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Abstract

Graph-based multi-view clustering has attracted exten-
sive attention because of the powerful clustering-structure
representation ability and noise robustness. Considering
the reality of a large amount of incomplete data, in this pa-
per, we propose a simple but effective method for incomplete
multi-view clustering based on consensus graph learning,
termed as HCLS CGL. Unlike existing methods that uti-
lize graph constructed from raw data to aid in the learn-
ing of consistent representation, our method directly learns
a consensus graph across views for clustering. Specifi-
cally, we design a novel confidence graph and embed it to
form a confidence structure driven consensus graph learn-
ing model. Our confidence graph is based on an intu-
itive similar-nearest-neighbor hypothesis, which does not
require any additional information and can help the model
to obtain a high-quality consensus graph for better cluster-
ing. Numerous experiments are performed to confirm the
effectiveness of our method.

1. Introduction
In today’s world, graphs are common tools to mine the

intrinsic structure of data. Graph learning, as a power-
ful data analysis approach, has attracted increasing atten-
tion over the past few years [38, 42]. More and more ma-
chine learning and data mining tasks attempt to adopt graph
learning to enhance the ability of structural representation
and performance [35, 41, 43]. As an emerging data analy-
sis and representation task, multi-view clustering also needs
to deeply mine the geometric structure information of data
samples [15,36,44]. That is also the core focus of this paper.

As we all know, multi-view data is collected from differ-
ent sources or perspectives, which is a diverse description of
the target, and this diversity endows the data with stronger
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Figure 1. Our key motivation: A novel confidence graph whose
edges are computed by the nodes’ shared nearest neighbors.

discriminative and expressive power [19, 48]. For example,
in the webpage recommendation tasks, we can assess the
attributes of webpages from different elements such as au-
dio, video, image, and text; in the autonomous driving sce-
nario, ultrasonic radar, optical camera, and infrared radar
together provide data basis for road traffic analysis. These
different styles of multi-view data play an extremely impor-
tant role in real-world applications and provide a decision-
making basis for plentiful downstream tasks [4, 18]. To
better mine and utilize multi-view data, researchers have
proposed abundant multi-view learning methods. These
methods can be broadly divided into the following cate-
gories according to different technical routes: multiple ker-
nel kmeans based methods, canonical correlation analysis
(CCA) based methods, subspace learning based methods,
spectral clustering based methods, nonnegative matrix fac-
torization (NMF) based methods, and deep learning based
methods [2, 3, 5]. However, these conventional multi-view
clustering methods are built on the premise that each sam-
ple has all complete views. Obviously, this idealized as-
sumption is often violated in practice. Missing data is al-
most inevitable due to human oversight or the reasons from
the application scenario itself [17]. Numerous solutions
have been proposed for this incomplete multi-view cluster-
ing (IMC) problem. The classic PMVC (partial multi-view
clustering) [17] seeks a common space to connect two in-
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complete views. Liu et al. proposed a matrix factoriza-
tion based model dubbed as LSIMVC [20], which directly
learns a consistent low-dimensional representation of multi-
view feature data and introduces prior indicator information
to help avoid the negative effects of missing instances. On-
line multi-view clustering (OMVC) [27] and multiple in-
complete Views Clustering (MIVC) [28] are designed to uti-
lize the weight matrix to assign low weights to the missing
instances in the joint matrix factorization based represen-
tation learning model. Wen et al. proposed a framework
named UEAF (unified embedding aligned framework) [39]
to recover missing views with forward and backward graph
constraints and perform multi-view clustering simultane-
ously. In recent years, IMC methods based on graph learn-
ing are attracting increasing research enthusiasm. Com-
pared with matrix factorization methods, graph based meth-
ods can more intuitively and effectively mine the intrinsic
geometric structure of data. In this branch, Gao et al. [8]
tried to fill the missing instances by the view average and
learn a consistent cluster indicator matrix by kernel align-
ment method and the spectrogram theory. Wen et al. [37]
proposed to perform spectral clustering on the subspace rep-
resentation of each view and align all views in kernel space
to obtain a consensus cluster indicator matrix.

The success of existing graph based IMC (GIMC) meth-
ods can be attributed to the fact that the discriminative
grouping information of data naturally fits the clustering
task. However, these GIMC methods still have some limi-
tations. On the one hand, some methods are only applicable
to two-view datasets or require at least one view to be com-
plete. On the other hand, the way of constructing graphs di-
rectly from raw data is easily affected by noise, e.g., graphs
based on Gaussian kernel function are not necessarily suit-
able for all datasets while the self-representation of raw data
is often susceptible to outliers. We believe that directly
constructing or learning of individual graphs and consis-
tent graph can reveal the internal structure of the data more
flexibly and intuitively. In response to these issues, in this
paper, we propose a highly confident local structure based
consensus graph learning method (HCLS CGL) for IMC
tasks. Unlike existing GIMC methods that learn a cluster-
ing indicator matrix, our goal is to learn a cross-view con-
sensus graph containing several connected subgraphs and
revealing the intrinsic structure of the data intuitively. More
importantly, in order to mine the pure data structure more
deeply from the original graphs and to improve the noise
resistance, we propose an innovative confidence graph con-
straint and fuse it with the consensus graph learning into one
term. Overall, we summarize our contributions as follows:

• In this paper, we propose a model named HCLS CGL
for the IMC task, which is able to handle arbitrary
view-missing situations. Extensive experiments are
performed to confirm the effectiveness of our method.

• Different from the existing GIMC methods, we design
a novel confidence nearest neighbor graph with the
group-neighbors’similarity of the sample pair to guide
the learning of consensus graph.

2. Preliminary
2.1. Notations

In our paper, we use uppercase X to denote the matrix,
and useX:,i,Xi,:, andXi,j to represent its i-th column vec-
tor, i-th row vector, and (i, j)-th element, respectively. In
addition, we define 1 and 1 as the matrix with all 1 and vec-
tor with all 1, respectively. For a square matrix Z ∈ Rn×n,
its Laplacian matrix is defined as LZ = DZ − |Z|+|Z|

T

2 ,
where DZ is a diagonal matrix with the i-th diagonal ele-
ment as (DZ)i,i =

∑n
j=1

|Zi,j |+|Zj,i|
2 . |Z| denotes the ab-

solute operation on all elements of matrix Z. Z ≥ 0 means
all elements of matrix Z are not less than 0. rank(Z) de-
notes the rank of matrix Z.

Multi-view data with l views and n samples is denoted
by {Y (v)}lv=1, where Y (v) ∈ Rmv×n represents the v-th
view data and each column can be regarded as a feature
representation of the corresponding sample in the v-th view.
mv is the feature dimension of instances in the v-th view.

2.2. Laplacian rank based graph learning

Graph based spectral clustering is one of the mainstream
branches in data clustering methodologies [23, 33]. It
achieves the clustering results of data via three steps: affin-
ity graph construction, eigenvalue decomposition on Lapla-
cian matrix of graph, and kmeans clustering. In spectral
clustering, the affinity graph is generally an n×nmatrix for
the data with n samples and its elements generally reveal the
relationships among samples, such as similarity degree or
distance. Among these steps, the affinity graph construction
is very crucial to the final clustering results. In recent years,
to obtain a high-quality affinity graph that can reveal the in-
trinsic relationships among samples, various affinity graph
learning methods have been proposed [7, 16, 21, 25], where
the constrained Laplacian rank (CLR) based method [25] is
one the representative works. CLR seeks to learn a new sim-
ilarity matrix with exactly c blocks corresponding to the c
clusters from the preconstructed similarity graph S ∈ Rn×n
of the data with n samples and c clusters as follows:

min
S

∥∥S − Z∥∥2
F

s.t.0 ≤ S ≤ 1, S1 = 1, rank (LS) = n− c
(1)

where constraint S1 = 1 is introduced to avoid the zero
vector for some rows of matrix S. Based on the Theorem
that the number of the connected components in graph S is
equal to the number of the eigenvalue zero in its Laplacian
matrix, introducing the rank constraint rank (LS) = n− c
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on the Laplacian matrix thus has the potential to obtain an
optimal graph S with exactly c connected components that
intuitively reflects the cluster structure of data [25].

3. The proposed method
3.1. Learning model of HCLS CGL

Various graph learning based clustering methods demon-
strate that learning a high-quality graph that reveals the in-
trinsic relationships of data is beneficial to obtain a higher
clustering performance. To this end, based on the assump-
tion that different views should comply with a consistent
clustering result, many methods seek to learn a consensus
high-quality graph S ∈ Rn×n by fully considering the in-
formation of all views for multi-view clustering, where an
intuitive approach is formulated as follows [24]:

min
φ(S,α)

l∑
v=1

αrv

∥∥∥S − Z(v)
∥∥∥2
F
+ λ ‖S‖2F (2)

where φ(S, α) = {0 ≤ S ≤ 1, S1 = 1, rank(LS) =

n − c, 0 ≤ αv ≤ 1,
l∑

v=1
αv = 1} denotes the boundary

constraint of variables S and α. l denotes the view num-
ber of the data. Z(v) ∈ Rn×n is the similarity graph, such
as k-nearest neighbor graph, pre-constructed from the v-th
view. After obtaining the consensus graph S by optimizing
(2), spectral clustering [23] or connected component search
method [31] can be performed on S to obtain the clustering
result of the given data. r is a tunable parameter to control
the distribution of the coefficient vector α.

Problem and Motivation 1: The consensus graph learn-
ing model formulated by (2) is succinctly and effectively
for multi-view clustering. However, it fails to the applica-
tion of multi-view clustering case with missing views. From
the aspect of model formulation, the problem to the GIMC
includes the diversity dimensions and unaligned structure
of incomplete graphs constructed from the un-missing in-
stances of all views. To address these issues, some works
focus on recovering the missing elements of the incomplete
graphs associated with the missing views [39]. However,
these works generally have a high computational cost. In
addition, it is impossible to obtain the perfect recovered
graphs from the incomplete multi-view data, which may
in turn decrease the clustering performance. To this end,
in this paper, we seek to learn a consensus graph from the
certain similarity information from the available instances
rather than the recovered uncertain graphs. Specifically,
based on the prior location indexes O ∈ {0, 1}n×l of miss-
ing views, where Oi,j = 1 denotes that the j-th view of
the i-th sample is not missing, otherwise Oi,j = 0, we de-
sign the following formula to learn such a consensus graph
S ∈ Rn×n from the certain graph information correspond-

ing to the un-missing views:

min
S,α

l∑
v=1

(∥∥∥G(v)SG(v)T − Z̃(v)
∥∥∥2
F

)
+ λ1 ‖S‖2F

s.t.0 ≤ αv ≤ 1,
l∑

v=1
αv = 1, ST 1 = 1,

0 ≤ S ≤ 1, diag (S) = 0, rank (LS) = n− c

(3)

where λ1 is a penalty parameter. Z̃(v) ∈ Rnv×nv is a simi-
larity graph pre-constructed from the v-th view data with nv
available instances. Element Z̃(v)

i,j represents a kind of sim-
ilarity relationships between the i-th and j-th available in-
stances in the v-th view. In our work, Z̃(v) is constructed by
the recognizable k-nearest neighbor algorithm as follows:

Z̃
(v)
i,j =

e
−
‖x(v)i

−x(v)
j ‖

2

2
2 ,

if x(v)j ∈ ψ(x
(v)
i ) or

x
(v)
i ∈ ψ(x

(v)
j )

0, otherwise

(4)

where ψ
(
x
(v)
i

)
denotes the instance set composed of the k

nearest neighbors of instance x(v)i .
In model (3), G(v) ∈ {0, 1}nv×n is a transformation ma-

trix to align the pairwise similarity relationships of samples
in graph S and Z̃(v), which is constructed as follows ac-
cording to the prior location indexes O ∈ {0, 1}n×l:

G
(v)
i,j =

 1, if the i-th available instance x(v)i
of the v-th view belongs to the j-th sample

0, otherwise
(5)

With the definition of the transformation matrix G(v) as
in Eq. (5), it is easy to prove that G(v)SG(v)T can be re-
garded as a sub-graph of S aligned with Z̃(v). In other
words, the elements in G(v)SG(v)T represent the similar-
ity degrees of those available instances in the v-th view as
in Z̃(v). In such a way, only the certain similarity informa-
tion of the available instances in each view will be exploited
to learn the consensus graph and the uncertain information
associated with the missing instances in all views are ex-
cluded.

Motivation 2: Generally speaking, in most cases, any
sample and its neighbor samples have a high probability of
belonging to the same category. However, for the incom-
plete multi-view data, owing to the uncontrollable of miss-
ing views and noises, the preconstructed graph Z̃(v) maybe
cannot reflect the real nearest neighbor relationships among
samples. In this case, it is impossible to learn a high-quality
graph from the noisy graphs

{
Z̃(v)

}l
v=1

. To solve this prob-
lem, many methods seek to integrate the adaptive nearest
neighbor graph learning model into the consensus graph
learning framework. However, this approach will greatly
increase the computational cost, complexity of model opti-
mization, and model convergence epochs. In our work, we
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Figure 2. The schematic structure of the proposed HCLS CGL.

propose a simple but novel approach to solve this prob-
lem based on an assumption: If samples xi and xj are
intrinsic nearest neighbor to each other, then their nearest
neighbor sets should have some common samples. In other
words, as shown in Figure 1, if the more common nearest
neighbors of samples xi and xj have, the higher probability
of the two samples belong to the same class. Moreover, it is
interesting to observe that such common nearest neighbors
can be counted by Hi,j = Ai,:A:,j for samples xi and xj ,
if A is a special k-nearest neighbor graph with binary val-
ues constructed by the similar approach as in (4) with the
diagonal elements as 1. By dividing the maximum element
Hmax of H , i.e., H̃ = H/Hmax, we obtain the confidence-
nearest-neighbor graph H̃ whose element represents the
confidence/probability of the corresponding two samples to
be nearest neighbors to each other. Then, by constructing
these confidence-nearest-neighbor graphs H̃(v) ∈ Rnv×nv
from all incomplete views, we introduce them to guide the
consensus graph learning model as follows:

min
S,α

l∑
v=1

(
αrv

∥∥∥(G(v)SG(v)T − Z̃(v)
)
� H̃(v)

∥∥∥2
F

)
+ λ1 ‖S‖2F

s.t.0 ≤ αv ≤ 1,

l∑
v=1

αv = 1, ST 1 = 1,

0 ≤ S ≤ 1, diag (S) = 0, rank (LS) = n− c
(6)

where � is the element-wise multiplication operation.
Indeed, since the number information of common near-

est neighbors among samples can be regarded as a con-
fidence degree to measure the nearest neighbor relation-

ships among samples, which provides another kind of struc-
ture information. Compared with the conventional nearest
neighbor graphs Z̃(v), introducing these confidence struc-
ture information to the consensus graph learning model has
the potential to obtain a better intrinsic consensus graph for
clustering. The schematic structure and main ideas of our
proposed HCLS CGL is visually displayed in Figure 2.

3.2. Optimization

For (6), it is easy to prove that this problem is equivalent
to the following optimization problem:

min
S,α

λ1 ‖S‖2F

+
l∑

v=1

(
αrv

∥∥∥(S −G(v)T Z̃(v)G(v)
)
� (G(v)T H̃(v)G(v))

∥∥∥2
F

)
s.t.0 ≤ αv ≤ 1,

l∑
v=1

αv = 1, ST 1 = 1,

0 ≤ S ≤ 1, diag (S) = 0, rank (LS) = n− c
(7)

In addition, in (7), the rank constraint rank (LS) =
n − c can be transformed into the minimum optimization
problem of min

FTF=I
Tr
(
FTLSF

)
[25], then we can ob-

tain the following equivalent optimization problem to (7)
with the definition of Z(v) = G(v)T Z̃(v)G(v) and H(v) =
G(v)T H̃(v)G(v):

min
S,α,F

l∑
v=1

(
αrv
∥∥(S − Z(v)

)
�H(v)

∥∥2
F

)
+λ1 ‖S‖2F + λ2Tr

(
FTLSF

)
s.t.ST 1 = 1, 0 ≤ S ≤ 1, diag (S) = 0,

0 ≤ αv ≤ 1,
l∑

v=1
αv = 1, FTF = I

(8)
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Problem (8) has three variables to calculate. As it is
difficult to calculate the analytical solutions to these vari-
ables, we adopt the alternating iterative optimization algo-
rithm [46] to obtain the optimal approximate solutions by
regarding problem (8) as three simple sub-problems with
respect to these three variables as follows:

Step 1: Calculate variable S. According to the alternat-
ing iterative optimization algorithm, we can first fix vari-
ables F and α, and then obtain the following simplified op-
timization problem with respect to variable S:

min
S


l∑

v=1

αrv

(∥∥∥(S − Z(v)
)
�H(v)

∥∥∥2
F

)
+ λ1 ‖S‖2F + λ2Tr

(
FTLSF

)


s.t.ST 1 = 1, 0 ≤ S ≤ 1, diag (S) = 0

(9)

In (9), we can simply infer that Tr
(
FTLSF

)
=

1
2

∑n
i,j=1 ‖Fi,: − Fj,:‖

2
2 Si,j when S is a positive matrix.

Defining Ei,j = ‖Fi,: − Fj,:‖22, then we can transform (9)
as follows:

min
S


l∑

v=1

(
αrv

∥∥∥(S − Z(v)
)
�H(v)

∥∥∥2
F

)
+ λ1 ‖S‖2F + λ2Tr

(
FTLSF

)


⇔ min
S


l∑

v=1

(
αrv

∥∥∥(S − Z(v)
)
�H(v)

∥∥∥2
F

)

+ λ1 ‖S‖2F +
λ2

2

n∑
i,j=1

‖Fi,: − Fj,:‖22 Si,j



⇔ min
S

n∑
i,j=1

Si,j −
l∑

v=1

αrvH
(v)2
i,j Zi,j − λ2

4
Ei,j

l∑
v=1

αrvH
(v)2
i,j + λ1


2

(10)

It is obvious that (10) is equivalent to the following n in-
dependent sub-optimization problems with respect to each
column of matrix S:

min
S:,j

n∑
i=1

Si,j −
l∑

v=1
αrvH

(v)2
i,j Zi,j − λ2

4 Ei,j

l∑
v=1

αrvH
(v)2
i,j + λ1


2

s.t.

n∑
i=1

Si,j = 1, 0 ≤ Si,j ≤ 1, Sj,j = 0

(11)

According to the Lagrangian algorithm, we can obtain
the following closed form solution for (11):

Si,j =

{
(Ti,j + ηj)+, i 6= j

0, i = j
(12)

where Ti,j =

l∑
v=1

αrvH
(v)2
i,j Zi,j−λ24 Ei,j

l∑
v=1

αrvH
(v)2
i,j +λ1

, function (a)+ sets

negative a to zero and preserves the non-negative a. Ac-

cording to the boundary constraint
n∑
i=1

Si,j = 1, 0 ≤ Si,j ≤

1, Sj,j = 0, we can obtain ηj =
1−

n∑
i=1,i 6=j

Ti,j

n−1 .
Step 2: Calculate variable F . Fixing variables S and α

in problem (8), we can obtain the following optimization
problem with respect to variable F :

min
FTF=I

Tr
(
FTLSF

)
(13)

Problem (13) can be optimized via Eigenvalue decom-
position. If δ1 ≤ δ2 ≤ δ3 . . . ≤ δn are the n Eigenvalues
of the Laplacian matrix LS and the corresponding Eigen-
vectors are represented as u1 ≤ u2 ≤ u3 . . . ≤ un, then
the optimal solution F to problem (13) can be constructed
as F = [u1, u2, . . . , uc] ∈ Rn×c with c Eigenvectors corre-
sponding to the c minimum Eigenvalues.

Step 3: Calculate α. Similar to the previous two steps,
we can fix variables S and F , then obtain the following op-
timization problem with respect to variable α:

min
α

l∑
v=1

(
αrv

∥∥∥(S − Z(v)
)
�H(v)

∥∥∥2
F

)

s.t.0 ≤ αv ≤ 1,

l∑
v=1

αv = 1

(14)

Defining pv =
∥∥(S − Z(v)

)
�H(v)

∥∥2
F

, the Lagrange
function of (14) can be formulated as follows [46]:

min
α,µ

l∑
v=1

αrvpv − µ

(
l∑

v=1

αv − 1

)
(15)

Setting the derivative of problem (15) with respect to
variable αv to zero, we can obtain:

αv =
µ

1
r−1

(rpv)
1
r−1

(16)

Then according to constraint
∑l
v=1 αv = 1, we can fur-

ther obtain the optimal solution to variable αv as follows:

αv =
p

1
1−r
v

l∑
v=1

p
1

1−r
v

(17)

The complete optimization algorithm is summarized in
Algorithm 1. In addition, for our method, inspired by the
popular spectral clustering algorithm Ratio cut [11], we can
directly perform kmeans on the consensus representation F
derived by the consensus graph S in (13) to obtain the final
clustering result.
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Algorithm 1 HCLS CGL (solving (6))

Input: Incomplete multi-view data
{
Y (v) ∈ Rmv×n

}l
v=1

whose missing views are set as ’NaN’; Index matrix O ∈
{0, 1}n×l, which indicates the location of missing views;
Parameters λ1 and λ2.
Initialization: Construct the k-nearest neighbor graph Z̃(v)

from the observed instance set of each view via Eq. (4) and
k-nearest neighbor binary graph A(v), respectively. Then
calculate the neighbor confidence weight matrix H̃(v) with

probability property via H̃(v) =
(A(v)+I)(A(v)+I)

((A(v)+I)(A(v)+I))
max

while not converged do
Update the consensus graph S according to (12);
Update matrix F by solving (13);
Update variable α via (17);

end while
Output: S and F .

3.3. Computational complexity analysis

From the previous section, the objective optimization
problem (8) is decomposed into three simple sub-problems.
For Step 1, we can find that the updating formula for the
corresponding variable only takes some element-wise mul-
tiplication and division operations on matrices and vectors.
In Step 2, the corresponding optimal solution is calculated
by Eigenvalue decomposition, which generally takesO(n3)
for an n×nmatrix. Fortunately, we do not need to calculate
all eigenvectors and eigenvalues of the Laplacian matrix LS
in (13) but just to calculate the first c minimum eigenvalues
and corresponding eigenvectors to construct the optimal so-
lution F [40]. For this goal, an efficient eigenvalue decom-
position algorithm with package ‘eigs’ proposed in [40] is
a good choice, which only takes O(cn2) to obtain the op-
timal F for problem (13). For Step 3, its updating formula
also only includes some element-wise division operations
for vectors. By ignoring the efficient element-wise based
operations for matrix and vector, we can obtain that the total
computational complexity of the above alternating iterative
optimization approach is approximately O(tcn2), where t
denotes the iteration number.

4. Experiments
In this section, we first introduce our experimental set-

tings in detail, including datasets and competitors, and then
give extensive experimental results and analysis. Please re-
fer to the Supplementary materials for further experimental
results, including parameter and convergence analysis.

4.1. Experimental settings

Dataset description. The experiments are carried out
on the following five datasets. BBCSport [10] is a docu-

ment database with 737 samples covering 5 sports, which is
from the BBCSport website. Four parts of it are regarded
as 4 views. 3 Sources [10], a well-known multi-view text
database, contains 169 stories simultaneously reported by
BBC, Reuters and The Guardian. Caltech7 [1] is a sub-
set of the famous Caltech101 [6] dataset. It contains 1474
images with seven categories, and six kinds of feature ex-
tracted from each image are used in the experiments. An-
imal [6, 45] is a big dataset with 10158 images across 50
classes. Two types of deep features are selected to denote
each sample. Aloi deep is our new dataset extracted from
Aloi database [9]. Three classical neural networks, i.e.,
ResNet50 [12], Vgg16 [29], and Inception-v3 [30] with pre-
trained weights on the ImageNet [26] are used to extract the
deep features as three views from total 10800 images.

Incomplete multi-view data construction. In the ex-
periment, we adopt two approaches to construct incomplete
data for evaluation. Following [20, 39], for Animal dataset
with only two views, we select p% of all samples as the
paired samples with complete views and randomly delete
the first view for half of the remaining samples and the sec-
ond view for the other half of the remainder. For the other
datasets, we randomly remove p% of the instances of each
view but keep at least one view available for each sample.

Competitors. In the experiments, our HCLS CGL is
compared with nine state-of-the-art methods: BSV [47],
Concat [47], MIC [28], DAIMC [13], OMVC [27], OPIMC
[14], MKKM-IK-MKC [22], PIC [34], and UEAF [39]. We
briefly introduce the methods not mentioned in the previ-
ous sections: BSV is a baseline method, which fills missing
instances with view average and conduct k-means on each
view to report the best results. Concat is another baseline
method that concatenates all views into one before cluster-
ing. DAIMC is a weighted NMF model by aligning basis
matrices and missing views. OPIMC improves OMVC and
gets clustering results directly without K-means. MKKM-
IK-MKC recovers incomplete kernel and performs multi-
ple kernel k-means algorithm. PIC learns a consistency
Laplacian matrix and performs spectral clustering to obtain
final results. All competitors will be used with their recom-
mended parameters or by performing a parameter search for
better performance.

Evaluation metrics. Following previous works [13, 20,
39], clustering accuracy (ACC), normalized mutual infor-
mation (NMI), and purity are adopted as metrics to evaluate
the performance of the aforementioned methods.

4.2. Experimental results and analysis

The results of the ten methods on five datasets with dif-
ferent view-missing rates are presented in Tab. 1 to Tab. 3,
from which we can draw the following observations:

1) Graph-based methods have clear advantages com-
pared to other methods, for example, MKKM-IK-MKC,
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ACC (%) NMI (%) Purity (%)
Dataset Method\Rate 10% 30% 50% 10% 30% 50% 10% 30% 50%

BBCSport

BSV 58.62±3.94 51.31±5.33 44.03±3.78 43.73±7.43 31.03±2.08 21.40±2.61 65.79±5.52 55.07±1.51 47.59±2.28
Concat 70.62±3.76 58.72±5.42 33.21±2.19 61.69±6.72 38.92±7.87 18.61±1.44 80.59±4.59 63.24±5.82 37.00±1.54
MIC 51.21±4.21 46.21±4.71 46.03±5.19 29.90±6.25 25.84±3.24 24.01±5.39 55.00±4.15 51.72±4.27 52.41±6.23
DAIMC 68.62±4.59 63.45±10.97 56.89±5.59 56.62±4.60 50.17±9.91 37.89±6.22 76.90±5.89 71.72±10.76 61.03±5.08
OMVC 53.33±3.21 51.38±3.06 48.79±3.10 30.64±2.00 41.57±2.79 40.63±2.45 56.49±2.81 59.20±2.12 57.47±2.80
OPIMC 54.14±4.78 52.93±4.93 45.69±6.00 35.66±4.71 31.56±6.10 21.75±6.44 58.28±4.82 56.72±5.76 50.86±6.87
MKKM-IK-MKC 77.55±2.01 75.66±3.01 67.07±3.51 72.91±3.29 64.42±4.69 53.52±4.74 88.76±2.01 84.03±3.22 77.00±3.55
PIC 75.52±1.57 74.48±3.32 69.48±6.02 70.94±2.22 64.18±2.74 53.91±6.22 87.41±1.44 82.41±2.48 77.14±6.04
UEAF 78.22±0.94 77.24±3.08 69.31±3.43 70.71±2.59 68.25±5.13 55.13±7.09 87.41±2.24 87.07±2.86 77.07±3.98
Ours 92.41±5.43 80.00±4.20 76.38±4.90 83.71±6.45 68.70±4.47 61.34±4.47 92.41±5.43 86.21±1.72 82.59±2.82

3Sources

BSV 56.90±3.69 47.38±3.07 39.24±3.08 50.07±1.22 34.46±4.07 22.34±1.91 68.14±1.67 57.63±1.32 48.99±0.63
Concat 53.54±3.00 46.79±3.99 37.68±2.91 51.98±1.37 37.87±3.66 18.32±3.25 69.78±1.09 58.51±3.18 46.48±2.82
MIC 49.11±3.60 47.69±7.61 42.49±8.63 37.23±6.13 38.62±3.81 26.08±7.42 57.28±3.36 61.30±4.28 52.31±4.96
DAIMC 56.33±4.23 52.43±6.63 50.73±3.87 52.98±3.65 49.07±5.78 41.64±2.43 68.99±4.26 67.21±4.89 63.56±3.38
OMVC 43.95±7.35 41.11±4.31 39.53±3.63 36.48±10.77 28.42±3.41 24.34±1.50 59.37±8.26 48.76±5.44 45.44±3.10
OPIMC 55.73±2.85 54.20±4.48 43.08±6.98 40.62±2.28 38.83±3.86 22.69±3.83 64.73±1.70 64.26±2.03 53.61±4.36
MKKM-IK-MKC 54.44±0.78 49.44±5.98 50.39±4.14 55.46±2.55 48.76±3.48 48.17±2.76 76.97±1.06 70.39±4.38 69.59±2.17
PIC 71.83±4.59 70.29±4.25 55.50±4.15 67.02±5.77 63.66±3.20 52.01±3.81 80.24±3.39 79.05±1.59 73.85±2.49
UEAF 62.60±2.73 55.62±5.69 52.78±4.53 56.47±4.37 52.06±2.33 45.19±6.54 75.50±3.20 71.95±4.16 67.69±5.28
Ours 78.22±1.06 79.88±5.95 70.89±4.00 72.76±2.04 67.78±5.78 59.11±6.36 84.62±1.78 83.67±3.96 76.92±3.79

Table 1. Results on BBCSport and 3Sources databases with different incomplete rates. The 1st/2nd best results are marked in RED/BLUE.

ACC (%) NMI (%) Purity (%)
Dataset Method\Rate 10% 30% 50% 10% 30% 50% 10% 30% 50%

Caltech7

BSV 43.89±1.37 39.06±1.26 38.31±1.68 39.66±2.23 31.63±1.51 26.81±1.38 84.08±1.23 75.25±0.71 68.97±0.49
Concat 41.25±1.67 40.55±1.89 38.06±0.88 43.48±0.92 37.99±2.17 30.28±0.66 84.91±0.50 82.54±1.12 77.56±0.98
MIC 44.07±4.97 38.01±2.12 35.80±2.34 33.71±2.66 27.35±1.69 20.44±0.98 78.12±1.76 73.31±0.72 68.26±1.40
DAIMC 48.29±6.76 47.46±3.42 44.89±4.88 44.61±3.88 38.45±2.88 36.28±2.34 83.32±1.31 76.83±3.23 75.50±1.17
OMVC 40.88±1.54 36.82±1.65 33.28±4.40 28.13±2.54 25.32±1.03 18.76±4.22 79.21±1.77 77.73±1.35 74.05±4.74
OPIMC 49.24±2.89 48.34±4.36 44.12±5.85 42.98±1.02 41.54±2.38 35.98±2.77 84.89±0.69 83.70±1.80 80.64±2.06
MKKM-IK-MKC 36.54±0.51 34.87±1.53 36.05±0.45 24.09±0.98 23.45±0.52 22.91±0.67 72.98±0.80 73.82±0.53 72.52±1.55
PIC 58.82±2.95 58.24±1.20 56.50±2.93 41.73±3.93 44.44±3.12 43.51±1.50 83.99±0.54 83.89±0.53 83.64±0.55
UEAF 50.82±4.05 42.71±0.84 36.32±4.22 39.44±2.07 31.07±1.99 24.02±1.37 81.49±1.78 78.26±2.12 76.29±1.93
Ours 73.09±4.33 70.47±5.65 66.46±1.61 60.01±2.28 57.58±3.08 54.64±2.35 87.46±0.97 86.87±0.63 85.89±1.24

Aloi deep

BSV 64.14±1.23 50.63±2.20 37.37±1.34 81.29±0.65 63.15±0.62 45.36±0.59 69.89±1.13 55.10±1.76 40.18±1.07
Concat 71.07±2.90 59.60±1.26 41.39±1.30 89.75±1.24 77.47±0.46 68.63±0.97 76.52±2.39 64.44±0.88 44.99±1.54
MIC 43.69±2.30 35.54±1.19 27.96±1.39 72.18±2.29 66.16±2.68 59.10±2.82 44.77±0.31 36.30±0.25 28.35±0.18
DAIMC 84.07±1.27 81.99±1.32 69.00±2.75 95.66±0.38 94.78±0.23 87.70±1.63 87.65±0.85 85.64±0.82 72.61±0.63
OMVC 63.13±1.43 51.02±1.45 35.18±0.62 80.99±1.37 69.54±0.87 57.91±0.80 67.58±1.30 55.59±1.36 39.37±0.72
OPIMC 47.09±1.77 35.07±1.99 33.97±1.64 77.56±1.01 69.05±0.79 67.62±1.71 51.17±0.37 36.51±0.29 34.73±0.28
MKKM-IK-MKC 83.23±1.16 83.80±1.86 83.56±1.54 95.52±0.26 95.44±0.43 95.03±0.46 86..90±1.06 87.06±1.56 86.58±1.42
PIC 97.39±0.26 97.44±0.09 96.82±0.61 99.38±0.01 99.34±0.06 99.26±0.16 97.91±0.97 97.91±0.98 97.59±0.97
UEAF 82.74±1.44 75.69±2.00 72.11±1.91 93.92±0.28 87.45±0.51 88.87±0.49 85.91±0.82 78.71±0.59 75.85±0.65
Ours 97.75±0.08 97.60±0.08 97.38±0.25 99.38±0.01 99.35±0.04 99.28±0.12 97.99±0.01 97.97±0.03 97.82±0.24

Table 2. Results on Caltech7 and Aloi deep databases with different incomplete rates. The 1st/2nd best results are marked in RED/BLUE.

PIC, UEAF and our HCLS CGL almost take the top two,
which confirms that preserving local structure is beneficial
for improving clustering performance.

2) Our HCLS achieves landslide victories on almost all
datasets and all missing rates, e.g., on the BBCSport dataset
with a 10% missing rate, our method outperforms the sec-
ond best UEAF by about 14% on the ACC metric.

3) For the vast majority of cases, an obvious rule is that
the performance of the models gradually decreases with the
increase of view-missing rates.

To compare these ten methods more intuitively, we plot
their learned cluster indicator matrices in Fig. 3 using the t-
SNE technique [32]. We ignore OPIMC because it learns
cluster labels directly. As can be seen from Fig. 3, our
HCLS CGL is able to learn more discriminative represen-
tations compared to other competitors.

In addition, we plot the consensus graph learned from

the incomplete BBCSport dataset with 10% missing views
in Fig. 4. From that, we can observe four clear block struc-
tures in the figure, which correspond to the four clusters
with many samples in the BBCSport dataset.

4.3. Ablation study

In this section, ablation experiments on the BBCSport
and 3 Sources datasets are conducted to verify the effec-
tiveness of the two main techniques, i.e., adaptive view
weighted learning and confidence neighbor graph regu-
larization, where two degraded models, i.e., our method
without the corresponding two constraints, called ‘no view
weight’ and ‘no confidence neighbor graph’, are compared.
The experimental results are plotted in Fig. 5. From these
two sub-figures, it is clearly to see that the proposed method
performs better than its two degraded models.
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ACC (%) NMI (%) Purity (%)
Dataset Method\Rate 30% 50% 70% 30% 50% 70% 30% 50% 70%

Animal

BSV 42.05±1.20 48.63±1.89 56.22±1.20 48.16±0.44 55.91±0.58 63.99±0.38 45.20±0.88 52.26±1.19 60.31±0.78
Concat 42.79±0.67 49.34±1.39 53.99±0.99 55.46±0.16 59.31±0.38 63.88±0.35 48.12±0.45 53.24±0.88 59.26±0.81
MIC 43.38±0.63 45.88±0.34 49.15±0.88 52.79±0.77 55.69±0.36 59.30±0.54 49.21±0.78 52.31±0.34 55.33±0.64
DAIMC 50.18±2.18 53.87±1.36 56.42±1.37 55.03±1.03 59.36±1.16 62.76±0.46 54.82±1.57 59.51±1.65 62.12±1.04
OMVC 42.51±0.89 43.98±0.77 46.39±1.02 50.77±0.63 53.11±0.83 55.38±0.46 47.33±0.66 50.42±0.91 52.97±0.76
OPIMC 46.33±2.14 53.14±1.38 53.88±1.26 52.34±0.69 58.51±0.46 62.04±0.26 49.49±1.41 56.23±1.20 57.91±0.43
MKKM-IK-MKC 51.77±0.48 57.75±0.38 61.18±0.59 56.54±0.33 61.66±0.22 66.28±0.27 56.14±0.48 62.14±0.41 66.40±0.53
PIC 55.94±0.78 56.84±1.55 57.67±1.03 62.35±0.46 64.37±0.64 65.82±0.26 63.07±0.44 64.75±1.57 65.42±0.38
UEAF 45.73±12.9 51.86±6.48 58.19±3.04 51.61±12.87 58.43±7.53 64.92±3.95 49.10±0.27 55.36±0.36 63.02±0.47
Ours 58.72±1.87 61.74±0.37 61.29±1.10 63.12±0.59 67.88±0.47 67.25±0.48 64.21±1.33 68.52±0.56 67.98±0.54

Table 3. Results on Animal database with different paired sample rates. The 1st/2nd best results are marked in RED/BLUE.
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Figure 3. T-SNE visualization of the consensus representation of samples obtained by different methods on the BBCSport dataset with
10% missing views, where the visualized consensus representation of our method is variable F in our learning model.

Figure 4. The consensus graph learned by our method from the
BBCSport with 10% missing views.

5. Conclusion

In this paper, we proposed a novel consensus graph
learning based method, called HCLS CGL, for the chal-
lenging IMC task. Different from the existing works which
only consider the local pairwise similarity information of
data, we provide a new way to explore the group-wise
structure information among samples, which is called the
confidence neighbor graph in our paper. The confidence
neighbor graph constructed in our paper provides the near-
est neighbor probability information of any two samples.

(a) BBCSport (b) 3 Sources

Figure 5. The clustering ACC (%) obtained by the proposed
method with its two degraded methods on the BBCSport and 3
Sources datasets with different missing view rates.

Extensive experimental results on five datasets demonstrate
that the proposed highly confidence local structure based
consensus graph learning method can obtain a better graph
yet better performance than many IMC methods.
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