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Abstract

Deep neural networks (DNNs) are susceptible to adver-
sarial images, raising concerns about their reliability in
safety-critical tasks. Sparse adversarial attacks, which limit
the number of modified pixels, have shown to be highly
effective in causing DNNs to misclassify. However, exist-
ing methods often struggle to simultaneously minimize the
number of modified pixels and the size of the modifica-
tions, often requiring a large number of queries and as-
suming unrestricted access to the targeted DNN. In con-
trast, other methods that limit the number of modified pixels
often permit unbounded modifications, making them easily
detectable.To address these limitations, we propose a novel
multi-objective sparse attack algorithm that efficiently min-
imizes the number of modified pixels and their size during
the attack process. Our algorithm draws inspiration from
evolutionary computation and incorporates a mechanism
for prioritizing objectives that aligns with an attacker’s
goals. Our approach outperforms existing sparse attacks
on CIFAR-10 and ImageNet trained DNN classifiers while
requiring only a small query budget, attaining competitive
attack success rates while perturbing fewer pixels. Over-
all, our proposed attack algorithm provides a solution to
the limitations of current sparse attack methods by jointly
minimizing the number of modified pixels and their size.
Our results demonstrate the effectiveness of our approach
in restricted scenarios, highlighting its potential to enhance
DNN security.

1. Introduction

Although deep neural networks (DNNs) have made im-
pressive strides in computer vision tasks [17, 21, 22, 24, 28,
37, 38, 48], recent work has shown that small optimized
perturbations to input images can cause DNNs to misclas-
sify [1, 18, 26, 31, 34, 42]. As adversarial images have been
found to exist in the physical world [26, 27, 43], particu-
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Figure 1. This illustration shows adversarial images and their cor-
responding perturbations generated by two different algorithms,
the proposed method and Sparse-RS [10], both attacking an adver-
sarially trained CIFAR-10 [19] (top) and ImageNet [35] (bottom).
While both images are adversarial, the perturbation generated by
the Sparse-RS algorithm visibly distorts the image, whereas the
proposed method’s adversarial image remains more similar to the
original. This similarity is demonstrated by calculating the struc-
tural similarity (SSIM) between the adversarial images and the
original. The effectiveness of the Sparse-RS algorithm is there-
fore questionable due to the significant distortion it causes.

lar concern has been expressed on their impact on security-
critical applications [1]. To address this issue, previous
works have emphasized the importance of generating strong
adversarial images [3]. As a result, significant effort has
been devoted to developing effective attack methods that
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can construct perturbations capable of causing DNN classi-
fiers to misclassify images while preserving their semantic
content.

Most adversarial attack methods in the literature formu-
late the attack as an optimization problem where a loss
function is minimized to achieve the desired misclassifica-
tion of an image. While many attack methods in the lit-
erature constrain the adversarial perturbation by its l2 or
l∞ norm [2, 4, 6–8, 18, 23, 26, 29, 36, 42, 45, 46] and allow
all pixels of an image to be perturbed, there is also a need
to develop sparse attack methods that constrain adversarial
perturbations by their l0 norm [10,11,15,16,30,41,44,47].
Such adversarial images have been found to also exist in
the physical world and have shown to be as effective as the
more traditional l2 or l∞-constrained adversarial images.

Numerous sparse attack methods have been proposed to
address both the white-box [11, 15, 16, 44, 47] and black-
box scenarios [10, 30, 41]. In the white-box scenario, the
attacker has full access to a DNN’s information, while the
black-box scenario assumes the attack only has access to
the outputted class probabilities. In this work, we focus
on the black-box scenario. While existing attack meth-
ods have shown success in generating adversarial images,
they often struggle to handle the trade-off between optimiz-
ing the loss function and minimizing the perturbations lp
norms, where p = 0, 1, 2 or∞. Several methods only con-
strain the number of perturbed pixels [10, 11, 41], allow-
ing the size of the perturbation to be unbounded. Despite
their efficiency, the unbounded nature of the generated per-
turbations result in obvious distortions of the original im-
age, as shown in Fig. 1. On the other hand, other meth-
ods allow the l0 norm to be minimized along with the loss
function [15,16,47], while constraining the perturbation by
its l2 or l∞ norm. These methods either generate an ad-
versarial perturbation and then reduce its l0 norm [47] or
add an l0 norm penalty term to the optimized loss func-
tion [15, 16]. Despite their good performance, these meth-
ods only address the white-box scenario and assume access
to a large number of DNN queries, limiting their applicabil-
ity to query-limited scenarios [23]. Therefore, by not prop-
erly handling this trade-off, existing methods are limited in
their applicability and effectiveness in real-world scenarios.

Within the evolutionary computation field a classic ap-
proach to handling conflicting objectives is the use of a
domination relation [13] which characterises the trade-off
between objectives and is used to compare solutions within
a population-based evolutionary algorithm. While the orig-
inal approach assigns equal weight to each objective, the
domination mechanism can be adapted to reflect the at-
tacker’s preferences. In this work, our goal is to generate
sparse adversarial perturbations with low l0 and l2 norms in
an efficient manner. Our contributions can be summarised
as follows:

• To address the challenge of generating sparse adver-
sarial perturbations, we formulate the problem as a bi-
objective optimization problem. By constraining the
perturbation to a set of discrete values, we show that
minimizing of the l2 norm also minimizes the l0 norm.

• We propose a new dominance relation to compare so-
lutions that gives first priority to minimizing the loss
function and then to minimizing its l2 norm.

• To generate adversarial perturbations, we propose a
population-based heuristic attack method that utilizes
two distributions to generate new solutions. These dis-
tributions mimic the crossover and mutation operators
commonly used in evolutionary computation. By sam-
pling from these distributions, our approach explores
the search space in an efficient and effective manner.

• To evaluate the effectiveness of our approach, we con-
duct attacks on DNN classifiers trained on the CIFAR-
10 and ImageNet datasets, using a low-query budget
and considering both targeted and non-targeted attack
scenarios. Our empirical results demonstrate that our
proposed method outperforms state-of-the-art white-
box sparse attacks, as well as the black-box Sparse-RS
attack method [10], in terms of success rate and num-
ber of perturbed pixels.

2. Related Works
Many works in the literature have proposed attack al-

gorithms that aim to generate l2 or l∞ constrained adver-
sarial perturbations. In the white-box scenario, where an
attacker has complete access to the targeted DNNs infor-
mation, many works [6, 7, 11, 18, 26, 29, 36, 42] utilise the
gradient information of its loss function within an optimiza-
tion algorithm to generate adversarial perturbations. One
the other hand, in the black-box scenario, where access to
the DNN is limited to its outputted probabilities, several
attack methods approximate the gradient of the loss func-
tion [4, 8, 23, 45, 46] and use it within gradient-based opti-
mization methods. Alternatively, heuristic methods that do
not rely on gradient information have also been proposed
for the black-box scenario [1, 2].

Sparse adversarial attack, in contrast, aim to modify the
smallest number of pixels possible to generate adversarial
images [11]. In the white-box scenario, Croce et al. [11]
propose a sparse attack method that extends the PGD algo-
rithm Madry et al. [29] to the l0 ball. They also utilize a
heuristic search method called CornerSearch that searched
over all pixels and selects subset to perturb. The SAPF al-
gorithm of Fan et al. [16], formulates the sparse adversarial
attack as a mixed integer programming task and applied a
cardinality constraint to control the sparsity of the pertur-
bation. The lp−Box ADMM [5] algorithm is then utilized
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for its optimization. Dong et al. [15] recently proposed the
GreedyFool algorithm, which generates perturbations using
a greedy search methods. The method first selects pertur-
bations with large gradients, then removes those that do not
impact the desired misclassifiction. The Homotopy attack
algorithms of Zhu et al. [47] does not control the sparsity
of the perturbation. Instead, they encourage the algorithm
to generate increasingly sparse perturbations by adding a
weighted l0 norm penalty term to the optimized loss func-
tion. The evolutionary homotopy algorithm is used to op-
timize the weight of the penalty term while optimizing the
value of the perturbation.

While most sparse attacks aim to minimize the l0 norm
of the perturbation, the Sparse-RS attack algorithm intro-
duced by Croce et al. [10] prioritizes query efficiency by al-
lowing the size of the perturbations to be unbounded, while
constraining the number of modified pixels. To generate an
adversarial image, the authors iteratively sample pixel loca-
tions from a designed distribution, where the perturbation
value of each pixel is uniformly sampled from the corners
of a color cube [−1, 1]. Given the lack of work in this area,
Croce et al. [10] proposed black-box variants of the PGD0

and JSMA algorithms [11, 32] for comparison. The One-
Pixel attack method proposed by Su et al. [41] utilizes the
differential evolution algorithm [40] to optimize the loca-
tion and value of a single modified pixel.

Recent works have shown impressive performance gains
in sparse adversarial attacks. However, existing methods
tend to prioritize either query efficiency by allowing un-
bounded modifications or l0 norm minimization by con-
straining the l2 or l∞ norms and making use of a large query
budget. Thus, effectively handling the trade-off between
these norms is a critical direction to enhance the applica-
bility of sparse attack in realistic scenarios, especially in
black-box query-limited settings [23].

3. Proposed Method

In this section, we start with an introduction of our prob-
lem formulation. Then, we delineate the implementation of
our proposed method step by step.

3.1. Problem Formulation

Let f : X ⊆ [0, 1]h×w×3 → RK be a trained DNN
image classifier that takes a benign RGB image x ∈ X of
height h and width w as its input and outputs a label y =
argmax

i∈{1,··· ,K}
fi(x+ δ⃗), where K is the number of class labels.

A non-targeted attack aims to search for a perturbation δ⃗ ∈
Rh×w×3 for x such that:

argmax
i∈{1,··· ,K}

fi(x+ δ⃗) ̸= y, (1)

where y is the ground truth class label for x. When con-
sidering the sparse scenario, the number of perturbed pixels
should be small enough to ensure the semantic content of
the image unchanged. This problem is thus cast as:

min
δ
L(f ;x+ δ⃗, yq)

s.t. ||δ⃗||0 ≤ ϵ, 0 ≤ x+ δ⃗ ≤ 1
(2)

where yq = argmax
q ̸=y

fi(x) and the minimization of the loss

function L, such as the cross entropy function, leads to the
desired adversarial image. Alternatively, an attacker may
want the DNN to misclassify to a particular class yt such
that

argmax
i={1,··· ,K}

fi(x+ δ⃗) = yt, (3)

namely a targeted attack. The problem defined in equa-
tion (2) can be adapted to this scenario by minimizing the
loss of the classifier with the particular class,

min
δ
L(f ;x+ δ⃗, yt)

s.t. ||δ⃗||0 ≤ ϵ, 0 ≤ x+ δ⃗ ≤ 1.
(4)

Existing algorithms in the literature typically focus
on solving equation (2) and equation (4) equation (2)
and equation (4) by either fixing the number of perturbed
pixel to a specific value ϵ and allowing unbounded modifi-
cations or constraining its l2 or l∞ norms while attempting
to minimize its l0 norm [11, 15, 16, 47]. In this work, our
objective is to efficiently generate sparse adversarial images
with low l0 and l2 norms by treating the problem as a multi-
objective task. Previous work [15] has demonstrated the
difficult of minimizing the l0 norm of an adversarial pertur-
bation by greedily removing perturbed pixel. Therefore, we
argue than an improved methods should jointly search for
perturbations with small l0 and l2 norms whilst minimizing
the loss function L(x + δ⃗). Our aim is to generate a δ⃗ that
solves the following optimization problem:

min
δ⃗

F (x+ δ⃗)

s.t. ||δ⃗||0 ≤ ϵ, 0 ≤ x+ δ⃗ ≤ 1,
(5)

where F (x + δ⃗) = (L(x + δ⃗), ||δ⃗||2, ||δ⃗||0)⊤ is the objec-
tive vector. Here, L(·) is defined by (4) for targeted attacks
and (2) for non-targeted attacks.

Croce et al. [10] demonstrated that perturbation values of
{−1, 1} were effective under the l0 norm constraint. To ac-
commodate 0-valued perturbations that reduce the l2 norm
of the perturbation, we define the space of perturbation val-
ues as the set {−1, 1, 0}. This discrete set of values also
ensures that l0 norm of the perturbation approached zero as
the l2 norm approaches zero, allowing us to represent the
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problem as a bi-objective task. Specifically, we define the
objective vector as F (x+ δ⃗) = (L(x+ δ⃗), ||δ⃗||2)⊤, where
δ⃗ ∈ {−1, 1, 0}.

3.2. Multi-Objective Optimization

Evolutionary algorithms are optimization methods in-
spired by biological evolution. They iterate through ini-
tialization, variation, evaluation, selection, and termination
steps. By maintaining a population of candidate solutions
and applying the operators of crossover and mutation, evo-
lutionary algorithms can explore the search space and locate
promising areas, leading to high-quality solutions. Com-
pared to random search methods, they leverage information
from previous iterations to bias the search towards promis-
ing areas. For multi-objective optimization, evolutionary al-
gorithms maintain a set of non-dominated solutions, known
as the Pareto front. This set is determined by the domi-
nation mechanism based on objective function values. In
this section, we describe the heuristic method used to solve
the bi-objective optimization problem in equation (5). We
provide the pseudo-code of the proposed method in Algo-
rithm 4 within the appendix.

Initialization. The attack method initializes by setting the
number of perturbed pixels to k and constructing a set P
of s solutions with uniformly sampled pixel locations from
the set {1, · · · , h · w}. The initial perturbation values for
each color channel are generated by random sampling from
the set {−1, 1, 0}, where the probability of sampling 0 is
defined by pr0.

Crossover. The goal of a crossover operator is to locate
promising areas by generating solutions that inherit benefi-
cial traits from their parents. To achieve this, we exchange
a random subset of pixel locations and corresponding per-
turbation values between two solutions. Specifically, given
a pair of solutions Pa and Pb with sets of pixel locations
Ma,Mb and perturbation values ∆a,∆b, the crossover op-
erator produces two new solutions that combine the traits
from their parents.

To perform the crossover, for each solution r ∈ {a, b}
and opposing solution e ∈ {b, a}, we define U = Me \
(Mr ∩ Me) as the set of disjoint pixel locations between
Mr and Me. If |U | > 0, we randomly select A ⊂ Mr and
B ⊂ U such that |A| = |B| = min pc · k, |U |, where k is
the maximum number of modified pixels and pc is a user-
defined parameters that specifies the largest percentage of
pixels that can be exchanged between the solutions. We
then generate the set M ′r = (Mr \ A) ∪ B of updated
pixel locations, and the corresponding perturbation values
∆′r by combining the perturbation values of pixels from the
set (Mr \A) with the values of pixels B from the opposing
solution.

The crossover operator is implemented as another sam-
pling method, where the distribution is constructed from a
solution within the population. We provide the pseudo-code
in Algorithm 5 within the appendix.

Mutation. The purpose of the mutation operator is to ex-
plore promising areas by introducing variation to solutions
generated by the crossover operator. In the Sparse-RS at-
tack algorithm developed by Croce et al. [10], the variation
operator was shown to be a powerful method for conduct-
ing local search. We have adapted a similar operator for our
scenario.

To perform variation on a solution P ′a, which is gen-
erated by the crossover operator and has pixel locations
M ′a and perturbation values ∆′a, we utilize the muta-
tion operator shown in Algorithm 6. This operator pro-
duces a single solution by randomly modifying both M ′a
and ∆′a. We begin by defining a set of all pixel locations
U = {1, · · · , h · w} and remove any overlapping locations
with M ′

a to obtain T = U \M ′
a. We then randomly select

two sets A ⊂ M ′
a and B ⊂ T with |A| = |B| = pm · k

where pm is a user-defined parameters that determines the
percentage of pixels to change. We generate the output
M ′′

a = (M ′
a \ A) ∪ B by replacing the pixels in A with

those in B. The perturbation values ∆B for the pixel loca-
tions in B are generated by sampling from the set {−1, 1, 0}
for each color channel, with the probability of choosing 0
being the same as the initialization probability pr0. Finally,
we combine ∆′′

a with the values of the set of unchanged
pixel locations to obtain the mutated solution.

Evaluation. To evaluate a solution with pixel locations
Ms and perturbation values ∆s, the perturbation δ⃗ is first
initialized as a zero-matrix with the same shape as the at-
tacked image x. Then, for each pixel location in Ms, the
corresponding value in δ⃗ is set to the value in ∆s. The ad-
versarial image is then constructed by adding δ⃗ to the orig-
inal image x. Finally, the objective vector defined in equa-
tion (5) is used to evaluate the solution.

Selection. The selection operator determines which indi-
viduals in the sets P and O of evaluated parent and offspring
solutions, respectively, are better and should have a higher
chance of passing on their genetic material to the next gen-
eration.

In our multi-objective context, we use non-dominated
sorting [13] on the combined population P ∪ O to gener-
ate a series of subsets called fronts. Solutions within each
front cannot be determined to be better or worse than other
solutions within the same front. Solutions within the first
front are dominated by the smallest number of solutions
from P and are considered the better solutions in the com-
bined population. Solutions in the last front are dominated
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by the largest number of solutions and are considered the
worst performing solutions. The front to which each so-
lution belongs is referred to as its rank. To construct the
population of the next generation, we select the s solutions
with the lowest rank. We present the pseudo-code for the
non-dominated sorting method in Algorithm 1 within the
appendix.

To achieve our primary aim of constructing an adversar-
ial perturbation while also minimizing its l2 norm, we pro-
pose a modified domination relation for the non-dominated
sorting method. To this end, we achieve this we propose the
following domination relation:

Definition 3.1 (Domination). Given two solutions Pi and
Pj from set P that produce perturbations δ⃗i and δ⃗j which
are evaluated by equation (5) to produce objective vectors
Fi and Fj , Pi is said to dominate Pj if one of the following
conditions are satisfied:

• δ⃗i is adversarial whereas δ⃗j is not.

• Both δ⃗i and δ⃗j are adversarial and ∥δ⃗i∥2 < ∥δ⃗j∥2.

• Both δ⃗i and δ⃗j are not adversarial and L(δ⃗i) < L(δ⃗j).

Note that a perturbation δ⃗ is said to be adversarial in the
case either equation (1) or equation (3) is met, the choice of
loss function L(·) dependent on the type of attack.

This domination relation encourages our attack method
to generate perturbation values with smaller l2 norms, but
not at the expense of being adversarial.

4. Experiments
In this section, we present our empirical evaluation of

the proposed method’s effectiveness by attacking models
trained on the CIFAR-10 [25] and ImageNet [14] datasets.
Prior to describing the experiments in detail, we outline the
experimental setup in Section 4.1. To improve the design
of our method, we conduct an ablation study in Section 4.2
to determine the relative importance of its various compo-
nents. Finally, we compare the proposed method with state-
of-the-art sparse adversarial attacks of GreedyFool [15],
SAPF [16], Homotopy Attack [47], and a Sparse-RS [10]
method that we adapt to our scenario, in Section 4.3. Ad-
ditionally, we make a compare the performance of the pro-
posed method with conventional domination relation.

4.1. Experiment Setup

Dataset and Model Settings: In this work, we evaluate
our method on two datasets: CIFAR-10 and ImageNet. For
CIFAR-10, we use 1000 correctly classified images from
the test set to conduct non-targeted and targeted attacks on
two adversarial trained classifiers, AT1 [19] and AT2 [20],

as well as a conventionally trained classifier with and with-
out the black-box RND defense mechanism [33]. We con-
duct targeted attacks with five different target classes per
image. Despite targeted attacks being more difficult than
non-targeted attacks, we set the maximum number of model
queries to 1000 for all CIFAR-10 attacks.

For ImageNet, we attack four classifiers: Efficient Con-
volutional Neural Network (MobileNet) [22], Deep Resid-
ual Network (ResNet50) [21], and two adversarial trained
classifiers, TL1 and TL2 [35]. We also attack the MobileNet
classifier with RND defense [33]. For each model, we ran-
domly select 1000 correctly classified images from the Im-
ageNet validation set and conduct non-targeted attacks with
a budget of 5000 queries due to their larger size.

All adversarial trained classifiers were implemented us-
ing the RobustBench [9] library.

Parameter Setting: For targeted attacks we make use of
the cross-entropy loss of the target class yt,

L(f ; ,x+ δ⃗, yt) = −fyt + log(

K∑
i=1

efi) (6)

whereas for non-targeted attacks we employ the margin loss

L(f ; ,x+ δ⃗, yq) = fy − fyq
(7)

where y and yq are defined in equation (2).
As described in Section 3, our method constrains the per-

turbation values to the set−1, 1, 0, in order to provide a fair
comparison with other algorithms, we allow the l∞ con-
straint of GreedyFool [15] and Homotopy Attack [47] to be
unbounded as well. On the other hand, the compared SAPF
algorithm [16] does not constrain the l∞ norm of generated
perturbations, therefore, we make no changes to its original
implementation.

We implement each compared algorithm using the au-
thors’ original implementation. To set the value of the ini-
tial sparsity k, we follow the work of Croce et al. [10] and
set k = 24 for the CIFAR-10 dataset and k = 150 for the
ImageNet dataset, which correspond to 2.4% and 0.23% of
the total number of pixels, respectively.

We keep the hyper-parameters of the adapted Sparse-RS
algorithm constant with those used in its original implemen-
tation for targeted and non-targeted attacks.

We set the population size s = 2 and the zero-sample
probability pr0 = 0.3 for all conducted experiments.

We set the population size s = 2 and the zero-sample
probability pr0 = 0.3 for all conducted experiments.

Evaluation Metrics: We evaluate the performance of all
algorithms by allowing them to exhaust the query budget
when attacking each classifier. We report the average lp−
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AT1 AT2

Method ASR l0 l2 SSIM ASR l0 l2 SSIM
SA-MOO 44.20% 18.37 11.92 0.93 39.10% 18.81 12.90 0.93
SA-MOO* 8.60% 23.5 21.06 0.89 8.8% 23.268 19.32 0.89
Sparse-RS* 44.20% 21.17 14.37 0.91 39.10% 20.96 15.88 0.90

SAPF 7.40% 69.54 13.02 0.90 6.80% 65.21 11.64 0.91
Homotopy 13.80% 140.66 11.81 0.92 7.50% 164.25 10.90 0.93
GreedyFool 2.40% 1000.54 0.10 0.99 1.50% 1001.20 0.11 0.98

AT1 AT2

Method ASR l0 l2 SSIM ASR l0 l2 SSIM
SA-MOO 84.40% 15.02 8.00 0.95 76.90% 15.28 8.54 0.95
SA-MOO* 82.50% 19.64 8.07 0.95 74.00% 19.60 9.05 0.95
Sparse-RS* 83.50% 21.10 14.33 0.92 76.10% 20.94 14.60 0.91

SAPF 49.20% 57.83 9.94 0.93 52.40% 61.23 11.20 0.93
Homotopy 23.20% 73.30 4.16 0.95 34.90% 118.30 7.15 0.95
GreedyFool 16.50% 999.96 0.10 0.99 13.40% 1000.53 0.11 0.99

Table 1. Statistics of attack success rate, average SSIM and average lp norms (p = 0, 2) of non-targeted (top) and targeted (bottom) attacks
on adversarial trained CIFAR-10 classifiers.
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Figure 2. Correlation plots showing the average success rate of
each pm, pc configuration for targeted (right) and non-targeted
(left) attacks on CIFAR-10 images, the top row corresponds to the
static approach where the bottom row corresponds to the dynamic
approach of Croce et al. [10].

norm of generated adversarial perturbations, where p = 0
and p = 2. Additionally, we report the attack success rates
(ASR) and the average structural similarity index measure
(ssim) for each method when attacking all CIFAR-10 and
ImageNet models. The ssim is used to measure the simi-
larity between the original image and the corresponding ad-
versarial example, with values closer to 1 indicating higher
similarity.

4.2. Ablation Study

To evaluate the contribution of different mechanisms in
our proposed method, we conduct an ablation study by at-
tacking models trained on the CIFAR-10 dataset. Specifi-
cally, we vary the values of two key parameters: the proba-
bility of crossover (pc) and the probability of mutation (pm).

We conduct a grid search over the values of pc and pm, with
each value ranging from 0.1 to 0.5 in increments of 0.1.

For each configuration of pc and pm, we randomly se-
lect 100 images from the CIFAR-10 test set and attack the
AT1 model under both the targeted and non-targeted attack
scenarios. We report the results in terms of attack success
rate (ASR), lp-norm of the generated perturbations (where
p = 0 and p = 2), and average structural similarity index
measure (ssim).

Note that for each configuration, we keep the remaining
hyperparameters of our method fixed with those used in the
original implementation, including the initial sparsity (k),
population size (s), and zero-sample probability (pr0).

Mutation Operator: The effectiveness of the mutation
operator depends on the value of the parameter pm, which
determines the magnitude of the mutation. Croce et al. [10]
proposed a dynamic method that decreases pm as the at-
tack process progresses, as shown in Algorithm 2 in the ap-
pendix. In contrast, many evolutionary approaches keep the
hyper-parameters, including pm, constant during optimiza-
tion [12, 13, 39]. To determine the optimal method for se-
lecting pm, we compared the performance of the proposed
attack using both approaches. We see the top-performing
pm, pc configurations in both approaches achieve similar
success rates in Figure 2. However, the dynamic method
proposed by Croce et al. [10] is more reliable in achiev-
ing higher success rates. Additionally, Figure 2 shows that
changes to pm significantly impact the performance of both
approaches, while changes to pc have minimal effect. This
is expected since smaller population sizes, such as s = 2,
have less variation, resulting in faster convergence. Once
converged, the mutation operator alone navigates the search
space, highlighting the importance of the pm parameter.
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Non-Targeted Targeted
Method ASR l0 l2 SSIM ASR l0 l2 SSIM
SA-MOO 85.4% 17.60 7.16 0.95 83.3% 18.28 10.55 0.92
SA-MOO* 84.3% 23.04 17.29 0.89 8.40% 23.02 17.19 0.89
Sparse-RS* 84.2% 22.460 16.78 0.93 83.1% 23.67 16.23 0.93

Non-Targeted Targeted
Method ASR l0 l2 SSIM ASR l0 l2 SSIM
SA-MOO 91.5% 18.93 7.81 0.95 86.5% 18.99 10.83 0.93
SA-MOO* 87.3% 20.196 15.36 0.96 9.00% 19.43 6.11 0.96
Sparse-RS* 90.1% 20.340 13.65 0.91 84.4% 21.877 15.02 0.90

SAPF 65.20% 104.54 28.31 0.85 27.60% 114.99 28.99 0.84
Homotopy 35.02% 52.55 3.89 0.94 27.45 130.26 10.91 0.94
GreedyFool 56.50% 1016.05 0.16 0.99 36.89 1016.05 0.16 0.99

Table 2. Statistics of attack success rate, average SSIM and average lp norms (p = 0, 2) of attacks on conventionally trained CIFAR-10
classifier with (bottom) and without (top) the RND black-box defense mechanism.

Crossover Operator: We evaluated the importance of the
crossover operator with s = 2 by comparing the perfor-
mance of the proposed method with and without it when
attacking both the AT1, 2 models. The results presented
in Table 4 in the appendix show that the performance of
the proposed method is unaffected by the exclusion of the
crossover operator, therefore we keep the crossover opera-
tor in our attack method for all subsequent experiments.

Due to the superior performance shown in Figure 2, for
targeted attacks, we set pm = 0.2 and pc = 0.1, and for
non-targeted attacks, we set pm = 0.4 and pc = 0.1 for the
rest of this paper.

4.3. Comparison

To evaluate the performance of the proposed method we
compare with the state-of-the-art (SOTA) white-box sparse
adversarial attacks GreedyFool [15], SAPF [16] and Homo-
topy Attack [47]. Due to the lack of black-box sparse attack
methods that minimize the l0,2 norms of the perturbation,
we adapt the state-of-the-art Sparse-RS [10] algorithm by
replacing its solution loss comparison with our domination
mechanism in Definition 3.1 and allowing a 0 perturbation
value to be sampled at a probability of pr0. We give full de-
tail of the adapted Sparse-RS method in Algorithm 3 within
the appendix.

CIFAR-10: Table 1 presents the results of targeted and
non-targeted attacks on adversarial trained classifiers. The
proposed SA-MOO method and the adapted Sparse-RS
(Sparse-RS*) method achieve similar attack success rates,
but the SA-MOO method is better at reducing the l0 and l2
norms of the perturbation, as reflected by the average struc-
tural similarity (SSIM) achieved. The proposed method also
generates adversarial perturbations with similar l2 norms
as white-box attack methods, but modifies a much smaller
number of pixels. The GreedyFool algorithm generates ad-
versarial perturbations with a smaller l2 norm, but its low
success rates demonstrate its limited capability under highly

SA-MOOHomotopySAPFSparse-RS*

Figure 3. Adversarial images and corresponding perturbations
generated by sparse attack methods conducting targeted attacks
on the AT1 model. The ground truth is Frog and the target label is
Dog.

constrained conditions.

Comparing the performance of the proposed SA-MOO
method with the conventional domination relation (SA-
MOO*) shows similar performance for non-targeted at-
tacks, but the use of the conventional relation causes the
performance of the SA-MOO method to deteriorate for tar-
geted attacks. This demonstrates the importance of han-
dling multi-objective attack scenarios.

Table 2 presents the attack statistics for a CIFAR-10 clas-
sifier trained with conventional methods. We observe that
all attacks achieve higher success rates compared to adver-
sarially trained classifiers, especially in the case of targeted
attacks. This suggests that adversarial training is a promis-
ing defense mechanism against targeted attacks, but still
leaves the classifier vulnerable to non-targeted attacks. De-
spite the RND method being developed to defense against
black-box attacks,table 2 indicates only a slight decrease in
performance compared to the classifier without the defense
mechanism.
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TL1 TL2

Method ASR l0 l2 SSIM ASR l0 l2 SSIM
SA-MOO 99.20% 134.00 45.25 0.99 99.20% 133.83 45.47 0.99
SA-MOO* 99.13 135.73 67.61 0.98 99.08 135.46 67.42 0.98
Sparse-RS* 97.20% 146.72 65.89 0.98 97.60% 142.28 66.82 0.98

SAPF 93.10% 3370.83 52.83 0.98 94.20% 3220.62 51.07 0.98
Homotopy 89.72% 769.02 45.87 0.98 91.28% 749.01 68.92 0.98
GreedyFool 45.25% 1002.53 5.22 0.99 47.37% 993.14 5.02 0.99

MobileNet ResNet
Method ASR l0 l2 SSIM ASR l0 l2 SSIM
SA-MOO 98.24% 113.44 40.51 0.99 97.58% 130.61 38.93 0.99
SA-MOO* 98.20% 133.86 68.48 0.98 86.27% 133.84 68.39 0.98
Sparse-RS* 97.69% 135.10 60.10 0.98 96.88% 134.39 59.12 0.98

SAPF 91.04% 3840.39 55.26 0.93 92.72% 4733.75 47.72 0.86
Homotopy 87.48% 802.42 42.03 0.95 86.42% 905.81 40.62 0.94
GreedyFool 38.82% 1127.0 5.92 0.99 41.18% 1721.42 5.95 0.99

MobileNet ResNet
Method ASR l0 l2 SSIM ASR l0 l2 SSIM
SA-MOO 98.33% 139.36 91.26 0.98 97.22% 142.82 95.72 0.98
SA-MOO* 98.25% 139.79 91.59 0.98 96.92% 143.87 97.32 0.98
Sparse-RS* 96.28% 145.12 100.42 0.97 95.55% 148.29 102.45 0.97

Table 3. Statistics of attack success rate, average SSIM and average lp norms (p = 0, 2) of non-targeted attacks on adversarial trained
ImageNet classifiers (top) and conventionally trained ImageNet classifiers with (bottom) and without (middle) the RND black-box defense
mechanism.

ImageNet: Table 3 displays the results of non-targeted at-
tacks on classifiers trained on the ImageNet dataset. Similar
to the results for CIFAR-10 classifiers, the proposed method
achieves a higher success rate compared to its competitors.
Furthermore, the proposed method is able to generate adver-
sarial perturbations with similar l2 norms while perturbing
fewer pixels.

The success rate and l0 norm of the proposed method
with the conventional domination relation are highly similar
to those achieved using the proposed domination relation in
Definition 3.1. However, the average l2 norm of the pertur-
bation for adversarial and conventionally trained classifiers
is much lower for the proposed method with domination re-
lation (3.1). This once again demonstrates the impact that
a solution comparison mechanism such as the domination
relation can have when addressing a multi-objective task.
We provide a comparison of adversarial images generated
by the proposed method using both domination relations in
Figure 4.

5. Conclusion and Future Directions
The crux of SA-MOO is a multi-objectivized way (a

bi-objective optimization of the loss and the l2 norm)
to generate adversarial examples. Instead of simply
weighted-aggregating different objectives, SA-MOO uses a
population-based meta-heuristic to search for a set of trade-
off alternatives. A novel dominance relation is proposed
to help prioritize adversarial example generation over re-
ducing the corresponding modifications. It’s usefulness is
validated by comparing with a conventional domination re-
lation and the Sparse-RS algorithm. Though we focus on

SA-MOO*SA-MOO

Bald Eagle → Dungeness Crab Bald Eagle → Dungeness Crab

Figure 4. Adversarial Images generated by the proposed method
with conventional domination relation (SA-MOO*) and domina-
tion relation defined in Definition 3.1 (SA-MOO) when attacking
MobileNet ImageNet classifier.

black-box adversarial attacks, the framework is adaptable
to white-box attacks (e.g., by using multiple gradient de-
scent) in case the gradient information is accessible. Last
but not least, the proposed dominance relation empowers
the decision-maker to tweak the importance of different ob-
jectives, offering a pathway towards explainable and con-
trollable decision-making.
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