
Inferring and Leveraging Parts from Object Shape for
Improving Semantic Image Synthesis

Yuxiang Wei1,2 Zhilong Ji3 Xiaohe Wu1(�) Jinfeng Bai3 Lei Zhang2 Wangmeng Zuo1

1Harbin Institute of Technology 2 The Hong Kong Polytechnic University 3Tomorrow Advancing Life
yuxiang.wei.cs@gmail.com {wuxiaohe, wmzuo}@hit.edu.cn cslzhang@comp.polyu.edu.hk

(a) Shape-aware Position Descriptor [25]

(b) Ours PartNet (c) Comparison of synthesized results

OASIS
[33]

SAFM
[25]

Ours

support

PartNet

(d) Part Editing
Figure 1. Illustration of our iPOSE for part map prediction and semantic image synthesis. (a) Calculation of SPD [25]. (b) Our PartNet for
part map prediction. (c) Comparison of results with existing methods [25, 33]. (d) Part editing results of our iPOSE.

Abstract

Despite the progress in semantic image synthesis, it re-
mains a challenging problem to generate photo-realistic
parts from input semantic map. Integrating part segmen-
tation map can undoubtedly benefit image synthesis, but is
bothersome and inconvenient to be provided by users. To
improve part synthesis, this paper presents to infer Parts
from Object ShapE (iPOSE) and leverage it for improving
semantic image synthesis. However, albeit several part seg-
mentation datasets are available, part annotations are still
not provided for many object categories in semantic image
synthesis. To circumvent it, we resort to few-shot regime
to learn a PartNet for predicting the object part map with
the guidance of pre-defined support part maps. PartNet
can be readily generalized to handle a new object cate-
gory when a small number (e.g., 3) of support part maps
for this category are provided. Furthermore, part semantic
modulation is presented to incorporate both inferred part
map and semantic map for image synthesis. Experiments
show that our iPOSE not only generates objects with rich
part details, but also enables to control the image synthe-
sis flexibly. And our iPOSE performs favorably against the
state-of-the-art methods in terms of quantitative and qual-
itative evaluation. Our code will be publicly available at
https://github.com/csyxwei/iPOSE.

1. Introduction

Semantic image synthesis allows to generate an image
with input semantic map, which provides significant flexi-
bility for controllable image synthesis. Recently, it has at-
tracted intensive attention due to its wide applications, e.g.,
content generation and image editing [28,36], and extensive
benefits for many vision tasks [33].

Albeit rapid progress has been made in semantic im-
age synthesis [10, 25, 28, 30, 33, 36, 43–45], it is still chal-
lenging to generate photo-realistic parts from the semantic
map. Most methods [28, 33] tackle semantic image syn-
thesis with a spatially adaptive normalization architecture,
while other frameworks are also explored, such as Style-
GAN [19] and diffusion model [43, 45], etc. However, due
to the lack of fine-grained guidance (e.g., object part infor-
mation), these methods only exploited the object-level se-
mantic information for image synthesis, and usually failed
to generate photo-realistic object parts (see the top row of
Fig. 1(c)). SAFM [25] adopted the shape-aware position
descriptor to exploit the pixel’s position feature inside the
object. However, as illustrated in Fig. 1(a), the obtained de-
scriptor tends to be only region-aware instead of part-aware,
leading to limited improvement in synthesized results (see
the middle row of Fig. 1(c)).

To improve image parts synthesis, one straightforward
solution is to ask the user to provide part segmentation
map and integrate it into semantic image synthesis dur-
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ing training and inference. However, it is bothersome and
inconvenient for users to provide it, especially during in-
ference. Fortunately, with the existing part segmentation
datasets [7], we propose a method to infer Parts from Object
ShapE (iPOSE), and leverage it for improving semantic im-
age synthesis. Specifically, based on these datasets, we first
construct an object part dataset that consists of paired (ob-
ject shape, object part map) to train a part prediction net-
work (PartNet). Besides, although the part dataset con-
tains part annotations for several common object categories,
many object categories in semantic image synthesis are still
not covered. To address this issue, we introduce the few shot
mechanism to our proposed PartNet. As shown in Fig. 1(b),
for each category, a few annotated object part maps are se-
lected as pre-defined supports to guide the part prediction.
Cross attention block is adopted to aggregate the part infor-
mation from support part maps. Benefited from the few shot
setting, our PartNet can be readily generalized to handle a
new object category not in the object part dataset. Partic-
ularly, we can manually label k object part maps for this
category (e.g., 3) as supports, and use them to infer the part
map without fine-tuning the part prediction model.

By processing each object in the semantic map, we ob-
tain the part map. With that, we further present a part se-
mantic modulation (PSM) residual block to incorporate the
part map with semantic map to improve the image syn-
thesis. Specifically, the part map is first used to modulate
the normalized activations spatially to inject the part struc-
ture information. Then, to inject the semantic texture in-
formation, the semantic map and a randomly sampled 3D
noise are further used to modulate the features with the
SPADE module [28]. We find that performing part modula-
tion and semantic modulation sequentially disentangles the
structure and texture for image synthesis, and is also benefi-
cial for generating images with realistic parts. Additionally,
to facilitate model training, a global adversarial loss and an
object-level CLIP style loss [54] are further introduced to
encourage model to generate photo-realistic images.

Experiments show that our iPOSE can generate more
photo-realistic parts from the given semantic map, while
having the flexibility to control the generated objects (as
illustrated in Fig. 1 (c)(d)). Both quantitative and quali-
tative evaluations on different datasets further demonstrate
that our method performs favorably against the state-of-the-
art methods.

The contributions of this work can be summarized as:

• We propose a method iPOSE to infer parts from object
shape and leverage them to improve semantic image
synthesis. Particularly, a PartNet is proposed to predict
the part map based on a few support part maps, which
can be easily generalized to new object categories.

• A part semantic modulation Resblock is presented
to incorporate the predicted part map and semantic

map for image synthesis. And global adversarial and
object-level CLIP style losses are further introduced to
generate photo-realistic images.

• Experimental results show that our iPOSE performs fa-
vorably against state-of-the-art methods and can gen-
erate more photo-realistic results with rich part details.

2. Related Work

2.1. Semantic Image Synthesis

Semantic image synthesis predicts image from the given
semantic map. With the development of generative mod-
els, many methods have been proposed to solve this prob-
lem [4, 10, 15, 17, 23, 25, 27, 28, 30, 33, 36, 37, 43–46, 56].
Pix2pix [10] first explored a conditional GAN for translat-
ing semantic map to a real image, Instead of taking seman-
tic map as input directly, SPADE [28] proposed to use it
to modulate the features layer-wisely by spatially adaptive
denormalization. CC-FPSE [23] leveraged semantic map to
predict the spatial variant convolutional kernels, which were
used to generate the intermediate feature maps. While SC-
GAN [46] transformed semantic map to semantic vector,
and used it for semantic render generation. RESAIL [36]
proposed to retrieve and compose a guidance image based
on the given semantic map, and incorporated the image to
guide the image synthesis. SAFM [25] calculated a shape-
aware position descriptor for each object in semantic map,
and proposed a semantic-shape adaptive feature modulation
block to improve object synthesis.

In addition to semantic injection, different networks [19,
23,27,37,44,45] have also been explored in semantic image
synthesis, such as multi-scale discriminator [44], feature-
pyramid discriminator [23], and semantic-related discrimi-
nator [27, 33], etc. Besides, LGGAN [37] explored the lo-
cal context information and introduced a local pathway in
the generator for details synthesizing. CollogeGAN [19]
used the StyleGAN [11, 21] as the generator to improve vi-
sual quality and also explored the local context with class-
specific models. Recently, SDM [45] proposed a semantic
diffusion model to generate images with an iterative denois-
ing process conditioned on the semantic maps.

Most methods have only exploited the object-level se-
mantic information for image synthesis, resulting in unreal-
istic parts synthesis. Albeit SAFM [25] exploited to use the
object’s pixel position feature for image synthesis, the ob-
tained descriptor is only region-aware and also limited. In
contrast, our iPOSE infers the part map from the given se-
mantic map and leverage it to improve parts synthesis. It not
only generates objects with realistic parts, but also enables
to control the image synthesis flexibly.
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2.2. Few Shot Segmentation

Few shot segmentation [1, 13, 24, 34, 35, 38, 39, 41, 47,
49, 51–53] aims to predict a dense segmentation for new
class with only a few annotated support images. Sha-
ban et al. [34] introduced the few shot segmentation task
and proposed a two-branch networks to generate classifier
weights from the support images for query image segmenta-
tion. Rakelly et al. [31] constructed the global conditioning
prototype from the support set and concatenated it to the
query representation. Following this prototype paradigm,
MM-Net [47] introduced a set of learnable memory em-
beddings to store the meta-class information during train-
ing and transfer them to novel classes during the inference
stage. Besides, several methods have also exploited pixel-
level information for few shot segmentation. PGNet [51]
used a graph attention unit to build pixel level dense simi-
larity between the query and support images. PFENet [39]
calculated the cosine similarity on high-level features with-
out trainable parameters to create a prior mask and in-
troduced a feature enrichment module to reduce the spa-
tial inconsistency between the query and support samples.
DCAMA [35] further proposed a cross attention weighted
mask aggregation with multi-scale mechanism for few shot
segmentation.

2.3. Part Segmentation

Part segmentation has also received considerable atten-
tion in semantic segmentation. Earlier methods usually
treated part segmentation as a semantic segmentation prob-
lem, and most researches focused on part segmentation for
humans [8,14,16,22,32]. For example, PGN [8] proposed a
part grouping network to solve multi-person human parsing
in a unified network, which contains two twinned grouping
tasks, i.e., semantic part segmentation and instance aware
edge detection. CE2P [32] introduced a simple yet effi-
cient context embedding with edge perceiving framework
by leveraging the useful properties to conduct human pars-
ing. Besides human, several other categories have also
been studied, such as faces [20] and animals [5, 42]. Re-
cently, PPS [7] proposed two part annotated datasets, i.e.,
Cityscapes PPS and Pascal VOC PPS for panoptic part seg-
mentation. Subsequently, Panoptic-PartFormer [18] pro-
posed a unify model to learn thing, stuff, and part prediction
tasks simultaneously in an end-to-end manner.

3. Proposed Method
Given a semantic map M ∈ {0, 1}H×W×C with C cat-

egories, semantic image synthesis aims to generate the cor-
responding images Î ∈ RH×W×3. One main challenge is
to generate photo-realistic parts from the semantic map. To
address this problem, we present to infer Parts from Object
ShapE (iPOSE), and leverage it for improving semantic im-

PartNet

CA Block 
x3

Query Shape

Support Part Shape

Generated Part𝑞

𝑘

𝑣
Support Part Masks

Multi-head 
Attention

𝑘

𝑣

Cross Attention Block 𝑞

ln
or

m

ln
or

m

ffn

SEnc

SEnc

MEnc

Dec

Figure 2. Illustration of our PartNet. The support part map is
first decomposed into the support part shape and the support part
masks as inputs. Cross attention block is adopted to aggregate the
part information from the support features.

age synthesis. Specifically, a PartNet is first proposed to
infer the part map from the object shapes with the guid-
ance of pre-defined support part maps (Sec. 3.1). Follow-
ing [25, 44], we adopt the instance-level segmentation map
to obtain the shape of each object in M . With the part
map P , we further present a part semantic modulation Res-
Block to incorporate it with the semantic mapM and the 3D
noise Z to modulate the generation process (Sec. 3.2). To
facilitate model training, several loss terms are introduced
to encourage the model to generate photo-realistic images
(Sec. 3.3).

3.1. Inferring Parts from Object Shape

To improve the part synthesis, we first present to learn
a PartNet based on existing part segmentation datasets [7],
which infers the part map P from the given semantic map
M . Specifically, the semantic map M can be decomposed
into several object shapes {(Oi, yi)}, where Oi denotes the
cropped object shape and yi is the corresponding category.
For each object shape Oi, PartNet predicts the correspond-
ing object part map Pi. To handle those objects with novel
categories (i.e., category not in part training datasets [7]),
we further introduce the few shot mechanism to learn the
PartNet. And for each category y, a few object part maps
Sy = {Sy,0, · · · , Sy,k−1} are selected as support set to
guide the part prediction. For brevity, we take k = 1 as
example, and our design can be easily extended to few shot,
e.g., k = 3 in our implementation. The architecture of our
PartNet is illustrated in Fig. 2. For each query objectOq , the
corresponding support Syq

is decomposed into the support
part shape OS

yq
and the support part masks OM

yq
as inputs.

Each mask denotes an object part, e.g., human’s head, arm
and leg, etc.
Architecture of PartNet. Following few shot segmenta-
tion, our PartNet aims to predict each part of Oq based on
its similarity with OS

yq
and the part prior OM

yq
. However,

there is a lack of texture information for the object shape,
which is unsuitable for the pre-trained image encoder. In-
stead, we utilize a shape encoder to extract the shape and
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Figure 3. Architecture of our generator. It takes part map, semantic map and 3D noise as the input, while performing part semantic
modulation for image synthesis.

position information from the object shapes Oq and OS
yq

. A
position embedding p [40] is further concatenated with Oq

and OS
yq

as input. Besides, to exploit the part information, a
mask encoder is further introduced to encode OM

yq
,

q = SEnc(Oq), k = SEnc(OS
yq ), v = MEnc(OM

yq ), (1)

where SEnc and MEnc denote the shape and mask encoder,
respectively. Additionally, to perceive pixels’ relative posi-
tion of the whole object shape, the multi-scale mechanism is
also adopted by the encoders. Features from different scales
are upsampled and concatenated as encoder output. Further-
more, to aggregate the part information for part prediction,
we introduce a cross attention (CA) block. In particular, a
shape position similarity matrix qkT is calculated between
q and k. The same part region in two object shapes tends
to have a large similarity (e.g., head part in Oq and OS

yq
).

Then, it multiplies with v to aggregate the part informa-
tion. Layer norm and FFN are also adopted in CA block to
improve the performance. Finally, the obtained feature is
passed through the decoder to generate object part map Pq .
Generalizing to novel categories. We pre-train the Part-
Net on the basis categories of constructed part object dataset
(see Sec. 4.1) and fix it during the following training. For
those objects in M with novel categories (not in basis cate-
gories, e.g., stop sign in COCO), our PartNet can be easily
generalized to handle these objects. For example, to predict
the part map for stop sign category, we just need to select
k stop sign shapes from the COCO dataset, and manually
annotate their part maps as supports (e.g., the word STOP
and the background). Then, given a new stop sign shape,
our PartNet can leverage the supports to infer the part map
without fine-tuning (as shown in Fig. 1). More details about
the pre-training and novel categories can be found in Suppl.

3.2. Leveraging Parts for Semantic Image Synthesis

With the part map P , we then take it with the semantic
map M to generate the image. Following [33], a random
sampled 3D noise Z is also incorporated. Intuitively, the
part map represents the structure information of the gener-
ated image, yet the semantic map and 3D noise provide the
semantic texture information. To disentangle the structure

with texture for image synthesis, we further present a part
semantic modulation Resblock to modulate the activations.
Part Semantic Modulation Resblock. As illustrated in
Fig. 3, to achieve a disentangled synthesis, we inject the
part and semantic sequentially. Firstly, to inject the struc-
ture information, the part map P is used to modulate the
activations. To encourage it to guide the structure synthesis
independently, the modulation is performed spatially, i.e.,
γ ∈ RH×W×1 and β ∈ RH×W×1. Besides, for those
regions in the part map without structure information, we
introduce additional noise to increase the diversity. Then,
SPADE [28] is adopted to take semantic map M and 3D
noise Z together to modulate the activations to inject the
semantic texture information. By the separate modulation,
our iPOSE can disentangle structure and texture success-
fully, and we also found that performing part modulation
and semantic modulation sequentially is beneficial for gen-
erating images with photo-realistic parts.
Generator. Following [33], we stack the part seman-
tic modulation (PSM) Resblocks and upsampling layers to
constitute our generator (as shown in Fig. 3). The semantic
map M , part map P and 3D noise Z are resized and fed to
each PSM Resblock to guide the image synthesis.

Î = G(M,P,Z). (2)

3.3. Learning Objective

We incorporate several loss terms to encourage the
model to generate photo-realistic images. Following OA-
SIS [33], we first introduce the (N + 1)-class adversarial
loss LN+1

G , LN+1
D , and the LabelMix loss Llabel to train

our model. In addition, to improve the quality of synthe-
sized objects, we suggest a global adversarial loss [28] and
an object-based CLIP style loss [54].
Global Adversarial Loss. Although the (N + 1)-class ad-
versarial loss can improve the semantic alignment of each
pixel, it lacks the global constraint on images. To further
improve the generator to synthesize realistic images, we
suggest a global adversarial loss,

Lglobal
D =EI [logD(I)] + EM,Z [log(1−D(G(M,P,Z))], (3)

Lglobal
G = EM,Z [log(1−D(G(M,P,Z))], (4)
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SPADE [28] CC-FPSE [23] OASIS [33] SAFM [25] Ours Part MapSemantic Map

SPADE [28] OASIS [33] SAFM [25] Ours Part MapSemantic Map
(a) Qualitative comparison on Cityscapes

(b) Qualitative comparison on ADE20K (top two rows) and COCO-Stuff (bottom two rows)

Figure 4. Visual comparisons on the Cityscapes (1st ∼ 2nd rows), ADE20K (3rd ∼ 4th row) and COCO-stuff (5th ∼ 6th rows) datasets.

where Z is the 3D noise, and I , M denote the real image
and its corresponding semantic map, respectively.
Object-level CLIP Style Loss. To facilitate the learning
of object synthesis, we also introduce an object-level CLIP
style loss [54]. Specifically, CLIP image encoder is adopted
as the feature extractor, and extracts the intermediate to-
kens of images (I and Î) from the l-th layer. Then we
align each token of generated image FÎ with the closest
token of real image FI , where FÎ = {F 1

Î
, . . . ,F n

Î
} and

FI = {F 1
I , . . . ,F

n
I } are the extracted tokens,

Lstyle = max
( 1
n

∑
i

min
j

Ci,j ,
1

m

∑
j

min
i

Ci,j

)
, (5)

where C is the cost matrix to measure the token-wise dis-
tances from FI to FÎ , and each element of C is given by,

Ci,j = 1−
F i
Î
· F j

I

|F i
Î
||F j

I |
. (6)

It is worthy noting that, to emphasize object synthesis, we
calculate the Lstyle with the objects cropped from I and Î .

The overall learning objective can be summarized as,

LG = LN+1
G + λglobalLglobal

G + λstyleLstyle, (7)

LD = LN+1
D + λglobalLglobal

D + λlabelLlabel, (8)

where λglobal, λstyle and λlabel denote the trade-off param-
eters for different loss terms.

4. Experiments

4.1. Experimental settings

Dataset for Part Seg. We first construct an object part
dataset based on the Cityscapes PPS and Pascal VOC PPS
datasets [7]. Specifically, each object part is cropped and
resized to 64×64 based on its bounding box, and formed as
paired (object shape, object part map). There is a total of 21
categories in the dataset. Following [34], we use 20 basis
categories for PartNet training (e.g., human, car, bus, and
sheep, etc.) and use the remaining category as novel cate-
gory for openset testing (i.e., cat). To obtain the support
object part maps for each category, we use k-means to clus-
ter the training shapes into k clusters based on the shape
similarity metric [36]. Besides, for those novel categories
in image synthesis datasets, we have annotated k support
part maps manually to perform part prediction, including
the washing machine, van, zebra, cat, and stop sign. More
details can be found in Suppl.
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Figure 5. Multi-modal synthesis results of our iPOSE. By injecting different 3D noises into the assigned region, our iPOSE can achieve
global-level (first 2 rows), object-level (3rd row), and also part-level (last row) image editing.

Table 1. Quantitative comparison with existing methods on different datasets. ↑ (↓) denotes the higher (lower) is better.

Method
Cityscapes ADE20K COCO-Stuff

FID (↓) AC (↑) mIOU (↑) FID (↓) AC (↑) mIOU (↑) FID (↓) AC (↑) mIOU (↑)

SIMS [30] 49.7 75.5 47.2 n/a n/a n/a n/a n/a n/a
SPADE [28] 71.8 81.9 62.3 33.9 79.9 38.5 22.6 67.9 37.4
CC-FPSE [23] 54.3 82.3 65.5 31.7 82.9 43.7 19.2 70.7 41.6
SC-GAN [46] 49.5 82.5 66.9 29.3 83.8 45.2 18.1 72.0 42.0
OASIS [33] 47.7 n/a 69.3 28.3 n/a 48.8 17.0 n/a 44.1
RESAIL [36] 45.5 83.2 69.7 30.2 84.8 49.3 18.3 73.1 44.7
SAFM [25] 49.5 83.1 70.4 32.8 86.6 50.1 24.6 73.4 43.3
SDM [45] 42.1 n/a 77.5 27.5 n/a 39.2 n/a n/a n/a
Ours 41.3 82.2 70.6 26.9 87.1 53.8 15.7 74.8 45.1

Original Remove Light

Remove Wheel Remove License

Figure 6. Part editing results of our iPOSE. Our method allows
editing parts of generated objects through the support part maps.
For example, we can remove the light, wheel, or license of the car.

Datasets for Semantic Image Synthesis. Following [25,
28, 33], we conduct the experiments on Cityscapes [6],
ADE20K [55], and COCO-Stuff [2]. Cityscapes includes
35 semantic categories, and consists of 3,000 training im-
ages and 500 validation images. ADE20K contains over

20,000 training images and 2,000 validation images with
150 semantic classes. COCO-Stuff consists of 118,000
training images and 5,000 validation images. In our experi-
ments, the images in ADE20K and COCO-Stuff are resized
and cropped to 256 × 256, while those in Cityscapes are
processed to 256 × 512.

Evaluation Metrics. To evaluate our method, we
adopt Pixel ACcuracy (AC), mean Intersection-Over-Union
(mIOU), and Frechet Inception Distance (FID) [9] as the
metrics. AC and mIOU measure the semantic consistency
between the generated image and given input [25, 28, 33],
and pretrained segmentation models are adopted to com-
pute segmentation accuracy [3, 48, 50]. Furthermore, FID
evaluates the quality and diversity of generated images.

Implementation Details. We implement our model with
Pytorch [29] and train it with 4 Tesla V100 GPUs. For Part-
Net, we set the number of support part maps to be k = 3.
For synthesis model, Adam [12] is adopted with β1 = 0 and
β2 = 0.999 and the learning rates are set to 0.0001 for gener-
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SPADE Injection Concat Injection Ours

Figure 7. Visual comparisons of different part injection methods.

ator and 0.0004 for discriminator. The trade-off parameters
λglobal, λstyle and λlabel are set to 1, 10 and 10, respec-
tively. Following [28], we apply the spectral normaliza-
tion [26] to each layer in both generator and discriminator.

4.2. Qualitative Results

Fig. 4 gives the qualitative comparisons with the
SPADE [28], CC-PFSE [23], OASIS [33], and SAFM [25]
on the three datasets. For illustration, the inferred part maps
are also shown on the right. From the figure we can see
that, our iPOSE predicts the plausible part map based on
the given semantic map. For the novel categories not in ob-
ject part training set (e.g., stop sign), our PartNet still works
by providing 3 annotated stop sign part maps as supports,
demonstrating its generalization ability. Furthermore, our
iPOSE generates images that are semantically consistent
with the part maps, and also with high quality and fine de-
tails (e.g., light of car, head of sheep, and stop sign). In
contrast, only exploiting the object information, SPADE,
CC-FPSE, and OASIS generate images with noticeable ar-
tifacts (e.g., car, sheep and stop sign). Although SAFM
explores the shape-aware position descriptor, it is region-
aware and lacks part prior, resulting in limited improvement
(e.g. sheep and stop sign). In comparison with the compet-
ing methods, our iPOSE can generate more photo-realistic
images, clearly demonstrating its superiority.

In addition, our iPOSE learns to disentangle the struc-
ture and texture for image synthesis, and allows to edit the
texture and structure independently. Fig. 5 illustrates the
multi-modal synthesis results by injecting different sam-
pled noises into assigned region. As shown in the fig-
ure, benefited from the predicted part map, our iPOSE can
achieve global-level, object-level, and part-level image edit-
ing. Moreover, we can edit the structure of generated ob-
jects. As shown in Fig. 6, we can remove the license, light,
and wheel of generated images, thus enabling the users to
control the image synthesis more flexibly. Similar results in
Fig. 1(d). More qualitative results are shown in the Suppl.

4.3. Quantitative Results

Table 1 lists the quantitative comparison between our
iPOSE with the state-of-the-art methods [23, 25, 28, 30, 33,

Table 2. User study on different datasets. The numbers indicate the
percentage (%) of volunteers who favor the results of our method
over those of the competing methods.

Dataset
Ours vs.
SPADE

Ours vs.
CC-FPSE

Ours vs.
OASIS

Ours vs.
SAFM

Cityscapes [6] 75.6 64.8 67.3 58.6
ADE20K [55] 72.3 62.4 60.5 57.6
COCO-Stuff [2] 67.7 57.2 57.4 61.9

Table 3. Ablation studies on the losses, part map, and different
part injection methods. With the introduced Lg

G/D , Lstyle and the
proposed part semantic modulation, our method achieves better
quantitative performance.

Part Inject Lg
G/D Lstyle FID(↓) mIOU(↑) AC(↑) obj FID (↓)

47.7 66.9 81.5 44.1
X 43.6 66.7 81.9 39.2
X X 42.8 70.5 82.1 37.5

Ours PSM X X 41.3 70.6 82.2 30.4

SPADE X X 42.9 69.9 81.9 31.2
Concat X X 42.7 70.6 82.0 31.5

Table 4. Ablation study on the number of support part maps. Basis
AC and Novel AC denote the testing accuracy on basis and novel
categories of object part dataset, repectively. We also list the cor-
responding FID score on COCO dataset.

Methods 1-shot 2-shot 3-shot 4-shot

Basis AC (↑) 94.30 94.37 94.38 94.37
Novel AC (↑) 81.41 84.48 85.00 85.16

COCO FID (↓) 15.76 15.73 15.72 15.72

36, 45, 46]. From the table, our method performs favor-
ably against the competing methods on most datasets in
terms of the three metrics. Benefited from the introduced
part map and losses, our iPOSE can generate images with
higher quality and finer details, especially for object re-
gions, resulting in a notable improvement of FID metric
(+0.8, +0.6, +1.3 on three datasets, respectively). Be-
sides, the images generated by our iPOSE are better seman-
tically aligned with the input semantic map on ADE20K
and COCO-stuff, further demonstrating its effectiveness.
User Study. Following [28], we conduct the user study
to compare with four competing methods [23, 25, 28, 33].
Specifically, the participants1 were given an input segmen-
tation mask and generated results from two different meth-
ods, and required to select the image that has better per-
formance in semantic alignment and photo-realistic appear-
ance. For each comparison, we randomly generate 500
questions for each dataset, and each question is answered
by 10 different workers. From Table 2, users tend to favor
our results on all the datasets, especially on Cityscapes.

4.4. Ablation Studies

We conduct the ablation studies on Cityscapes to ver-
ify the effectiveness of our introduced part map and losses.

1The identities will not be recorded.
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Figure 8. Visual comparisons of different variants. Our full model with the introduced losses and part semantic modulation achieves better
visual quality, especially for object details.

1k = 2k = 3k = 4k =
Figure 9. Visual comparisons on the effect of different number of
support part maps.

Furthermore, the effect of the number of support part maps
is also analyzed.
Effectiveness of part map and losses. To demonstrate the
effectiveness of our proposed part map and losses, we con-
duct a comparison with the following variants. (i) Base-
line. We adopt the OASIS [33] as our baseline. (ii) We
introduce the global adversarial loss Lg

G/D to the baseline
model. (iii) We further introduce the object-level CLIP style
loss Lstyle. (iv) Ours. We finally incorporate the part map
and the part semantic modulation resblock to improve im-
age synthesis. The results are listed in Table 3 and Fig. 8.
From the table, with introduction of Lg

G/D, Lstyle, and the
part map with PSM, the quality of generated images can
be improved gradually. As shown in Fig. 8, Lg

G/D im-
proves the layout of generated images, and Lstyle can fur-
ther enhance the texture synthesis. Finally, with the intro-
duced part map and PSM Resblock, our method can gener-
ate images with high-quality and more photo-realistic parts.
Furthermore, we have cropped and resized each object to
128 × 128 to calculate the object-level FID. From Table 3,
our Part&PSM brings biggest improvement to object-level
FID, demonstrating its effectiveness.
Effectiveness of Part Injection. We further analyze the ef-
fect of the injection method for the part map, and compare it
with two variants. (i) SPADE. We concatenate the part map
with semantic map and 3D noise, and use SPADE to mod-
ulate the activations. (ii) Concat. We use part as input, and

concatenate it with the input feature of each layer. From the
Table 3 and Fig. 7, injecting the part map through SPADE
and Concat is limited in leveraging part map, and the results
degenerated to some extent. In contrast, our methods use
the part map and semantic map to modulate the activations
sequentially, and achieves better synthesis quality.
Effectiveness of the number of support part maps. We
have also conducted the ablations on the number of sup-
port part maps. Specifically, we train the model with mixed
numbers of supports (k = 1 ∼ 4), and test it with differ-
ent numbers of supports, respectively. From Table 4 and
Fig. 9, with the increasing support number, the testing ac-
curacy on both basis and novel categories increases, result-
ing in more plausible part maps and photo-realistic images.
Similar trends with the FID on COCO dataset. Moreover,
our generator has the ability to fix the incorrect part map to
generate plausible results (e.g., k = 1). To balance the ef-
ficiency and the performance, we select k = 3 in default as
our final model. More ablations can be found in the Suppl.

5. Conclusion
In this paper, we propose a novel method, termed iPOSE,

to exploit the part-level information for improving semantic
image synthesis. A PartNet is first proposed to infer the part
map from object shapes based on pre-defined support part
maps. A part semantic modulation Resblock is then pre-
sented to leverage the inferred part map with semantic map
to perform structure-texture disentangled image synthesis.
With the further introduced global adversarial and object-
level CLIP style losses, our iPOSE can generate photo-
realistic images, especially for the object parts. Experi-
ments show that our iPOSE performs favorably against the
state-of-the-art methods on the three challenging datasets
both qualitatively and quantitatively.
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