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Figure 1. Our diffusion model, RODIN, can produce high-fidelity 3D avatars (the first row). Our model also supports 3D avatar generation
from a single portrait or text prompt, while permitting text-based semantic manipulation (second row). See the webpage for video demos.

Abstract
This paper presents a 3D diffusion model that automat-

ically generates 3D digital avatars represented as neural
radiance fields (NeRFs). A significant challenge for 3D
diffusion is that the memory and processing costs are pro-
hibitive for producing high-quality results with rich details.
To tackle this problem, we propose the roll-out diffusion net-
work (RODIN), which takes a 3D NeRF model represented
as multiple 2D feature maps and rolls out them onto a sin-
gle 2D feature plane within which we perform 3D-aware
diffusion. The RODIN model brings much-needed compu-
tational efficiency while preserving the integrity of 3D dif-
fusion by using 3D-aware convolution that attends to pro-
jected features in the 2D plane according to their origi-
nal relationships in 3D. We also use latent conditioning to
orchestrate the feature generation with global coherence,
leading to high-fidelity avatars and enabling semantic edit-
ing based on text prompts. Finally, we use hierarchical syn-
thesis to further enhance details. The 3D avatars generated
by our model compare favorably with those produced by ex-
isting techniques. We can generate highly detailed avatars
with realistic hairstyles and facial hair. We also demon-
strate 3D avatar generation from image or text, as well as
text-guided editability.

†Intern at Microsoft Research. ‡Corresponding author. ∗Equal contri-
bution. Project Webpage: https://3d-avatar-diffusion.microsoft.com

1. Introduction

Generative models [2, 34] are one of the most promising
ways to analyze and synthesize visual data including 2D
images and 3D models. At the forefront of generative mod-
eling is the diffusion model [14, 24, 61], which has shown
phenomenal generative power for images [19,47,50,52] and
videos [23,59]. Indeed, we are witnessing a 2D content cre-
ation revolution driven by the rapid advances of diffusion
and generative modeling. In this paper, we aim to expand
the applicability of diffusion to 3D digital avatars. We use
“digital avatars” to refer to the traditional avatars manually
created by 3D artists, as opposed to the recently emerging
photorealistic avatars [8, 43]. The reason for focusing on
digital avatars is twofold. On the one hand, digital avatars
are widely used in movies, games, the metaverse, and the
3D industry in general. On the other hand, the available
digital avatar data is very scarce as each avatar must be
painstakingly created by a specialized 3D artist using a so-
phisticated creation pipeline [20, 35], especially for mod-
eling hair and facial hair. All this leads to a compelling
scenario for generative modeling.

We present a diffusion model for automatically produc-
ing digital avatars represented as NeRFs [38], with each
point describing its color radiance and density within the
3D volume. The core challenge in generating these avatars
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is the prohibitive memory and computational cost required
by high-quality avatars with rich details. Without rich de-
tails, an avatar will always be somewhat “toy-like”. To
tackle this challenge, we develop RODIN, the roll-out dif-
fusion network. We take a NeRF model represented as mul-
tiple 2D feature maps and roll out these maps onto a single
2D feature plane and perform 3D-aware diffusion within
this plane. Specifically, we use the tri-plane representa-
tion [9], which represents a volume by three orthogonal fea-
ture planes. By simply rolling out the feature maps, RODIN
can perform 3D-aware diffusion using an efficient 2D ar-
chitecture and by drawing power from RODIN’s three key
ingredients.

The first is the 3D-aware convolution. The 2D CNN
processing used in conventional 2D diffusion cannot ef-
fectively handle feature maps originating from orthogonal
planes. Rather than treating the features as plain 2D input,
the 3D-aware convolution explicitly accounts for the fact
that a 2D feature in one plane (of the tri-plane) is a projec-
tion from a piece of 3D data and is hence intrinsically as-
sociated with the same data’s projected features in the other
two planes. To encourage cross-plane communication, we
involve all these associated features in the convolution and
synchronize their detail synthesis according to their 3D re-
lationship.

The second ingredient is latent conditioning. We use a
latent vector to orchestrate the feature generation so that it is
globally coherent in 3D, leading to better quality avatars and
enabling semantic editing. We do this by using the avatars
in the training dataset to train an additional image encoder
which extracts a semantic latent vector serving as the condi-
tional input to the diffusion model. This latent conditioning
essentially acts as an autoencoder in orchestrating the fea-
ture generation. For semantic editability, we adopt a frozen
CLIP image encoder [46] that shares the latent space with
text prompts.

The final ingredient is hierarchical synthesis. We start
by generating at low resolution (64 × 64), followed by a
diffusion-based upsampling that yields a higher resolution
(256 × 256). When training the diffusion upsampler, it is
instrumental to penalize the image-level loss that we com-
pute in a patch-wise manner.

RODIN supports several application scenarios. We can
use the model to generate an unlimited number of avatars
from scratch, each different from the others as well as those
in the training data. As shown in Figure 1, we can generate
highly detailed avatars with realistic hairstyles and facial
hair styled as beards, mustaches, goatees, and sideburns.
Hairstyle and facial hair are essential parts of personal iden-
tity yet have been notoriously difficult to model well with
existing approaches. The RODIN model also allows avatar
customization, with the resulting avatar capturing the visual
characteristics of a person portrayed in an image or a textual

description. Finally, our framework supports text-guided
semantic editing.

Our work shows that 3D diffusion holds great model-
ing power, and this power can be effectively unleashed by
rolling out the feature maps onto a 2D plane, leading to rich
details, including those highly desirable but extremely dif-
ficult to produce with existing techniques. It is worth not-
ing that while this paper focuses on RODIN’s application to
avatars, the design of RODIN is not avatar specific. Indeed,
we believe RODIN is applicable to general 3D scenes.

2. Related Work
The state of generative modeling [5,14,15,28,48,65,75]

has seen rapid progress in past years. Diffusion models [14,
24, 61, 73] have recently shown unprecedented generative
ability and compositional power. The most remarkable suc-
cess happens in text-to-image synthesis [19, 39, 47, 50, 52],
which serves as a foundation model and enables various
appealing applications [21, 51, 66] previously unattainable.
While diffusion models have been successfully applied to
different modalities [11, 23, 26, 32], its generative capabil-
ity is much less explored in 3D generation, with only a few
attempts on modeling 3D primitives [36, 74, 76].

Early 3D generation works rely on either GAN [17] or
VAE [29] to model the distribution of 3D shape represen-
tation like voxel grids [6, 70], point clouds [1, 7, 31, 72],
mesh [33, 63] and implicit neural representation [42, 60].
However, existing works have not demonstrated the abil-
ity to produce complex 3D assets yet. Concurrent to this
work, Bautista et al. [4] train a diffusion model to generate
the latent vector that encodes the radiance field [38] of syn-
thetic scenes, yet this work only produces coarse 3D geom-
etry. In comparison, we propose a hierarchical 3D genera-
tion framework with effective 3D-aware operators, offering
unprecedented 3D detail synthesis.

Another line of work learns 3D-aware generation by uti-
lizing richly available 2D data. 3D-aware GANs [9, 10,
12, 16, 18, 41, 54–58, 62, 71, 77] recently attract significant
research interest, which are trained to produce radiance
fields with image level distribution matching. However,
these methods suffer from instabilities and mode collapse
of GAN training, and it is still challenging to attain authen-
tic avatars that can be viewed from large angles. Concur-
rently, there are a few attempts to use diffusion models for
the problem. Daniel et al. [68] proposes to synthesize novel
views with a pose-conditioned 2D diffusion model, yet the
results are not intrinsically 3D. Ben et al. [45] optimizes a
radiance field using the supervision from a pretrained text-
to-image diffusion model and produces impressive 3D ob-
jects of diverse genres. Nonetheless, pretrained 2D gen-
erative networks only offer limited 3D knowledge and in-
evitably lead to blurry 3D results. A high-quality generation
framework in 3D space is still highly desired.
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Figure 2. An overview of our RODIN model. We derive the latent z via the mapping from image, text, or random noise, which is used
to control the base diffusion model to generate 64 × 64 tri-planes. We train another diffusion model to upsample this coarse result to
256×256 tri-planes that are used to render final multi-view images with volumetric rendering and convolutional refinement. The operators
used in diffusion models are designed to be 3D-aware.

3. Approach

Unlike prior methods that learn 3D-aware generation
from a 2D image collection, we aim to learn the 3D
avatar generation using the multi-view renderings from the
Blender synthetic pipeline [69]. Rather than treating the
multi-view images of the same subject as individual training
samples, we fit the volumetric neural representation for each
avatar, which is used to explain all the observations from
different viewpoints. Thereafter we use diffusion models
to characterize the distribution of these 3D instances. Our
diffusion-based 3D generation is a hierarchical process —
we first utilize a diffusion model to generate the coarse ge-
ometry, followed by a diffusion upsampler for detail syn-
thesis. As illustrated in Figure 2, the whole 3D portrait gen-
eration comprises multiple training stages, which we detail
in the following subsections.

3.1. Robust 3D Representation Fitting

To train a generative network with explicit 3D supervi-
sion, we need an expressive 3D representation that accounts
for multi-view images, which should meet the following re-
quirements. First, we need an explicit representation that
is amenable to generative network processing. Second, we
require a compact representation that is memory efficient;
otherwise, it would be too costly to store a myriad of such
3D instances for training. Furthermore, we expect fast rep-
resentation fitting since hours of optimization as vanilla
NeRF [38] would make it unaffordable to generate abun-
dant 3D training data as required for generative modeling.

Taking these into consideration, we adopt tri-plane rep-
resentation proposed by [9] to model the neural radiance
field of 3D avatars. Specifically, the 3D volume is factor-
ized into three axis-aligned orthogonal feature planes, de-
noted by yuv,ywu,yvw ∈ RH×W×C , each of which has
spatial resolution of H × W and number of channel as C.
Compared to voxel grids, the tri-plane representation offers
a considerably smaller memory footprint without sacrific-

(a) 256 × 256 tri-plane (b) 64 × 64 tri-plane (c) 64 × 64 tri-plane
without random scaling with random scaling

Figure 3. While 256×256 tri-planes give good renderings (a), the
64× 64 variant gives much worse result (b). Hence, we introduce
random scaling during fitting so as to obtain a robust representa-
tion that can be effectively rendered in continuous scales (c).

ing the expressivity. Hence, rich 3D information is ex-
plicitly memorized in the tri-plane features, and one can
query the feature of the 3D point p ∈ R3 by projecting
it onto each plane and aggregating the retrieved features,
i.e., yp = yuv(puv) + ywu(pwu) + yvw(pvw). With such
positional feature, one can derive the density σ ∈ R+ and
view-dependent color c ∈ R3 of each 3D location given the
viewing direction d ∈ S2 with a lightweight MLP decoder
GMLP
θ , which can be formulated as

c(p,d), σ(p) = GMLP
θ

(
yp, ξ(yp),d

)
. (1)

Here, we apply the Fourier embedding operator ξ(·) [64]
on the queried feature rather than the spatial coordinate.
The tri-plane features and the MLP decoder are optimized
such that the rendering of the neural radiance field matches
the multi-view images {x}Nv for the given subject, where
x ∈ RH0×W0×3. We enforce the rendered image given by
volumetric rendering [37], i.e., x̂ = R(c, σ), to match the
corresponding ground truth with mean squared error loss.
Besides, we introduce sparse, smooth, and compact regular-
izers to reduce the “floating” artifacts [3] in free space. For
more tri-plane fitting details, please refer to the Appendix.

While prior per-scene reconstruction mainly concerns
the fitting quality, our 3D fitting procedure should also con-
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sider several key aspects for generation purposes. First, the
tri-plane features of different subjects should rigorously re-
side in the same domain. To achieve this, we adopt a shared
MLP decoder when fitting distinct portraits, thus implicitly
pushing the tri-plane features to the shared latent space rec-
ognizable by the decoder. Second, the MLP decoder has
to possess some level of robustness. That is, the decoder
should be tolerant to slight perturbation of tri-plane fea-
tures, and thus one can still obtain plausible results even if
the tri-plane features are imperfectly generated. More im-
portantly, the decoder should be robust to varied tri-plane
sizes because hierarchical 3D generation is trained on multi-
resolution tri-plane features. As shown in Figure 3, when
solely fitting 256 × 256 tri-planes, its 64 × 64 resolution
variant cannot be effectively rendered. To address this, we
randomly scale the tri-plane during fitting, which is instru-
mental in deriving multi-resolution tri-plane features simul-
taneously with a shared decoder.

3.2. Latent Conditioned 3D Diffusion Model

Now the 3D avatar generation is reduced to learning
the distribution of tri-plane features, i.e., p(y), where y =
(yuv,ywu,yvw). Such generative modeling is non-trivial
since y is highly dimensional. We leverage diffusion mod-
els for the task, which have shown compelling quality in
complex image modeling.

On a high level, the diffusion model generates y by grad-
ually reversing a Markov forward process. Starting from
y0 ∼ p(y), the forward process q yields a sequence of in-
creasing noisy latent codes {yt | t ∈ [0, T ]} according to
yt := αty0+σtϵ, where ϵ ∈ N (0, I) is the added Gaussian
noise; αt and σt define a noise schedule whose log signal-
to-noise ratio λt = log[α2

t /σ
2
t ] linearly decreases with the

timestep t. With sufficient noising steps, we reach a pure
Gaussian noise, i.e., yT ∼ N (0, I). The generative process
corresponds to reversing the above noising process, where
the diffusion model is trained to denoise yt into y0 for all
t using a mean squared error loss. Following [24], better
generation quality can be achieved by parameterizing the
diffusion model ϵ̂θ to predict the added noise:

Lsimple = Et,x0,ϵ

[∥∥ϵ̂θ(αty0 + σtϵ, t)− ϵ
∥∥2
2

]
. (2)

In practice, our diffusion model training also jointly opti-
mizes the variational lower bound loss LVLB as suggested
in [40], which allows high-quality generation with fewer
timesteps. During inference, stochastic ancestral sam-
pler [24] is used to generate the final samples, which starts
from the Gaussian noise yT and sequentially produces less
noisy samples {yT ,yT−1, . . .} until reaching y0.

We first train a base diffusion model to generate the
coarse-level tri-planes, e.g., at 64 × 64 resolution. A
straightforward approach is to adopt the 2D network struc-

u

v

w

u

v

u

w

w

v

latent z

(a) (b)

Figure 4. We propose two mechanisms to ensure coherent tri-plane
generation. Our 3D-aware convolution considers the 3D relation-
ship in (a) and correlates the associated elements from separate
feature planes as shown in (b). In (b), we also visualize the usage
of a shared latent code to orchestrate the feature generation.

ture used in the state-of-the-art image-based diffusion mod-
els for our tri-plane generation. Specifically, we can con-
catenate the tri-plane features in the channel dimension as
in [9], which forms y = (yuv⊕ywu⊕yvw) ∈ RH×W×3C ,
and employ a well-designed 2D U-Net to model the data
distribution through the denoising diffusion process. How-
ever, such a baseline model produces 3D avatars with severe
artifacts. We conjecture the generation artifact comes from
the incompatibility between the tri-plane representation and
the 2D U-Net. As shown in Figure 4(a), intuitively, one
can regard the tri-plane features as the projection of neural
volume towards the frontal, bottom, and side views, respec-
tively. Hence, the channel-wise concatenation of these or-
thogonal planes for CNN processing is problematic because
these planes are not spatially aligned. To better handle the
tri-plane representation, we make the following efforts.
3D-aware convolution. Using CNN to process channel-
wise concatenated tri-planes will cause the mixing of the-
oretically uncorrected features in terms of 3D. One sim-
ple yet effective way to address this is to spatially roll out
the tri-plane features. As shown in Figure 4(b), we con-
catenate the tri-plane features horizontally, yielding ỹ =
hstack(yuv,ywu,yvw) ∈ RH×3W×C . Such feature roll-
out allows independent processing of feature planes. For
simplicity, we subsequently use y to denote such input form
by default. However, the tri-plane roll-out hampers cross-
plane communication, while the 3D generation requires the
synergy of the tri-plane generation.

To better process the tri-plane features, we need an effi-
cient 3D operator that performs on the tri-plane rather than
treating it as a plain 2D input. To achieve this, we pro-
pose 3D-aware convolution to effectively process the tri-
plane features while respecting their 3D relationship. A
point on a certain feature plane actually corresponds to an
axis-aligned 3D line in the volume, which also has two cor-
responding line projections in other planes, as shown in
Figure 4(a). The features of these corresponding locations
essentially describe the same 3D primitive and should be
learned synchronously. However, such a 3D relationship
is neglected when employing plain 2D convolution to tri-
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plane processing. As such, our 3D-aware convolution ex-
plicitly introduces such 3D inductive bias by attending the
features of each plane to the corresponding row/column of
the rest planes. In this way, we enable 3D processing capa-
bility with 2D CNNs. This 3D-aware convolution applied
on the tri-plane representation, in fact, is a generic way to
simplify 3D convolutions previously too costly to compute
when modeling high-resolution 3D volumes.

The 3D-aware convolution is depicted in Figure 4(b).
Ideally, the compute for yuv would attend to full elements
from the corresponding row/column, i.e., ywu and yvw,
from other planes. For parallel computing, we simplify
this and aggregate the row/column elements. Specifically,
we apply the axis-wise pooling for ywu and yvw, yield-
ing a row vector ywu→u ∈ R1×W×C and a column vec-
tor yvw→v ∈ RH×1×C respectively. For each point of
yuv , we can easily access the corresponding element in the
aggregated vectors. We expand the aggregated vectors to
the original 2D dimension (i.e., replicating the column vec-
tors along row dimension, and vice versa) and thus derive
y(·)u,yv(·) ∈ RH×W×C . By far, we can perform 2D con-
volution on the channel-wise concatenation of the feature
maps, i.e., Conv2D(yuv⊕y(·)u⊕yv(·)). because yuv is now
spatially aligned with the aggregation of the corresponding
elements from other planes. The compute for yvw and ywu

is conducted likewise. The 3D-aware convolution greatly
enhances the cross-plane communication, and we empiri-
cally observe reduced artifacts and improved generation of
thin structures like hair strands.
Latent conditioning. We further propose to learn a latent
vector to orchestrate the tri-plane generation. As shown in
Figure 2, we additionally train an image encoder E to ex-
tract a semantic latent vector serving as the conditional in-
put of the base diffusion model, so essentially the whole
framework is an autoencoder. To be specific, we extract the
latent vector from the frontal view of each training subject,
i.e., z = Eθ(xfront) ∈ R512, and the diffusion model condi-
tioned on z is trained to reconstruct the tri-plane of the same
subject. We use adaptive group normalization (AdaGN) to
modulate the activations of the diffusion model, where z is
injected into every residual block, and in this way, the fea-
tures of the orthogonal planes are synchronously generated
according to a shared latent.

The latent conditioning not only leads to higher gener-
ation quality but also permits a disentangled latent space,
thus allowing semantic editing of generated results. To
achieve better editability, we adopt a frozen CLIP image
encoder [46] that has shared latent space with text prompts.
We will show how the learned model produces controllable
text-guided generation results.

Another notable benefit of latent conditioning is that it
allows classifier-free guidance [25], a technique typically
used to boost the sampling quality in the conditional gener-

ation. When training the diffusion model, we randomly zero
the latent embedding with 20% probability, thus adapting
the diffusion decoder to unconditional generation. During
inference, we can steer the model toward better generation
sampling according to

ϵ̂θ(y, z) = λϵθ(y, z) + (1− λ)ϵθ(y), (3)

where ϵθ(y, z) and ϵθ(y) are the conditional and uncondi-
tional ϵ-predictions respectively, and λ > 0 specifies the
guidance strength.

Our latent conditioned base model thus supports both un-
conditional generation as well as the conditional generation
that is used for portrait inversion. To account for full diver-
sity during unconditional sampling, we additionally train a
diffusion model to model the distribution of the latent z,
whereas the latent yT describes the residual variation. We
include this latent diffusion model in Figure 2.

3.3. Diffusion Tri-plane Upsampler

To generate high-fidelity 3D structures, we further train
a diffusion super-resolution (SR) model to increase the tri-
plane resolution from 64×64 to 256×256. At this stage, the
diffusion upsampler is conditioned on the low-resolution
(LR) tri-plane yLR. Different from the base model training
we parameterize the diffusion upsampler yHR

θ (yHR
t ,yLR, t)

to predict the high-resolution (HR) ground truth yHR
0 instead

of the added noise ϵ. The 3D-aware convolution is utilized
in each residual block to enhance detail synthesis.

Following prior cascaded image generation works, we
apply condition augmentation to reduce the domain gap
between the output from the base model and the LR con-
ditional input for SR training. We conduct careful tun-
ing for the tri-plane augmentation with a combination of
random downsampling, Gaussian blurring and Gaussian
noises, making the rendered augmented LR tri-plane resem-
ble the base rendering output as much as possible.

Nonetheless, we find that a tri-plane restoration with a
lower ℓ2 distance to the ground truth may not necessarily
correspond to a satisfactory image rendering. Hence, we
need to directly constrain the rendered image. Specifically,
we obtain the rendered image ˆxHR ∈ R256×256×3 from the
predicted tri-plane ŷHR

0 with x̂ = R(GMLP
θ (ŷHR

0 )), and we
further penalize the perceptual loss [27] between this ren-
dered result and the ground truth, according to

Lperc = Et,x̂

∑
l

∥Ψl(x̂)−Ψl(x)∥22, (4)

where Ψl denotes the multi-level feature extraction using
a pretrained VGG. Usually, the volume rendering requires
stratified sampling along each ray, which is computationally
prohibitive for high-resolution rendering. Hence, we com-
pute Lperc on random 112 × 112 image patches with high
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Figure 5. Unconditional generation samples by our RODIN model. We visualize the mesh extracted from the generated density field.

Figure 6. Latent interpolation results for generated avatars.

sampling importance on face region. Compared with prior
3D-aware GANs that require rendering full images, our 3D-
aware SR can be easily scalable to high resolutions due to
the permit of patchwise training with direct supervision.

Modeling high-frequency detail and thin structures are
particularly challenging in volumetric rendering. Thus, at
this stage, we jointly train a convolution refiner [67] on our
data which complements the missing details of the NeRF
rendering, ultimately producing compelling 1024 × 1024
image outputs.

4. Experiments

4.1. Implementation Details

To train our 3D diffusion, we obtain 100K 3D avatars
with a random combination of identities, expressions,
hairstyles, and accessories using synthetic engine [69]. For
each avatar, we render 300 multi-view images with known
camera pose, which are sufficient for a high-quality radi-
ance field reconstruction. The tri-planes for our generation
have the dimension of 256×256×32 in each feature plane.
We optimize a shared MLP decoder when fitting the first
1,000 subjects. This decoder consists of 4 fully connected
layers and is fixed when fitting the following subjects. Thus
different subjects are fitted separately in distributed servers.

Pi-GAN GIRAFFE EG3D Autoencoder Ours

FID ↓ 78.3 64.6 40.5 67.4 26.1

Table 1. Quantitative comparison with baseline methods.

Model configuration FID↓

A. Baseline 39.2
B. + Latent conditioning 37.4
C. + Tri-plane roll-out 28.4
D. + 3D-aware conv 26.1

Table 2. Ablation study of the proposed components.

Both the base and upsampling diffusion networks adopt
U-Net architecture to process the roll-out tri-plane features.
We apply full-attention for 82, 162 and 322 scales within the
network and adopt 3D-aware convolution at higher scales to
enhance the details. While we generate 2562 tri-planes with
the diffusion upsampler, we also render image and compute
image loss at 5122 resolution, with a convolutional refine-
ment further enhancing the details to 10242. For more de-
tails about the network architecture and training strategies,
please refer to our Appendix.

4.2. Unconditional Generation Results

Figure 5 shows several samples generated by the RODIN
model, showing the capability to synthesize high-quality
3D renderings with impressive details, e.g., glasses and
hairstyle. To reflect the geometry, we extract the mesh from
the generated density field using marching cubes, which
demonstrates high-fidelity geometry. More uncurated sam-
ples are shown in the Appendix. We also explore the in-
terpolation of the latent condition z between two generated
avatars, as shown in Figure 6, where we observe consistent
high-quality interpolation results with smooth appearance
transition.
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Pi-GAN [10] GIRAFFE [41] EG3D [9] Our RODIN model

Figure 7. Qualitative comparison with state-of-the-art approaches.

4.3. Comparison

We compare our method with state-of-the-art 3D-
aware GANs, e.g., Pi-GAN [10] and GIRAFFE [41] and
EG3D [9], which learn to produce neural radiance field
from 2D image supervision. Moreover, we implement an
auto-encoder baseline, which leverages the multi-view su-
pervision and reconstructs the radiance field from the la-
tent. We differ in this baseline by using the power diffusion-
based decoder with 3D-aware designs. We adapt the offi-
cial implementation of prior works to 360-degree genera-
tion and retrain them using the same dataset.

We use FID score [22] to measure the quality of im-
age renderings. As per [30], we use the features extracted
from the CLIP model to compute FID, which we find better
correlates the perceptual quality. Specifically, we compute
the FID score using 5K generated samples. The quantita-
tive comparison is shown in Table 1, where we see that the
RODIN model induces significantly lower FID than others.

The visual comparison in Figure 7 shows a clear qual-
ity superiority of our RODIN model over prior arts. Our
method gives visually pleasing multi-view renderings with
high-quality geometry, e.g., for glasses and hair, whereas
3D-aware GANs produce more artifacts due to the geometry
ambiguity caused by the simple use of image supervision.

4.4. Analysis of the RODIN model

Both 3D-aware convolution and latent conditioning are
crucial for 3D synthesis. To prove this, we conduct the
ablation study as shown in Table 2. We start from a base-
line that uses a plain 2D CNN to process channel-wise con-
catenated tri-plane features following [9]. With latent con-

Base diffusion Diffusion upsampler Convolutional refiner

Figure 8. Hierarchical generation progressively improves results.

ditioning, we achieve a lower FID. Feeding the network
with roll-out tri-plane features significantly reduces the FID
score because tri-planes are no longer improperly mingled.
The proposed 3D-aware convolution further improves the
synthesis quality, especially for thin structures like hair and
cloth texture. More visual results regarding these ablations
can be found in the Appendix.
Hierarchical generation is critical for high-fidelity re-
sults. One significant benefit of this approach is that we
can train different diffusion models dedicated to different
scales in a supervised manner, as opposed to end-to-end
synthesis with image loss. This also enables patch-wise
training without the need to render full images. Thus hi-
erarchical training allows high-resolution avatar generation
without suffering the prohibitive memory issue. Figure 8
shows the progressive quality improvement after the base
diffusion, diffusion upsampler, and convolution refinement,
respectively. It can be seen that the diffusion upsampler is
critical, largely enhancing the synthesis quality, while con-
volution refinement further adds delicate details.
Diffusion upsampling training strategies. When training
the tri-plane upsampler, we parameterize the model to pre-
dict the clean tri-plane ground truth at each diffusion re-
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“Smiling young woman in glasses”

“A woman with afro hair in red wearing”
(a) (b)

Figure 9. Results of (a) portrait inversion and (b) text-to-avatar generation.

Tri-plane level loss Image-level loss Cond. augment FID ↓

✓ 48.5
✓ ✓ 38.6
✓ ✓ ✓ 26.1

Table 3. Ablation study of the tri-plane upsampling strategy.

version step. Meanwhile, conditioning augmentation is of
great significance to let the model generalize to the coarse-
level tri-plane generated from the base model. Besides, we
observe enforcing image-level loss is beneficial to final per-
ceptual quality. The effectiveness of these strategies are
quantitatively justified in Table 3.

4.5. Applications

3D portrait from a single image. We can hallucinate a 3D
avatar from a single portrait by conditioning the base gener-
ator with the CLIP image embedding for that input image.
Note that our goal is different from face/head reconstruc-
tion [13, 49], but to conveniently produce a personalized
digital avatar for users. As shown in Figure 9(a), the gen-
erated avatars keep the main characteristics of the portrait,
e.g., expression, hairstyle, glass wearing, etc., while being
360-degree renderable.
Text-to-avatar generation. Another natural way to cus-
tomize avatars is to use language guidance. To do this,
we train a text-conditioned diffusion model to generate the
CLIP image embedding used to semantically control the
avatar generation. We use a subset of the LAION-400M
dataset [53] containing portrait-text pairs to train this model.
As shown in Figure 9(b), one can finely customize the
avatars using detailed text descriptions.
Text-based avatar customization. We can also semanti-
cally edit generated avatars using text prompts. For a gen-
erated avatar with the CLIP image embedding zi, we can
obtain a direction δ in the CLIP’s text embedding based on
prompt engineering [44]. We assume colinearity between
the CLIP’s image and text embedding, thus we obtain the
manipulated embedding as zi + δ, which is used to con-

Input Reconstructed avatar with visualized mesh

“Blond hair” “Smiling” “With sunglasses” “Short hair”

Figure 10. Results of text-guided avatar manipulation.

dition the generative process. As shown in Figure 10, we
can achieve a wide variety of disentangled and meaningful
control faithful to the text prompt.

5. Discussion and Conclusion

We have presented the RODIN model, a powerful gen-
erative model for 3D avatars. Like all generative models,
the RODIN model can exhibit biases that are inherited from
the data it has been trained on. Some of these biases will
be harmful and lead to an unfair representation for the tar-
get application. We need to pay attention to the data that
are fed into RODIN and gain a better understanding of the
resulting biases.

This model also allows users to customize avatars from
a portrait or text, thus significantly lowering the barrier of
personalized avatar creation. While this paper only focuses
on avatars, the main ideas behind the RODIN model are ap-
plicable to the diffusion model for general 3D scenes. For
future work, it would be fruitful to improve the sampling
speed of the 3D diffusion model and study jointly leverag-
ing the ample 2D data to mitigate the 3D data bottleneck.
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