.9163
2020 AADFNet [57] ResNet-50 0.0255 0.9415 0.9339 0.9592 0.9190 0.0550 0.8797 0.8677 0.9051 0.8658 0.0280 0.9543 0.9478 0.9529 0.9299
2020 GateNet [54] VGG-16 0.0361 0.9287 0.9036 0.9470 0.9100 0.0684 0.8696 0.8439 0.8692 0.8574 0.0418 0.9413 0.9191 0.9314 0.9169
2020 GateNet [54] ResNet-50 0.0337 0.9335 0.9097 0.9534 0.9154 0.0680 0.8690 0.8459 0.8842 0.8580 0.0408 0.9454 0.9250 0.9431 0.9198
2020 GateNet [54] ResNet-101 0.0320 0.9375 0.9136 0.9567 0.9195 0.0668 0.8702 0.8468 0.8924 0.8622 0.0357 0.9508 0.9301 0.9501 0.9302
2020 U2Net [31] RSU 0.0312 0.9352 0.9133 0.9484 0.9161 0.0740 0.8592 0.8386 0.8500 0.8444 0.0330 0.9510 0.9325 0.9251 0.9276
2020 MINet [50] VGG-16 0.0316 0.9302 0.9133 0.9540 0.9119 0.0645 0.8650 0.8450 0.8961 0.8544 0.0370 0.9435 0.9296 0.9475 0.9192
2020 MINet [50] ResNet-50 0.0292 0.9349 0.9166 0.9600 0.9189 0.0643 0.8665 0.8461 0.8981 0.8563 0.0342 0.9475 0.9309 0.9532 0.9250
2020 LDF [43] ResNet-50 0.0275 0.9394 0.9224 0.9597 0.9196 0.0596 0.8741 0.8577 0.9048 0.8630 0.0335 0.9501 0.9379 0.9509 0.9245
2021 SAC [16] ResNet-101 0.0257 0.9416 0.9260 0.9636 0.9253 0.0622 0.8772 0.8585 0.9022 0.8656 0.0309 0.9512 0.9376 0.9586 0.9312
2021 CANet [36] CNN 0.0371 0.9297 0.8977 0.9455 0.9100 0.0728 0.8662 0.8392 0.8790 0.8552 0.0441 0.9378 0.9103 0.9362 0.9154
2021 SGL-KRN [47] ResNet-50 0.0280 0.9301 0.9154 0.9539 0.9206 0.0678 0.8502 0.8373 0.8941 0.8556 0.0360 0.9368 0.9241 0.9462 0.9231
2021 PA-KRN [47] ResNet-50 0.0271 0.9349 0.9198 0.9561 0.9235 0.0665 0.8530 0.8388 0.8964 0.8578 0.0323 0.9425 0.9301 0.9503 0.9278
2022 ICON [59] ResNet-50 0.0289 0.9395 0.9196 0.9585 0.9202 0.0644 0.8757 0.8514 0.8931 0.8611 0.0318 0.9503 0.9336 0.9543 0.9290
2022 EDN [45] VGG-16 0.0286 0.9286 0.9141 0.9504 0.9208 0.0650 0.8555 0.8406 0.8955 0.8605 0.0336 0.9408 0.9285 0.9508 0.9283
2022 EDN [45] ResNet-50 0.0264 0.9325 0.9196 0.9548 0.9241 0.0617 0.8600 0.8489 0.9015 0.8646 0.0320 0.9410 0.9304 0.9508 0.9267
2023 MENet(Ours) ResNet-50 0.0234 0.9483 0.9319 0.9657 0.9274 0.0535 0.8896 0.8701 0.9132 0.8721 0.0307 0.9549 0.9422 0.9544 0.9279

Table 2. Quantitative comparisons on HKU-IS [20], PASCAL-S [23], and ECSSD [48] datasets. The best results are bolded. The symbols
’↓ / ↑’ indicate the lower/higher the evaluation metric, the better the model is. Overall, the proposed MENet has superior performance.

datasets. ECSSD [48] has 1,000 images with semantically
meaningful but complex structures, and the backgrounds
also have complexity. SOD [28] consists of 300 challenging
images of seven subjects.

Evaluation Criteria: We adopt the Mean Absolute Er-
ror (MAE) [29], the max F-measure (MaxF) and the mean F-
measure (mF) [27], the mean Enhanced-alignment Measure
(mEm) [8], and the S-measure (Sm) [5] to assess SOD mod-
els. We plot Precision-Recall (PR) curves and F-measure
curves to show overall performance.

5.2. Comparison with the state-of-the-arts

We compare the proposed MENet with sixteen recent
state-of-the-art models, including MLMSNet [44], AFNet

[11], EGNet [53], CPD [46], BASNet [32], AADFNet [57],
GateNet [54], U2Net [31], MINet [50], LDF [43], SAC
[16], CANet [36], SGL-KRN [47], PA-KRN [47], EDN
[45], and ICON [59]. For a fair comparison, the saliency
maps are either provided by the authors or generated by the
officially released pre-trained models.

Quantitative performance comparison: We rank the
methods across the backbone networks (e.g., VGG-16 [38],
ResNet-50 [15], and ResNet-101 [15]), because some mod-
els do not provide codes or predictive results for all the
backbones, as shown in Tables. 1 and 2. Obviously, the
proposed MENet (with ResNet50) outperforms other meth-
ods by a large margin. MENet performs well on the metrics
mEm and Sm. Although MENet is inferior to the ICON [59]
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(a) DUT-OMRON (b) DUTS-TE (c) HKU-IS (d) PASCAL-S (e) ECSSD

(f) DUT-OMRON (g) DUTS-TE (h) HKU-IS (i) PASCAL-S (j) ECSSD

Figure 5. PR-curves (Row 1) and Fm-curves (Row 2) for SOD methods: ICON [59], MINet [50], LDF [43], PA-KRN [47], SGL-KRN [47],
EDN [45], AADFNet [57], SAC [16], and MENet. The proposed MENet has the overall best performance on five datasets.

Figure 6. Quantitative comparisons with recent state-of-the-art methods: ICON [59], LDF [43], PA-KRN [47], SGL-KRN [47], EDN [45],
AADFNet [57], SAC [16], and MINet [50]. The proposed MENet produces more complete and clear boundaries with fewer background
noises for various complex scenes.

and SAC [16] on the SOD dataset, and AADFNet [57] on
the ECSSD dataset, its performances are generally close
to the leading ones. MENet uses Resnet-50 as the back-
bone network, while SAC uses ResNet-101 as the backbone
network. ICON only has better performance on the SOD

dataset. F-Measure and PR curves are shown in Fig. 5,
respectively. MENet performs best overall on PR and F-
Measure curves. All these statistical results reveal the supe-
riority of MENet.

Qualitative performance comparison: We select a few
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challenging scenes for comparison, including small objects,
reflections, large objects, multiple complex objects, and
low-contrast environments, as shown in Fig. 6. The predic-
tion results are given in probability. The determined value
’1’ is marked in yellow, the other probability values are indi-
cated in different shades of green, and the value ’0’ is black.
As we can see, the proposed MENet achieves the most accu-
rate overall detection results for salient regions. The bound-
aries of the targets are also more precise and complete.

5.3. Ablation Study

We investigate the different settings for enhancement and
supervision of MENet that uses Resnet-50 as the backbone.

Number of iterative enhancements: Table 3 shows that
the four-round enhancement setting achieves the best results
on all databases. According to our settings, the first and
third rounds learn global features, and the second and fourth
rounds learn detailed features, so the result of Round 2 is
better than that of Round 3. But the result of Round 4 is
much better than that of Round 2, demonstrating the effec-
tiveness of our iterative training strategies.

Loss combinations: Table 4 shows that with the intro-
duction of region-level loss (Lsreg ) and object-level loss
(Lsobj ), the performance of all metrics is gradually in-
creased on OMRON, DUTS-TE, HKU-IS, and PASCAL-
S datasets. Especially, when gradient supervision (Lg) is
added, the overall accuracy is further improved. For the
ECSSD and SOD datasets, although the metrics do not con-
form to this rule, overall, the combination we use in MENet
is still close to the best ones.

Sub-region numbers of region-level loss: Table 4
shows that the four-sub-region setting improves perfor-
mance significantly than the one-region setting, by reducing
MAE scores by 4.66%, 4.75%, 8.24%, 7.12%, 5.83%, and
7.42% on six datasets, respectively. Therefore, partitioning
regions is necessary.

6. Conclusion
This paper proposes a method to improve the perfor-

mance of SOD for complex scenes by fully leveraging the
human visual system (HVS) and cognition mechanisms.
The method consists of a novel multilevel hybrid loss that
measures pixel-, region- and object-level similarities, and a
multi-enhancement network (MENet) that integrates mul-
tiple mechanisms of the HVS. Two multiscale feature en-
hancement modules are the core of MENet, and they grad-
ually propagate and fuse boundary and global features, re-
spectively. Comprehensive experiments on six challenging
databases demonstrate that MENet achieves the new state-
of-the-art for SOD. As demonstrated in all the studies in this
paper, SOD in blurred and low-contrast real scenes is still a
valuable but challenging topic that warrants more research
efforts.

Dataset ITimes MAE ↓ Fmax
β ↑ mFβ ↑ mEm ↑ Sm ↑

OMRON [49] 1 0.0617 0.7867 0.7657 0.8701 0.7827
2 0.0483 0.8304 0.8067 0.8854 0.8409
3 0.0504 0.8066 0.7956 0.8755 0.8325
4 0.0450 0.8337 0.8178 0.8911 0.8496

DUTS-TE [39] 1 0.0496 0.8560 0.8386 0.9025 0.8363
2 0.0310 0.9071 0.8762 0.9313 0.8969
3 0.0389 0.8816 0.8690 0.9144 0.8783
4 0.0281 0.9123 0.8930 0.9368 0.9049

HKU-IS [20] 1 0.0504 0.9028 0.8864 0.9344 0.8649
2 0.0266 0.9453 0.9184 0.9621 0.9205
3 0.0383 0.9231 0.9102 0.9497 0.9024
4 0.0234 0.9483 0.9319 0.9657 0.9274

PASCAL-S [23] 1 0.0868 0.8525 0.8373 0.8611 0.8166
2 0.0576 0.8856 0.8567 0.9059 0.8652
3 0.0685 0.8726 0.8605 0.8728 0.8587
4 0.0535 0.8896 0.8701 0.9131 0.8721

ECSSD [48] 1 0.0673 0.9163 0.8988 0.9065 0.8617
2 0.0344 0.9511 0.9298 0.9484 0.9213
3 0.0503 0.9336 0.9208 0.9205 0.9016
4 0.0307 0.9549 0.9422 0.9544 0.9279

SOD [28] 1 0.1449 0.8388 0.7809 0.7497 0.7028
2 0.0895 0.8700 0.8640 0.8352 0.8063
3 0.1147 0.8548 0.8277 0.7795 0.7666
4 0.0874 0.8780 0.8684 0.8381 0.8089

Table 3. Comparison of MENet with different iterative enhance-
ment times (denoted by ITimes). As shown by the bolded results,
MENet’s optimal enhancement is four iterations.

Dataset No. Lg Lsbce Lsreg Lsobj MAE ↓ MaxF ↑ mF ↑ mEm ↑ Sm ↑
OMRON [49] 1 ✓ 0.0518 0.8141 0.7933 0.8684 0.8407

2 ✓ ✓4 0.0498 0.8075 0.7892 0.8632 0.8388
3 ✓ ✓4 ✓ 0.0492 0.8281 0.8093 0.8840 0.8437
4 ✓ ✓ 0.0486 0.8221 0.8046 0.8762 0.8362
5 ✓ ✓ ✓4 0.0470 0.8190 0.8017 0.8762 0.8451
6 ✓ ✓ ✓4 ✓ 0.0450 0.8337 0.8178 0.8911 0.8496
7 ✓ ✓ ✓1 ✓ 0.0472 0.8156 0.8027 0.8713 0.8339

DUTS-TE [39] 1 ✓ 0.0308 0.9030 0.8816 0.9288 0.8991
2 ✓ ✓4 0.0305 0.8978 0.8755 0.9247 0.8945
3 ✓ ✓4 ✓ 0.0295 0.9097 0.8871 0.9339 0.9007
4 ✓ ✓ 0.0301 0.9049 0.8797 0.9285 0.8935
5 ✓ ✓ ✓4 0.0295 0.9053 0.8856 0.9319 0.8993
6 ✓ ✓ ✓4 ✓ 0.0281 0.9123 0.8930 0.9368 0.9049
7 ✓ ✓ ✓1 ✓ 0.0295 0.9060 0.8887 0.9302 0.8980

HKU-IS [20] 1 ✓ 0.0237 0.9453 0.9269 0.9639 0.9266
2 ✓ ✓4 0.0259 0.9394 0.9209 0.9584 0.9199
3 ✓ ✓4 ✓ 0.0252 0.9450 0.9269 0.9621 0.9220
4 ✓ ✓ 0.0283 0.9411 0.9206 0.9555 0.9140
5 ✓ ✓ ✓4 0.0250 0.9438 0.9271 0.9605 0.9226
6 ✓ ✓ ✓4 ✓ 0.0234 0.9483 0.9319 0.9657 0.9274
7 ✓ ✓ ✓1 ✓ 0.0255 0.9434 0.9247 0.9622 0.9223

PASCAL-S [23] 1 ✓ 0.0572 0.8794 0.8608 0.9026 0.8663
2 ✓ ✓4 0.0552 0.8836 0.8639 0.9054 0.8681
3 ✓ ✓4 ✓ 0.0565 0.8839 0.8653 0.9100 0.8670
4 ✓ ✓ 0.0606 0.8831 0.8619 0.8985 0.8587
5 ✓ ✓ ✓4 0.0557 0.8865 0.8674 0.9055 0.8652
6 ✓ ✓ ✓4 ✓ 0.0535 0.8896 0.8701 0.9132 0.8721
7 ✓ ✓ ✓1 ✓ 0.0576 0.8845 0.8652 0.9024 0.8678

ECSSD [48] 1 ✓ 0.0308 0.9524 0.9374 0.9542 0.9252
2 ✓ ✓4 0.0315 0.9494 0.9343 0.9526 0.9243
3 ✓ ✓4 ✓ 0.0297 0.9536 0.9384 0.9554 0.9290
4 ✓ ✓ 0.0344 0.9477 0.9310 0.9484 0.9193
5 ✓ ✓ ✓4 0.0305 0.9537 0.9393 0.9544 0.9267
6 ✓ ✓ ✓4 ✓ 0.0307 0.9549 0.9422 0.9545 0.9279
7 ✓ ✓ ✓1 ✓ 0.0326 0.9514 0.9247 0.9622 0.9223

SOD [28] 1 ✓ 0.0910 0.8772 0.8707 0.8307 0.8024
2 ✓ ✓4 0.0910 0.8595 0.8543 0.8137 0.7987
3 ✓ ✓4 ✓ 0.0841 0.8648 0.8595 0.8250 0.8089
4 ✓ ✓ 0.0947 0.8725 0.8650 0.8150 0.7949
5 ✓ ✓ ✓4 0.0886 0.8667 0.8608 0.8133 0.8019
6 ✓ ✓ ✓4 ✓ 0.0874 0.8780 0.8684 0.8381 0.8089
7 ✓ ✓ ✓1 ✓ 0.0944 0.8729 0.8675 0.8171 0.7994

Table 4. Ablation tests for loss settings. Symbol ✓ means the
loss is calculated. For Lsreg , ’✓1’ and ’✓4’ represent one region
and four sub-regions, respectively. The best results marked in bold
demonstrate that the No.6 combination of losses is optimal for the
six datasets.
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