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A zoomed out high-quality photo of Temple of Heaven A high quality photo of a delicious burger

A high quality photo of a Victorian style wooden chair
with velvet upholstery A high quality photo of a classic silver muscle car

Figure 1. Results for text-driven 3D generation using Score Jacobian Chaining with Stable Diffusion as the pretrained model.

Abstract

A diffusion model learns to predict a vector field of gradi-
ents. We propose to apply chain rule on the learned gradients,
and back-propagate the score of a diffusion model through
the Jacobian of a differentiable renderer, which we instan-
tiate to be a voxel radiance field. This setup aggregates 2D
scores at multiple camera viewpoints into a 3D score, and re-
purposes a pretrained 2D model for 3D data generation. We
identify a technical challenge of distribution mismatch that
arises in this application, and propose a novel estimation
mechanism to resolve it. We run our algorithm on several off-
the-shelf diffusion image generative models, including the
recently released Stable Diffusion trained on the large-scale
LAION 5B dataset.

1. Introduction
We introduce a method that converts a pretrained 2D

diffusion generative model on images into a 3D generative
model of radiance fields, without requiring access to any
3D data. The key insight is to interpret diffusion models as

* Equal contribution.

learned predictors of a gradient field, often referred to as the
score function of the data log-likelihood. We apply the chain
rule on the estimated score, hence the name Score Jacobian
Chaining (SJC).

Following Hyvärinen [16], the score is defined as the
gradient of the log-density function with respect to the data
(rather than parameter). Diffusion models of various fam-
ilies [13, 49, 50, 52] can all be interpreted [20, 23, 52] as
modeling ∇x log pσ(x) i.e. the denoising score at noise
level σ. For readability, we refer to the denoising score as the
score. Generating a sample from a diffusion model involves
repeated evaluations of the score function from large to small
σ level, so that a sample x gradually moves closer to the data
manifold. It can be loosely interpreted as gradient descent,
with precise control on the step sizes so that data distribution
evolves to match the annealed σ level (ancestral sampler [13],
SDE and probability-flow ODE [52], etc.). While there are
other perspectives to a diffusion model [13, 49], here we
are primarily motivated from the viewpoint that diffusion
models produce a gradient field.

A natural question to ask is whether the chain rule can be
applied to the learned gradients. Consider a diffusion model
on images. An image x may be parameterized by some
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function f with parameters θ, i.e., x = f(θ). Applying the
chain rule through the Jacobian ∂x

∂θ converts a gradient on
image x into a gradient on the parameter θ. There are many
potential use cases for pairing a pretrained diffusion model
with different choices of f . In this work we are interested
in exploring the connection between 3D and multiview 2D
by choosing f to be a differentiable renderer, thus creating a
3D generative model using only pretrained 2D resources.

Many prior works [2, 58, 60] perform 3D generative mod-
eling by training on 3D datasets [5, 24, 54, 59]. This ap-
proach is often as challenging as it is format-ambiguous. In
addition to the high data acquisition cost of 3D assets [9],
there is no universal data format: point clouds, meshes, volu-
metric radiance field, etc, all have computational trade-offs.
What is common to these 3D assets is that they can be ren-
dered into 2D images. An inverse rendering system, or a
differentiable renderer [25, 27, 30, 34, 39], provides access
to the Jacobian Jπ ≜ ∂xπ

∂θ of a rendered image xπ at camera
viewpoint π with respect to the underlying 3D parameteriza-
tion θ. Our method uses differentiable rendering to aggregate
2D image gradients over multiple viewpoints into a 3D asset
gradient, and lifts a generative model from 2D to 3D. We
parameterize a 3D asset θ as a radiance field stored on voxels
and choose f to be the volume rendering function.

A key technical challenge is that computing the 2D score
by directly evaluating a diffusion model on a rendered image
xπ leads to an out-of-distribution (OOD) problem. Gener-
ally, diffusion models are trained as denoisers and have only
seen noisy inputs during training. On the other hand, our
method requires evaluating the denoiser on non-noisy ren-
dered images from a 3D asset during optimization, and it
leads to the OOD problem. To address the issue, we propose
Perturb-and-Average Scoring, an approach to estimate the
score for non-noisy images.

Empirically, we first validate the effectiveness of Perturb-
and-Average Scoring at solving the OOD problem and ex-
plore the hyperparameter choices on a simple 2D image can-
vas. Here we identify open problems on using unconditioned
diffusion models trained on FFHQ and LSUN Bedroom.
Next, we use Stable Diffusion, a model pretrained on the
web-scale LAION dataset to perform SJC for 3D generation,
as shown in Fig. 1. Our contributions are as follows:

• We propose a method for lifting a 2D diffusion model
to 3D via an application of the chain rule.

• We illustrate the challenge of OOD when using a
pretrained denoiser and propose Perturb-and-Average
Scoring to resolve it.

• We point out the subtleties and open problems on ap-
plying Perturb-and-Average Scoring as gradient for
optimization.

• We demonstrate the effectiveness of SJC for the task of
3D text-driven generation.

2. Related Works

Diffusion models have recently advanced to image gener-
ation on Internet-scale datasets [10, 36, 42, 44–47]. A dif-
fusion model could be interpreted as either a VAE [13, 49]
or a denoising score-matcher [50, 52, 56]. Notably, models
trained under one regime can be directly used for inference
and sampling by the other [20, 52]; they are in practice
largely equivalent.
Neural radiance fields (NeRF) is a family of inverse ren-
dering algorithms that have excelled at multiview 3D recon-
struction tasks including view synthesis and surface geome-
try estimation [31, 34, 40, 57, 61]. Conceptually, a 3D asset
is represented as a dense grid of RGB colors and spatial
density τ , and rendered into images in a way analogous to
alpha compositing [32]. NeRF parameterizes the (RGB, τ)
volume with a neural network, but querying the network
densely in 3D incurs significant compute costs. Alterna-
tively, Voxel NeRFs [6, 11, 19, 28, 53] store the volume on
voxels and observe no loss in end task performance [11, 53].
Querying voxels is a simple memory operation that is much
faster than a feedforward pass of a neural network. Here we
use a customized voxel radiance field with hyperparameters
based on DvGO [53] and TensoRF [6].

2D-supervised 3D GANs pioneered [35, 43, 63] the ap-
proach of training 3D generative models using only unstruc-
tured 2D images, and promise greater scalability in terms
of data. Rather than supervising directly on the 3D asset a
model generates, these methods supervise the 2D render-
ings of the generated 3D asset, often using an adversarial
loss [3, 4, 38, 48, 64]. In other words, only images are needed
as training data. However, training such a 3D generative
model from scratch is still challenging [37]. Recent empiri-
cal evaluation remains mostly on human and animal faces [3].
Our method does the opposite: we take an image generative
model that is already pretrained on large amounts of 2D
data and use it to guide the iterative optimization of a 3D
asset. Optimization-based generation makes it much slower
compared to 3D GANs, but it becomes possible to harness
powerful off-the-shelf 2D generative models such as Stable
Diffusion [45] for greater content diversity.

CLIP-guided, optimization-based 3D generative models
share a similar philosophy of optimizing 3D assets by guid-
ing on 2D renderings [15, 17, 18, 22, 26, 33]. Among them,
DreamFields [17] and PureClipNeRF [26] also use NeRF as
their differentiable renderers. In this case, the 2D guidance
comes from CLIP [42], a pretrained image-text matching
model. These works optimize the 3D assets so that the image
renderings match a user-provided text prompt. Since CLIP is
not a 2D generative model per se, such a pipeline usually cre-
ates some abstract content [29] that looks very different from
real images. In contrast, we use diffusion models, which are
proper 2D generative models, to create realistic looking 3D
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content.

DreamFusion. The recently arXived work by Poole et al.
[41], independent and concurrent to our work, proposes an
algorithm that is similar to our approach at the pseudo-code
level. Differently, their procedure uses the mathematical
setup by Graikos et al. [12] to search for image parametriza-
tion that minimizes the training loss of a diffusion model. In
contrast, our work is motivated by applying the chain rule
to the 2D score. The key differences have been summarized
in Sec. 4.3. In terms of implementation, we do not have
access to the close-sourced Imagen [46] diffusion model. In-
stead, we use the pretrained Stable Diffusion model released
by Rombach et al. [45]. For a comparison with DreamFusion,
we use with a third-party implementation based on the same
diffusion model, namely Stable-DreamFusion [55].

3. Preliminaries
To establish a common notation, we briefly review the

score-based perspective of diffusion models. For readers
familiar with VAE literature on diffusion models, we pro-
vide a concise score-based formula card and more details in
Appendix Sec. ?? to connect these ideas.

Denoising score matching. Given a dataset of samples Y =
{yi} drawn from pdata, a diffusion model revolves primarily
around learning a denoiser D by minimizing the difference
between a noised sample y + σn and y,

Ey∼pdataEn∼N (0,I)∥D(y + σn;σ)− y∥22, (1)

i.e. D is denoising the input y+ σn, for a range of σ values.
For 2D images, D is commonly chosen to be a ConvNet.
Variants such as DDPM [13] parameterized the ConvNet to
instead predict a noise residual ϵ̂, and these models can be
converted back to the form of a denoiser by [52]

D(x;σ) = x− σϵ̂(x). (2)

In this paper, we treat all pretrained diffusion models as
denoisers, and perform the interface conversion in our im-
plementation when needed.

Score from denoiser. Let pσ(x) denote the data distribution
perturbed by Gaussian noise of standard deviation σ. It is
shown in prior works [16, 50] that the denoiser D trained
according to Eq. (1) provides a good approximation to the
denoising score:

∇x log pσ(x) ≈
D(x;σ)− x

σ2
. (3)

A denoising diffusion model estimates the score function of
the noised distribution pσ(x) at various σ ∈ {σi}Ti=1. To
perform sampling, the diffusion model gradually updates a
sample through a sequence of noise levels of σT > · · · >

σ0 = 0. {σi} are chosen empirically, with a typical range
being [0.01, 157] [13] in the case of DDPM.
Score as mean-shift. A helpful intuition is that the score
behaves like mean-shift [7, 8]. If we simplify pdata to be
an empirical data distribution over the i.i.d. samples {yi},
then at noise level σ, pσ(x) takes the form of a mixture of
Gaussians [51]

pσ(x) = Ey∼pdata N (x; y, σ2I). (4)

In this case there exists a closed-form expression [20, 51] to
the optimal denoiser

D(x;σ) =

∑
i N (x; yi, σ

2I)yi∑
i N (x; yi, σ2I)

. (5)

In other words, D(x; σ) is a locally weighted mean of data
samples {yi} around x under a Gaussian kernel with band-
width σ. The denoising score function can be thought of as a
non-parametric guide on how to update x in order to move
it towards its weighted nearest neighbors.

4. Score Jacobian Chaining for 3D Generation
Let θ denotes the parameters of a 3D asset, e.g., voxel

grid of (RGB, τ) as in Sec. 4.2. Our goal is to model and
sample from the distribution p(θ) to generate a 3D scene. In
our setting, only a pretrained 2D diffusion model on images
p(x) is given and we do not have access to 3D data. To relate
the 2D and 3D distributions p(x) and p(θ), we assume that
the probability density of 3D asset θ is proportional to the
expected probability densities of its multiview 2D image
renderings xπ over camera poses π, i.e.,

pσ(θ) ∝ Eπ

[
pσ(xπ(θ))

]
, (6)

up to a normalization constant Z =
∫
Eπ

[
pσ(xπ(θ))

]
dθ.

That is, a 3D asset θ is as likely as its 2D renderings xπ .
Next, we establish a lower bound, log p̃σ(θ), on the dis-

tribution in Eq. (6) using Jensen’s inequality:

log pσ(θ) = log
[
Eπ(pσ(xπ))

]
− logZ (7)

≥ Eπ[log pσ(xπ)]− logZ ≜ log p̃σ(θ). (8)

Recall that the score is the gradient of log probability density
of data. By chain rule

∇θ log p̃σ(θ) = Eπ [∇θ log pσ(xπ)] (9)

∂ log p̃σ(θ)

∂θ
= Eπ

[
∂ log pσ(xπ)

∂xπ
· ∂xπ

∂θ

]
(10)

∇θ log p̃σ(θ)︸ ︷︷ ︸
3D score

= Eπ[ ∇xπ
log pσ(xπ)︸ ︷︷ ︸

2D score; pretrained

· Jπ︸︷︷︸
renderer Jacobian

].

(11)

We will next discuss how to compute the 2D score in practice
using a pretrained diffusion model.
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Input xblob D(xblob, σ) D(xblob + σn, σ)

Figure 2. Illustration of denoiser’s OOD issue using a denoiser pre-
trained on FFHQ. When directly evaluating D(xblob, σ) the model
did not correct for the orange blob into a face image. Contrarily,
evaluating the denoiser on noised input D(xblob +σn, σ) produces
an image that successfully merges the blob with the face manifold.

4.1. Computing 2D Score on Non-Noisy Images

Computing the 3D score in Eq. (11) requires the 2D score
on xπ. A first attempt would be to directly apply the score
from the denoiser in Eq. (3), i.e.,

score(xπ, σ) ≜ (D(xπ;σ)− xπ)/σ
2. (12)

Unfortunately, evaluating the pretrained denoiser D on xπ

causes an out-of-distribution (OOD) problem. From the train-
ing objective in Eq. (1), at each noise level σ, the denoiser D
has only seen noisy inputs of the distribution y + σn where
y ∼ pdata and n ∼ N (0, I). However, a rendered image
xπ from 3D asset θ is generally not consistent with such
distribution.

We illustrate this OOD situation in Fig. 2. Given a de-
noiser pretrained on FFHQ [21] by Baranchuk et al. [1], we
visualize the output D(xblob;σ = 6.5) where the input xblob
is a non-noisy image showing an orange blob centered on a
grey canvas. Under the intuition that D predicts a weighted
nearest neighbor as reviewed in (5), we expect the denoiser
to blend the orange blob with the manifold of faces. How-
ever in reality we observe sharp artifacts when updating with
this score (D(xblob;σ)− xblob)/σ

2 and the image becomes
further away from the face manifold.
Perturb-and-Average Scoring. To address the OOD prob-
lem, we propose Perturb-and-Average Scoring (PAAS). It
computes the score on non-noisy images xπ with a denoiser
D by adding noise to the input, and then considering the
expectation of the predicted scores w.r.t. the random noise,

PAAS(xπ,
√
2σ) (13)

≜En∼N (0, I) [score(xπ + σn, σ)] (14)

=En

[
D(xπ + σn, σ)− (xπ + σn)

σ2

]
(15)

=En

[
D(xπ + σn, σ)− xπ

σ2

]
Z

Z
Z

ZZ

−En

[n
σ

]
︸ ︷︷ ︸

=0

. (16)

In practice, we use the Monte Carlo estimate of the expecta-
tion in Eq. (16). The algorithm is illustrated in Fig. 3. Given

pσ(x)

xπ + σni; ni ∼ N (0, I)
xπ

D(xπ + σn1;σ)

σn1

σn2
σn3

Input to denoiser D

Noised
Distribution

Figure 3. Computing PAAS on 2D renderings xπ . Directly evaluat-
ing D(xπ;σ) leads to an OOD problem. Instead, we add noise to
xπ , and evaluate D(xπ + σn;σ) (blue dots). The PAAS is then
computed by averaging over the brown dashed arrows, correspond-
ing to multiple samples of n. See Sec. 4.1 for details.

a set of sampled noises {ni}, each D(xπ + σni) provides
an update direction on the perturbed input xπ + σni. By
averaging over the noise perturbations {ni}, we obtain an
update direction on xπ itself.
Justifying PAAS in Eq. (13). We show that Perturb-and-
Average Scoring provides an approximation to the score on
xπ at an inflated noise level of

√
2σ

PAAS(xπ,
√
2σ) ≈ ∇xπ log p√2σ(xπ). (17)

Lemma 1 Assuming an empirical data distribution
pσ(x) in Eq. (4), for any x ∈ Rd

log p√2σ(x) ≥ En∼N (0, I) log pσ(x+ σn). (18)

Proof. Observe that the LHS of Eq. (19) is a convolution of
two Gaussians, therefore

En∼N (0, I) [N (x+ σn; µ, σ2I)] = N (x; µ, 2σ2I) (19)

Recall that pσ(x) is a mixture of Gaussians per Eq. (4);

p√2σ(x) = Ey∼pdata N (x; y, 2σ2I) (20)

= Ey∼pdata En∼N (0, I) N (x+ σn; y, σ2I) (21)

= En∼N (0, I) Ey∼pdata N (x+ σn; y, σ2I) (22)
= En∼N (0, I) pσ(x+ σn). (23)

Taking the log on both sides of Eq. (23) and by Jensen’s
inequality, we arrive at Eq. (18). □

Claim 1 Assuming a trained denoiser D as in Eq. (3),
our PAAS(xπ,

√
2σ) in Eq. (13) computes the gradient

w.r.t. a lower bound of log p√2σ(x).

Proof. By taking the gradient of the RHS of Lemma 1,

∇x En log pσ(x+ σn) = En∇x+σn log pσ(x+ σn)

= En[score(xπ + σn, σ)]. (24)

which is the proposed PAAS algorithm in Eq. (13). □
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4.2. Inverse Rendering on Voxel Radiance Field

With the computation of the 2D score resolved, the other
half of our setup in Eq. (11) requires access to the Jacobian
of a differentiable renderer.
3D Representation. We represent a 3D asset θ as a voxel
radiance field [6, 11, 53], which is much faster to access
and update compared to a vanilla NeRF parameterized by a
neural network [34]. The parameters θ consist of a density
voxel grid V(density) ∈ R1×Nx×Ny×Nz and a voxel grid of
appearance features V(app) ∈ Rc×Nx×Ny×Nz . Convention-
ally the appearance features are simply the RGB colors and
c = 3. For simplicity, we do not model view dependencies
in this work.
Inverse Volumetric Rendering. Image rendering is per-
formed independently along a camera ray through each pixel.
We cut a camera light ray into equally distanced segments
of length d, and at the spatial location corresponding to the
beginning of the i-th segment we sample a (RGBi, τi) tuple
from the color and density grids using trilinear interpolation.
These values are alpha-composited using volume rendering
quadrature [32] into the pixel color C =

∑
i wi · RGBi,

where

wi = αi ·
i−1∏
j=0

(1− αj); αi = 1− exp(−τid). (25)

Volume rendering of θ is directly differentiable. At a ren-
dered image xπ, the Vector-Jacobian product in Eq. (11)
between PAAS(xπ) and the Jacobian Jπ = ∂xπ

∂θ is com-
puted by back-propagating the score through Eq. (25). This
Vector-Jacobian product provides us with the 3D gradient
needed for generative modeling on the voxel radiance field.
Regularization Strategies. The voxel grid is a very powerful
3D representation for volumetric rendering. Given noisy 2D
guidance, the model may cheat by populating the entire grid
with small densities such that the combined effect from one
view hallucinates a plausible image. We propose several
techniques to encourage the formation of a coherent 3D
structure.
Emptiness Loss: Ideally, the space should be sparse with near
zero densities except at the object. We propose an emptiness
loss to encourage sparsity on a ray r:

Lemptiness(r) =
1

n

n∑
i=1

log(1 + β · wi), (26)

where wi are the alpha-composited weights shown in (25).
The shape of the log function imposes severe penalties at the
onset of small weights, but does not grow aggressively if the
weights are large. It is consistent with our aim to eliminate
small densities. The hyperparameter β controls the steepness
of the loss function near 0. A larger β will put more emphasis
on eliminating low-density noise. We set β = 10.
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Figure 4. Sampling 2D images with Perturb-and-Average Scoring.
We compare Annealed vs Random σ schedule against several dif-
fusion models. Row 1 & 2: the random σ schedule exhibits strong
mode-seeking behavior, and it results in low-quality “mean” images
on unconditioned diffusion models trained on FFHQ and LSUN
Bedroom. In this case, we need a carefully designed annealed σ
schedule to produce better, more diverse samples. Row 3 & 4: Sta-
ble Diffusion (SD) is conditioned on the prompt “a squirrel holding
a saxophone”. The use of natural language makes the conditioned
distribution much easier to sample from. When the guidance scale
is elevated to 10, Random σ schedule that fails on FFHQ and LSUN
starts to produce crisp, clean images.

Emptiness Loss Schedule: We use a hyperparameter λ to
control the contribution of the emptiness loss. If we apply a
large emptiness loss, it will hinder the learning of geometry
in the early stage of training. But if the emptiness is too
small, there will be floating density artifacts. We adopt a two-
stage noise elimination schedule to deal with this problem.
In the first K iterations, we use a relatively small weighting
factor λ1. After the K th iteration, it is increased to a larger
λ2. In our experiments λ1 = 1× 104 and λ2 = 2× 105. We
provide an ablation study of this technique in Fig. 7 to show
its effectiveness.

Center Depth Loss: Sometimes the optimization places the
object away from the scene center. The object either becomes
small or wander around the image boundary. For the few
cases when this happens we apply a center depth loss

Lcenter(D) = − log

 1

|B|
∑
p∈B

D(p)− 1

|B∁|
∑
q/∈B

D(q)


(27)
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A DSLR photo of a yellow duck A ficus planted in a pot

A zoomed out photo a small castle A high quality photo of a toy motorcycle

A zoomed out high quality photo of Sydney Opera House A photo of a horse walking

Figure 5. Qualitative results of text-prompted generation of 3D models with SJC, purely from the pretrained Stable Diffusion (2D) image
model. Each row shows two views, with associated depth maps (blue is far, red is near), for a single 3D model generated for a given prompt.
Note the detailed appearance as well as a sharp, well-defined depth structure.

where D is the depth image, B is a box (set of pixel locations)
at the center of the image, and B∁ is its complement.

4.3. SJC vs. DreamFusion

In this section, we describe the differences and the con-
nections between our SJC and DreamFusion.
Differences from DreamFusion. In terms of formulation,
DreamFusion’s computation of the gradient w.r.t. θ involves
a U-Net Jacobian term (see Eq. 2 in their paper [41]). In
practice, they “found that omitting the U-Net Jacobian term”
to be more effective. On the other hand, this U-Net Jacobian
term does not appear in our formulation. Their additional
justification in the appendix actually leans more towards our
viewpoint. An additional contribution of ours beyond Dream-
Fusion [41] is our analysis of the effect that the OOD prob-
lem has when using a denoiser on rendered images (Claim 1),
and the PAAS method to address it. For the variance reduc-
tion technique, namely the use of the Monte-Carlo estimate
on Eq. (16), or ϵ̂− ϵ (in DreamFusion), vs. on Eq. (15), we
observe comparable performance between the two methods
empirically for 3D generation.
Influences by DreamFusion. At the time of this submission,
DreamFusion is a concurrent arXiv paper. However, as we
have read the paper, our research was influenced by their
reported observations. In particular, we adopted the idea
of randomized scheduling of σ during 3D optimization for
easier hyperparameter tuning, and used view-augmented
language prompting that improves the overall 3D quality. For
future work we do hope to explore a more general solution
than view-dependent prompts.

5. Experiments

We conduct experiments on both unconditioned and con-
ditioned diffusion models to have a more comprehensive
understanding of the properties of SJC.

DDPMs trained on FFHQ and LSUN Bedroom are un-
conditioned diffusion models with an architecture based on
the implementation by Dhariwal and Nichol [10]. They are
trained on an image resolution of 256× 256. FFHQ [21] is a
dataset of aligned faces with diverse coverage of gender, age,
race, facial appearance as well as head poses. LSUN Bed-
room [62] includes bedroom images with varied furniture
layout plans and rich interior design styles.

Stable Diffusion is an expanded work based on Latent Dif-
fusion Model (LDM) developed by Rombach et al. [45]. It
is trained on the LAION5B dataset [47]. We use the release
version v1.5. Diffusion is performed on a latent space of
4× 64× 64, then upsampled to 3× 256× 256 by a decoder.
The model is natively trained for text-conditioned image
generations, and exposes a guidance scale parameter that
controls the strength of language conditioning [14]. Intu-
itively a larger guidance scale makes the conditioned image
distribution more faithful to the text prompt by trading off
sample diversity.

5.1. Validating PAAS on 2D images.

Before directly jumping to 3D generation, we first verify
that PAAS provides effective guidance on a simple 2D image
canvas. In other words, here θ is a grid of RGB values and
f is an identity function. The hope is that gradient descent
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Figure 6. Qualitative comparison between Stable-DreamFusion (StableDF) and Ours. The prompts are: (a) “A high quality photo of a
delicious burger"; (b) “a DSLR photo of a yellow duck"; (c) “A ficus planted in a pot"; (d) “A product photo of a toy tank"; (e) “A high
quality photo of a chocolate icecream cone"; (f)“A wide angle zoomed out photo of a giraffe". Both methods are run for 10k iterations
without per-prompt finetuning on the hyperparameters. The images on the left are rendered RGB images and the images on the right are
depth visualization.

on the vector field produced by PAAS creates high quality
images. Here an important decision to make is the schedule
of {σi} at which we compute PAAS.

We experimented with an annealed schedule (Annealed
σ) vs. a random schedule (Random σ) as proposed in Dream-
Fusion. Under the Annealed σ schedule, we start from a
large σ and gradually decrease it as we update the image can-
vas x. PAAS computed at larger σ level attends to high level
image structure while smaller σ provides stronger guidance
on detailed features. The Random σ schedule on the contrary
uniformly samples a σ at every step. We show qualitative
comparisons in Fig. 4.

For unconditioned diffusion models trained on FFHQ,
we observe that Annealed σ performs better than Random
σ, and the image samples have better pose variation and
quality. Particularly, the randomized σ exhibits severe mode-
seeking behavior converging to average faces. In the case
of LSUN Bedroom, the mode-seeking behavior results in a

blurry image canvas with no content.
On the other hand, natural language prompting plays a

critical role when sampling images with Stable Diffusion.
When the language guidance is set to a regular level of 3.0,
the observations are broadly consistent with sampling on
FFHQ and LSUN. Random σ schedule produces blurry out-
puts. However, when the guidance scale is elevated to 10.0,
Random σ schedule begins to generate crisp, clean images
and outperforms Annealed σ schedule. Despite various so-
phisticated strategies on Annealed σ scheduling (see our
code for details), at a high language guidance scale Ran-
domized σ remains the better option. We hypothesize that
stronger language guidance forces the image distribution to
be narrower and more beneficial for a mode-seeking algo-
rithm. We acknowledge none of the images in Fig. 4 can
match the sample quality of a standard diffusion inference
pipeline, and the right way to apply PAAS as gradient for
optimization remains an open problem.
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A zoomed out high quality photo of Temple of Heaven.

a DSLR photo of a rose

A modern house with flat roof floating on water.

No emptiness loss (λ = 0) λ = 1e4 λ = 2e5 Ours

Figure 7. Ablation experiments on the proposed emptiness loss schedule. For each setting of the loss weight λ, we show a rendered image
and the associated depth map from a randomly sampled viewpoint. Ours incorporates the loss with weight schedule described in 5.2. It leads
to better 3D shape, as evidenced in the cleaner depth maps. Setting the loss weight too low yields "cloudy" depth fields. When setting the
weight too high, SJC fails to produce meaningful 3D models.

5.2. 3D Generation

In this paper, we focus on 3D Generation with the
language-conditioned Stable Diffusion model. We found
that tuning the Annealed σ schedule on FFHQ and LSUN
Bedroom in 3D domain is difficult in practice, and leave it
as future work. Based on the insights from 2D experiments
earlier, we use Random σ schedule coupled with a high
language guidance scale.

Rendering with Latent 3D Features. Stable Diffusion
economizes compute by performing diffusion modeling on
the latent features of a pretrained AutoEncoder. We there-
fore choose to render a feature image in this latent space
from a features field [3, 38] represented by a voxel grid in
R4×Nx×Ny×Nz .

Qualitative Comparison. In Fig. 5, we show text-prompted
3D generation results from SJC, and compare SJC with
Stable-DreamFusion, a third-party implementation based on
the same pretrained Stable Diffusion v1.5 model. In Fig. 6,
we show qualitative comparisons of generated 3D assets
given the same prompt. We observe that SJC generates 3D
models with better image quality and more sensible structure
than Stable-DreamFusion in a significant number of cases.
We note that both systems exhibit quality fluctutations over
different trials, and the point of this comparison is to show
that our overall pipeline is competitive.

Ablations. In Fig. 7, we conduct ablations to demonstrate
the importance of the proposed emptiness loss and schedul-
ing of its weight λ discussed in Sec. 4.2. We show results
without the emptiness loss, with constant weight λ vs our
proposed scheduling of λ. We observe that our complete
method (Ours) improves the quality of generated 3D mod-
els, e.g., fewer floating artifacts and better geometry.

6. Conclusion
We propose an optimization-based approach to generate

3D assets from pretrained image (2D) diffusion models. The
key technical contribution is the derivation of Perturb-and-
Average Scoring method which bridges the gap between the
denoising-trained diffusion models and the non-noisy images
encountered in the process of optimizing a 3D model guided
by the diffusion. Working with the large-scale Stable Diffu-
sion model, we demonstrate that our approach can generate
compelling 3D models, comparing favorably to available
concurrent work. Finally, we investigate an interesting dis-
tinction between the effect of noise scheduling regime in
unconditional image diffusion models and a text-conditional
model, and identify an avenue for future work.
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