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Abstract

The recently proposed FixMatch and FlexMatch have
achieved remarkable results in the field of semi-supervised
learning. But these two methods go to two extremes as Fix-
Match and FlexMatch use a pre-defined constant threshold
for all classes and an adaptive threshold for each category,
respectively. By only investigating consistency regulariza-
tion, they also suffer from unstable results and indiscrim-
inative feature representation, especially under the situa-
tion of few labeled samples. In this paper, we propose a
novel CHMatch method, which can learn robust adaptive
thresholds for instance-level prediction matching as well as
discriminative features by contrastive hierarchical match-
ing. We first present a memory-bank based robust thresh-
old learning strategy to select highly-confident samples. In
the meantime, we make full use of the structured informa-
tion in the hierarchical labels to learn an accurate affinity
graph for contrastive learning. CHMatch achieves very sta-
ble and superior results on several commonly-used bench-
marks. For example, CHMatch achieves 8.44% and 9.02%
error rate reduction over FlexMatch on CIFAR-100 under
WRN-28-2 with only 4 and 25 labeled samples per class,
respectively1.

1. Introduction
Deep learning [18, 33, 41] achieves great success in the

past decade based on large-scale labeled datasets. However,
it is generally hard to collect and expensive to manually an-
notate such kind of large dataset in practice, which limits its
application. Semi-supervised learning (SSL) attracts much
attention recently, since it can make full use of a few labeled
and massive unlabeled data to facilitate the classification.

For the task of SSL [9, 16, 31, 32], various methods have
∗Corresponding authors.
1Project address: https://github.com/sailist/CHMatch

been proposed and promising results have been achieved.
Consistency regularization [44] is one of the most in-
fluential techniques in this area. For example, pseudo-
ensemble [3] and temporal ensembling [23] investigate
the instance-level robustness before and after perturbation.
Mean teacher [37] introduces the teacher-student frame-
work and studies the model-level consistency. SNTG [27]
further constructs the similarity graph over the teacher
model to guide the student learning. However, the super-
vised signal generated by only this strategy is insufficient
for more challenging tasks.

Recently, by combining pseudo-labeling and consis-
tency between weak and strong data augmentations, Fix-
Match [34] achieves significant improvement. But it relies
on a high fixed threshold for all classes, and only a few
unlabeled samples whose prediction probability is above
the threshold are selected for training, resulting in undesir-
able efficiency and convergence. Towards this issue, Flex-
Match [42] proposes a curriculum learning [4] strategy to
learn adjustable class-specific threshold, which can well im-
prove the results and efficiency. But it still suffers from
the following limitations: (1) The results of both FixMatch
and FlexMatch are unstable and of large variances, which is
shown in Figure 1(a), especially when there are only a small
amount of labeled samples; (2) Only instance-level consis-
tency is investigated, which neglects inter-class relationship
and may make the learned feature indiscriminative.

To address the above issues, we propose a novel
CHMatch method based on hierarchical label and con-
trastive learning, which takes both the instance-level pre-
diction matching and graph-level similarity matching into
account. Specifically, we first present a memory-bank based
robust adaptive threshold learning strategy, where we only
need one parameter to compute the near-global threshold
for all categories. We compare this strategy with FixMatch
in Figure 1(b). Then this adaptive threshold is used for
instance-level prediction matching under the similar Fix-
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Figure 1. Motivation of our method. (a) The results of FixMatch and FlexMatch are unstable and of large variances, while our method
can handle this issue. (b) FixMatch sets fixed threshold, while our method sets dynamic proportions in different epoch, leading to adaptive
threshold. (c) Many datasets have hierarchical label structure, and we aim to take advantage of this to promote the SSL.

Match paradigm. More importantly, we further propose a
hierarchical label guided graph matching module for con-
trastive feature learning, where the key lies in the construc-
tion of an accurate affinity graph. As shown in Figure 1(c),
we notice that categories in many datasets as well as real-
world applications have a hierarchical structure, which is
neglected by existing methods for semi-supervised learning.
We aim to make use of the coarse-grained labels to guide the
general classification, which can also provide extra supervi-
sion signals especially under the situation of limited labeled
samples. For implementation, we first add another head for
the coarse-grained classification. Then each affinity graph
is constructed by the fine-grained and coarse-grained clas-
sification branches. Together with the near-global thresh-
old, we can get the precise affinity relationship after graph
matching, which is then used for contrastive learning. We
also conduct extensive experiments on several commonly-
used datasets to verify the effectiveness of the proposed
method as well as each module.

Our main contributions can be summarized as follows:
• We propose a novel CHMatch method, which con-

tains instance-level and graph-level matching for as-
signment and feature learning, respectively. To the best
of our knowledge, this is the first study that makes full
use of the structured information matching in hierar-
chical labels to promote semi-supervised learning.
• We come up with a memory-bank based highly-

confident sample selection strategy, which can gen-
erate robust adaptive threshold for prediction-level
matching, leading to more robust results, and accel-
erate the training process.
• Benefit from the contrastive hierarchical matching, our

method can construct a more accurate affinity graph
for the proposed contrastive learning module, leading
to more discriminative feature representation.
• We conduct extensive experiments on four benchmark

datasets under different backbones, and the proposed
CHMatch outperforms these state-of-the-art methods.

2. Related Work

Semi-supervised learning (SSL) [1, 2, 7] is a classic and
important research area in the machine learning community
since it only needs a few labeled samples. Along with the
success of deep learning, SSL achieves significant improve-
ment recently. We briefly review some highly-related deep
learning based SSL methods in this section.

Pseudo-label [19, 24, 30, 36, 38] and consistency reg-
ularization are two effective strategies in SSL. Pseudo-
label [24] picks up the class which has the maximum pre-
dicted probability as true labels for supervised learning,
which has the equivalent effect to entropy regularization.
Consistency regularization assumes that under small pertur-
bations, the results should be consistent and robust, which
can be further divided into instance-level, model-level, and
graph-level [20,25] consistency. Temporal ensembling [23],
VAT [29], UDA [39], and MixMatch [5, 6] well inves-
tigate the influence of data augmentation and image fu-
sion. Pseudo-ensemble [3] and mean teacher [37] study the
effect of dropout and teacher-student framework, respec-
tively. SNTG [27] further constructs the similarity graph
over teacher model to guide the student learning.

By combining the pseudo-label and consistency regu-
larization, FixMatch [34] simplifies the SSL by introduc-
ing a new paradigm, where it adopts the highly-confident
pseudo label of weak augmentation sample to guide the
training of the corresponding sample after strong augmen-
tation. Most lateral methods also follow this setting since
it achieves state-of-the-art performance. CoMatch [25] fur-
ther incorporates the graph based contrastive learning. Flex-
Match [42] proposes a curriculum learning strategy to learn
adaptive threshold for each category, which can well accel-
erate the convergence. HierMatch [14] also incorporates the
hierarchical label information, but it simply adds the coarse-
label based cross-entropy loss for classification without in-
vestigating their connection and contrastive learning.

Our method also follows FixMatch, one of the main dif-
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ferences lies in the threshold learning. Besides, while exist-
ing methods mainly focus on consistency regularization, we
incorporate the hierarchical label guided contrastive learn-
ing into the SSL to learn discriminative feature represen-
tation. Though CoMatch also combines with graph con-
trastive learning, it is very sensitive to the hyper-parameters,
and how to use the graph information is also very different
in our method. CoMatch assigns a consistency regulariza-
tion on two graphs generated by weak and strong augmen-
tations, while our method learns a more accurate graph for
contrastive learning based on the matching between coarse-
grained and fine-grained classification results. Compared
with CoMatch, our method is more stable and achieves
much better results.

3. CHMatch
3.1. Preliminary

Given a batch of B labeled samples X = {(xb, yb)}Bb=1

and µB unlabeled samples U = {ub}µBb=1, where y denotes
the one-hot label and µ is a parameter that controls the rel-
ative sizes of U and X , the general deep learning based
SSL method aims to learn a encoder f(·) and a classifica-
tion head h(·) for discriminative feature representation and
good performance. For this task, FixMatch first introduces
the random strong augmentation A(·) and weak augmenta-
tion α(·), and then investigates their prediction-level con-
sistency based on the pseudo-label learned by a high fixed
threshold τ . Denote p(y|x) as the predicted class probabil-
ity and H(p, q) as the cross-entropy loss between two prob-
ability distributions p and q. Then the objective function of
FixMatch can be formulated as:

min
θf ,θh

Ls + λLu =
1

B

B∑
b=1

H(y, p(y|α(xb)))

+ λ
1

µB

µB∑
b=1

1(max(qb) ≥ τ)H(q̂b, p(y|A(ub))),

(1)
where θ denotes the learnable parameters, qb = p(y|α(ub))
represents the predicted class probability for the weakly
augmented unlabeled sample, q̂b=argmax(qb) is its
pseudo-label, λ is a hyperparameter to balance the contribu-
tion of two items, Ls and Lu denote the losses for labeled
and unlabeled samples, respectively.

Due to the fixed high threshold, only a few unlabeled
data join the training with higher prediction confidence than
the threshold, therefore FixMatch suffers from long train-
ing time. FlexMatch further proposes a curriculum pseudo
labeling strategy to assign a specific threshold for each cat-
egory.

Most existing SSL methods mainly focus on the above
consistency regularization to make positive samples closer,

and neglect the discriminative feature learning to push neg-
ative samples apart. Contrastive learning is a good choice
to handle the above issue, which attracts much attention in
the field of self-supervised learning. The basic contrastive
loss for the sample ub can be formulated as:

lsimclrb = − log
exp(f(α(ub)) · f(α(ub))/t)∑µB

j=1,j 6=b exp(f(α(ub)) · f(α(uj))/t)
,

(2)
where t denotes a temperature parameter. We can see that
general contrastive learning treats all others in the batch as
negative samples, which contains much noisy correspon-
dence. Different from self-supervised learning, we have
a few labeled samples in SSL. How to appropriately com-
bine contrastive learning with SSL remains an open prob-
lem. And the key lies in how to learn an accurate graph. We
follow the general pipeline of FixMatch, and propose strate-
gies in the following to handle the above issues of threshold
and accurate graph learning.

3.2. Overview of CHMatch

The framework of our proposed CHMatch is shown in
Figure 2. Based on the feature encoder f(·), different from
general SSL methods that only have one classification head,
CHMatch jointly learns the fine-grained classification head
hf (·), the coarse-grained classification head hc(·), and the
projection head g(·) for contrastive feature representation.

In practice, categories have a hierarchical structure,
which is often neglected by existing methods. But it con-
tains extra supervision signals for network training. So we
add an extra coarse-grained classification head hc(·) first.
For each classification head, we learn an robust adaptive
threshold, denoted as τc and τf , to select highly-confident
samples for consistent pseudo-label learning, which will be
introduced in Section 3.3. Then we define the unsupervised
classification losses, Lfu and Lcu, for these two fine-grained
and coarse-grained heads as follows:

Lfu + Lcu =
1

µB

µB∑
b=1

(
1(max(qfb ) ≥ τf )H(q̂fb , p(y|A(ub)))

+ 1(max(qcb) ≥ τc)H(q̂cb , p(y|A(ub)))
)
,

(3)
where qfb = hf (f(α(ub))) and q̂fb denote the predicted
class probability and its pseudo-label for the fine-grained
classification head, respectively, which is also the similar to
qcb and q̂cb .

Based on the predicted probability of these two classi-
fication heads, we can generate an affinity graph for each
branch. Then we perform graph matching to acquire an ac-
curate graph for contrastive learning. We define the con-
trastive loss as Lctlu and impose it on the projection head
g(·) to learn discriminative features. Details will be intro-
duced in Section 3.4.
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Figure 2. Framework of our CHMatch. (Left) Besides the general classification headLf
u in FixMatch, we add a coarse-grained classification

head Lc
u and a projection head g(·). We utilize the hierarchical label information, performing graph matching between fine-grained and

coarse-grained pseudo label graphs to guide contrastive feature learning. (Right) A memory-back based strategy is proposed to learn robust
adaptive threshold to guide instance-level prediction matching.

The overall training objective of CHMatch can be for-
mulated as:

min
θf ,θg,θhc ,θhf

L = Ls + αLfu + βLcu + γLctlu . (4)

We simply fix all weights before each loss term as 1 since
our method is robust and insensitive to these parameters.

3.3. Memory-bank based Robust Adaptive Thresh-
old Learning

In FixMatch and related SSL methods, threshold plays
an important role in selecting highly-confident samples to
construct pseudo-label for consistency learning. FixMatch
manually set a fixed high threshold for all classes without
learning, leading to undesirable training efficiency. Flex-
Match learns class-specific thresholds based on curriculum
learning. But results of these two methods are relatively
unstable, especially when the labeled samples are limited.

Inspired by MoCo [17], we propose a memory-bank
based strategy to learn a near-global threshold for all
classes, which can well handle the above issue of FixMatch
and FlexMatch. Specifically, for each sample ub, take the
fine-grained classification head for example, we compute
its maximum predicted probability by q̃fb = max qfb =
maxhf (f(α(ub))). Then we construct a memory-bank to
save the maximum probability of the previous N weakly
augmented samples as QfMB = [q̃f1 , q̃

f
2 , · · · , q̃

f
N ], where N

is much larger than the mini-batch size. At each epoch,
we hope that a certain percentage K% of the samples are
chosen for pseudo-label learning. For example, at the early
stage of the training, K% should be small to ensure that the

selected samples are of high confidence to guide the net-
work training. In contrast, at the end of the training, K%
should be large enough to guarantee that most samples can
join the training. In this case, we gradually increase K%
as the training progresses. There is a negative correlation
between K% and τf , which can be formulated based on the
memory-bank by:

|QfMB > τf |/N = K%, (5)

where |QfMB > τf | denotes the number of samples in
the memory-bank that have a larger prediction probabil-
ity than τf . τf can be easily computed by the function
τf = percentile(QfMB ,K) for each batch, which is equiv-
alent to select the N ×K%-th value after the descend sort-
ing. Then we can get τc for the coarse-grained classification
head in the same way, after which the classification loss can
be computed according to Eq. (3).

Based on only one dynamically changed parameter K,
the thresholds τf and τc for all classes can be learned adap-
tively. The memory-bank mechanism can help the model
acquire a good approximation of the global threshold for all
samples with neglectable computational cost.

Note that the number of highly-confident samples that
join the training matters, especially in the SSL settings. For
two independent experiments, the dynamic proportion strat-
egy in our CHMatch can select the same number of samples
for training in different epochs. However, the fixed thresh-
old in FixMatch or adaptive threshold in FlexMatch cannot
guarantee this since their prediction is highly related to the
random initialized network parameters. Besides, FixMatch
and FlexMatch are more sensitive to manually set thresh-
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old than our CHMatch. For example, the simple threshold
warm-up strategy in FlexMatch can lead to more than 1%
difference in the results on CIFAR100. The fixed thresh-
old in FixMatch can cause more than 2% difference on CI-
FAR10. As a comparison, our method is insensitive to pa-
rameters, which will be verified in experiments. In this case,
the results of CHMatch is much more stable.

3.4. Graph-based Contrastive Hierarchical Match-
ing

Consistency learning can only lead to instance-level cor-
respondence in the feature space, which makes the represen-
tation not discriminative enough. In this situation, samples
that belong to the same category might be of large variance
and the margin between categories is not clear. Therefore,
we propose a contrastive learning loss for SSL by lever-
aging pseudo-label information. According to the super-
vised contrastive learning [21], the way to incorporate label
information matters, and it is very important to construct
a precise graph to guide the contrastive learning based on
pseudo-labels.

For each sample ub, given its fine-grained classifica-
tion pseudo-label q̂fb , we construct the fine-grained affinity
graph W f ∈ RµB×µB by:

W f
bj =

{
1 if q̂fb = q̂fj ,

0 otherwise,
(6)

where the edge between two samples equals to 1 only when
they share the same fine-grained pseudo-label, which also
denotes that they are positive pairs. Note that we do not
assign any constraint on the pseudo-label during the above
graph construction, so its accuracy could be improved. We
further turn to the hierarchical label for help and propose a
graph matching strategy.

For the hierarchical labels, it can not only provide ex-
tra supervision information, but can also correct the affin-
ity graph. Similar to Eq. (6), we can construct the coarse-
grained affinity graph W c. For each coarse-grained cate-
gory, it contains several fine-grained classes. In this case, if
two samples belong to the same fine-grained class, then they
should have the same coarse-grained pseudo-label. How-
ever, this relationship is not always satisfied by the model,
especially at the early training stage. So we can take ad-
vantage of W c to correct W f , and we name this process as
graph matching, which can be formulated as:

Wbj =

{
1 if W f

bj = 1 and W c
bj = 1,

0 otherwise.
(7)

Give the precise graphW , two samples are positive pairs
if W f

bj = 1, otherwise they are negative pairs. Contrastive
learning [8, 17, 26] aims to minimize the distance between

Algorithm 1 Training algorithm for CHMatch.

1: Input: X = {(xm, ym) : m ∈ (1, . . . ,M)}, U =
{ul : l ∈ (1, . . . , L)}. M labeled and L unlabeled data.

2: while not reach the maximum iteration do
3: for b ∈ {1, . . . , B} do
4: Compute prediction qfxb

= hf (f(α(xb))), q
c
xb

=
hc(f(α(xb))) for each labeled sample.

5: end for
6: for b ∈ {1, . . . , µB} do
7: Compute the maximum probability q̃fb =

maxhf (f(α(ub))), and q̃cb = maxhc(f(α(ub))).
8: Update the memory-bank QfMB ,QcMB by q̃fb , q̃

c
b .

9: Update K according to the current number of
epochs.

10: Compute τf = percentile(QfMB ,K) and τc =
percentile(QcMB ,K).

11: for j ∈ {1, . . . , µB} do
12: Calculate W f

bj , W
c
bj , and Wbj according to

Eqs. (6) and (7).
13: end for
14: end for
15: Compute Ls, Lfu, Lcu, and Lctlu via Eqs. (1), (3),

and (8).
16: Update parameters θf , θg, θhc

, θhf
by optimizing

Eq. (4) based on SGD.
17: end while
18: Return: A deep SSL model with desirable parameters.

positive pairs and maximize the distance between negative
pairs. Denote zb = g(f(A(ub))) and z′b = g(f(A′(ub)))
as the output features after projection head g(·) for sample
ub under two different strong augmentations. The graph
matching based contrastive learning loss can be written as:

Lctlu =− 1

µB

µB∑
b=1

(
1∑
jWbj

log

∑µB
j=1Wbj exp((zb · z′j)/t)∑µB

j=1(1−Wbj)exp(zb · z′j)/t)

)
,

(8)
where we also investigate the self-consistency between dif-
ferent augmentations when b = j.

We summarize the overall training process in Algo-
rithm 1. By making full use of the hierarchical label, our
method benefits from the following three aspects: (1) The
coarse-grained classification head can provide extra super-
vision for the network learning, which is important for
the situation of limited labeled samples; (2) By the graph
matching of fine-grained and coarse-grained results, we can
learn a more accurate graph, which can well filter the wrong
relations and reduce the influence of noisy correspondence;
(3) Contrastive learning with precise graph connections can
lead to more discriminative feature representation.
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Table 1. Error rates comparison on CIFAR-10, CIFAR-100, and STL-10.

Methods CIFAR-10 CIFAR-100@WRN-28-2 CIFAR-100@WRN-28-8 STL-10

Label Amount 40 250 1000 400 2500 10000 400 2500 10000 1000

MixMatch (NeurIPS’19) 36.19± 6.48 13.63± 0.59 6.66± 0.26 - - - 67.61± 1.32 39.94± 0.37 28.31± 0.33 61.98± 8.29

FixMatch (NeurIPS’20) 13.91± 3.37 5.07± 0.65 4.26± 0.05 56.34± 2.12 34.53± 0.31 27.89± 0.10 48.85± 1.75 28.29± 0.11 22.60± 0.12 34.62± 0.42

CoMatch (ICCV’21) 6.91± 1.39 4.91± 0.33 4.56± 0.20 58.46± 2.31 36.84± 0.43 31.6± 0.14 41.89± 2.34 28.37± 0.35 20.86± 0.36 20.20± 0.38

FlexMatch (NeurIPS’21) 4.97± 0.06 4.98± 0.09 4.19± 0.01 49.23± 2.58 32.51± 0.20 26.58± 0.11 39.94± 1.62 26.49± 0.20 21.90± 0.15 -

DP-SSL (NeurIPS’21) 6.54± 0.98 4.78± 0.26 4.23± 0.20 - - - 43.17± 1.29 28.00± 0.79 22.24± 0.31 -

CHMatch (ours) 5.98± 0.19 4.91± 0.13 4.48± 0.10 45.23± 0.28 31.32± 0.47 24.84± 0.27 36.57± 0.41 24.10± 0.10 19.92± 0.29 10.36± 0.31

4. Experiments

We conducted extensive experiments on four commonly-
used SSL image classification datasets, including CIFAR-
10 [22], CIFAR-100, STL-10 [11], and ImageNet [13], un-
der different amounts of labeled data and backbones.

Datasets. The CIFAR-10 dataset has 60, 000 images that
belong to 10 fine-grained classes. Each image has the size
of 32×32. Similarly, CIFAR-100 consists of 60, 000 images
corresponding to 100 fine-grained classes. STL-10 con-
tains 5, 000 labeled images of 10 classes and 100, 000 unla-
beled images with size 96× 96. For the hierarchical labels,
CIFAR-100 naturally has 20 coarse-grained categories. As
for CIFAR-10 and STL-10, we manually summarized two
super classes, including animal and vehicle. For the Im-
ageNet dataset, its hierarchical structure is unbalanced, so
we first found these coarse-grained classes that contain at
least 10 fine-grained classes. After sorting based on names,
we selected the first 20 super classes as well as the first 10
fine-grained categories in each super class. Therefore, this
ImageNet subset contains 20 coarse-grained categories and
200 fine-grained categories of about 256, 483 images.

Compared Methods. We mainly compared the results
with current state-of-the-art SSL methods published in re-
cent three years, including MixMatch [6], FixMatch [34],
CoMatch [25], DP-SSL [40], FlexMatch [42].

Implementation Details. For fair comparison, we
adopted the similar settings following FlexMatch and Co-
Match. For CIFAR-10, we used WideResNet (WRN)-28-
2 [41]. For CIFAR-100, both WRN-28-2 and WRN-28-8
are adopted. ResNet-18 [18] is used for STL-10, which is
the same as CoMatch [25] since it has much lower compu-
tation cost compared to the WRN-37-2 used in [42]. For
ImageNet, ResNet-50 is adopted. The total training step
is 220. The size of memory-bank N is set to 50, 000.
The commonly used distribution alignment strategy [5] is
also adopted in our method. For all these datasets ex-
cept ImageNet, we used the standard stochastic gradient
descent (SGD) [15, 35] with a momentum of 0.9 for all ex-
periments. The initial learning rate is set to 0.03 and a co-
sine learning rate decay schedule is adopted. The batch size
is set to 64. µ is set to 7. We randomly run the experi-
ments for three times and reported the average result. For

ImageNet, we used the same settings as CoMatch, where
the initial learning rate is set to 0.1 with weight decay [43]
1e − 5, the batch size is 160, and µ = 4. For CIFAR-100
and ImageNet, K% is initialized as 5%, and linearly in-
creases to 80% until the 100-th epoch. At the t-th epoch,
Kt = 5 + t ∗ 0.75 when 0 < t ≤ 100, and Kt = 80 when
t > 100. For other two datasets, the upper value for K% is
set to 95% since they are much simpler.

Augmentation. Our augmentation strategy is the same
as CoMatch. For the weak augmentation, we used the stan-
dard crop-and-flip is adopted. For two kinds of strong aug-
mentations A and A′, RandAugment [12] and augmenta-
tion strategy in SimCLR [10] (random color jittering and
grayscale conversion) are adopted, respectively.

4.1. Main Results

In Table 1, we presented the semi-supervised classifi-
cation results on CIFAR-10 under WRN-28-2, CIFAR-100
under both WRN-28-2 and WRN-28-8, and STL-10 under
ResNet-18. We can see that on the CIFAR-100 dataset,
our proposed CHMatch method achieves much better re-
sults than all these related methods under all various num-
ber of labeled samples and two different backbones. Specif-
ically, compared with the strong baseline FlexMatch, our
method can achieve an average 7.47% error rate reduction
on these six settings of CIFAR-100. The error rate reduction
is even larger over FixMatch, which is 15.29% on average.
The above results can well demonstrate the effectiveness of
CHMatch, especially when the number of classes is large
and the hierarchical structure is relatively balanced.

For STL-10, we simply copy the results of several re-
lated methods from CoMatch. We can see that our pro-
posed method achieves the best results among these com-
pared methods. Specifically, We can achieve the error rate
of 10.36%, while the second best result is 20.20% realized
by CoMatch. Moreover, we can observe that the error rate
results on STL-10 are higher than that of CIFAR-10. The
reason is that there exist out-of-distribution images in the
unlabeled set of STL-10, which makes it more challenging
and realistic. While the dataset is more challenging, our
superiority is more significant, which can also verify the ef-
fectiveness of our method from another aspect.
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Table 2. Error rates results on the ImageNet subset.

Method Top1 Top5

Label fraction 1% 10% 1% 10%

MixMatch - - - -
FixMatch 60.81 34.33 35.84 14.83
CoMatch 42.88 26.48 17.99 9.23

FlexMatch 54.37 29.82 31.61 12.27
DP-SSL - - - -

CHMatch(ours) 34.18 24.17 12.33 7.64

On CIFAR-10, our results are also comparable with Fix-
Match. The main reason is that CIFAR-10 is relatively sim-
ple, where it only has 2 coarse-grained and 10 fine-grained
classes. The difference between two super categories (ani-
mal and vehicle) is very clear. In this case, the accuracy of
both fine-grained and coarse-grained classification is very
high, and the coarse label graph cannot provide useful infor-
mation in graph matching. Even though, our results are bet-
ter than FixMatch under 40 and 250 labeled samples, which
validates the superiority of our memory-bank based near-
global threshold learning strategy, especially under limited
labeled samples.

We also noticed that our results are stable on all these
datasets, where the maximum variance is less than 0.5%. In
comparison, the variance of FlexMatch is larger than 2.5%
and 1.6% on CIFAR-100 with 4 labeled samples per class
under two different backbones, respectively. Other methods
also have the similar disadvantage, especially under the sit-
uation of very limited labeled samples. The reason for this
phenomenon can be found in the end of Subsection 3.3.

4.2. Results on the ImageNet Subset

We validated our method on the more challenging Ima-
geNet dataset, where we used a subset containing 20 super
and 200 general classes to construct a balanced hierarchical
structure. For a fair comparison, we used the similar param-
eters as CIFAR-100 for all these compared methods, which
can also verify its robustness. The results are shown in Ta-
ble 2. CHMatch achieves the best results among all these
compared methods under both 1% and 10% settings. For
example, the top-1 error rate of our method with 1% labeled
samples is 34.18%, which significantly surpasses the result
42.88% of the second best method CoMatch. The above
results can well demonstrate the superiority of our method.

4.3. Ablation Study

We conducted experiments to verify the effectiveness
of each proposed module on CIFAR-100 with 400 labeled
samples under WRN-28-2. Experiments in the following
subsection are also under this setting. The results are pre-
sented in Table 3. Based on the error rate on lines 1, 2,
and 5, we can see that our dynamic proportion based adap-
tive threshold learning strategy is much better than the fixed

Table 3. Effect of each module.

Modules
Error rate

Graph Coarse Fixed Fixed Dynamic
matching label threshold proportion proportion

X X X 50.14
X X X 49.56

X 48.83
X X 47.14

X X X 45.23

Table 4. Error rate on CIFAR100 under WRN-28-2 with different
weights. We vary each parameter and fix other weights as 1.

0.75 1 1.5 2

α 46.37 45.23 46.51 44.53

β 46.60 45.23 46.15 44.96

γ 45.61 45.23 44.99 45.05

proportion and fixed threshold strategies. By comparing the
results on lines 3, 4, and 5, both coarse-grained classifica-
tion head and graph matching strategy can obviously im-
prove the performance.

4.4. Qualitative Analysis

Parameter Sensitivity Analysis. For the weight param-
eters before each loss term, we directly set all of them to
1 for all datasets, which demonstrates that our method is
very robust and not sensitive to these parameters. We fur-
ther conduct experiments to analyze the sensitivity. We vary
each parameter in the range of [0.75, 1, 1.5, 2] while fixed
other weights as 1. The error rate results on CIFAR100 un-
der WRN-28-2 is presented in Table 4. The reported error
rate results in the paper is 45.23%. We can see that our
results can be further improved to 44.53% based on other
settings of these parameters. Besides, our results are rela-
tively stable when these weights vary in a certain range.

For the number of epochs for dynamic duration and the
maximum proportion K%, we tested their influence and
showed the results in Figure 3 (a) and (b). We can ob-
serve that the influence is neglectable for these two hyper-
parameters. For the dynamic duration, the performance
could even be improved if we set it to 150, which further
demonstrates the robustness of CHMatch.

Convergence Analysis. We presented the change of top-
1 error rate during the training process in Figure 3 (c), and
compared it with FixMatch and FlexMatch. We can see that
our CHMatch converges very fast, which only needs less
than 400 epochs to achieve almost the best performance.
In contrast, both FixMatch and FlexMatch need more than
800 epochs to get the best results. In this case, our method is
much faster than them, which can be accumulated to the fact
that we adopted the dynamic proportion mechanism and a
large proportion of samples join training after 100 epochs.
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(b) Influence of max proportion(a) Influence of dynamic duration (c) Top-1 error rate

Figure 3. Parameter sensitivity and convergence analysis on CIFAR-100.

(b) FlexMatch (c) DualMatch(a) FixMatch

Figure 4. t-SNE visualization for feature representation on CIFAR-100.

Table 5. Inconsistent rate of coarse labels on CIFAR100.

Method Backbones
Label Amount

400 2500 10000

Supervised WRN-28-2 78.63% 48.79% 29.99%
CHMatch w/o Graph Matching WRN-28-2 30.94% 19.58% 16.15%

CHMatch WRN-28-2 27.91% 17.52% 14.56%
CHMatch WRN-28-8 23.75% 12.68% 8.56%

Influence of Increasing Manner on K. We also con-
ducted additional experiments on CIFAR-100 with 40 la-
beled samples under WRN-28-2 based on exponentially
increasing (slow first and then fast) and log-type increas-
ing (fast first and then slow) manners on K. The error rates
of these two settings are 46.63% and 47.51%, both of which
are worse than linear increasing manner 45.23% but still
better than FlexMatch 49.23%.

Affinity Graph Correction Analysis. To further verify
that the graph matching can correct the affinity graph, we
compute the inconsistent rate of samples that have mispre-
dicted coarse labels between these two branches under dif-
ferent settings, which is shown in Table 5. We can see that
the inconsistent rate is very high if we simply trained these
two branches based on limited labeled samples. By incor-
porating the dynamic threshold learning and graph match-
ing strategy, the error rate can be significantly decreased,
demonstrating the effectiveness of graph matching. More-
over, large model WRN-28-8 can further improve results.

Visualization. The proposed graph-based contrastive hi-
erarchical matching module can help model learn discrimi-
native feature representations. To verify this, we visualized

the learned features by t-SNE [28] and compared it with
FixMatch and FlexMatch in Figure 4. It is obvious that the
inter-class distance of our method is much larger than these
of other two methods, which can lead to better results.

5. Conclusion and Future Work
In this paper, we came up with a new semi-supervised

learning method CHMatch, which performs both instance-
level prediction matching and contrastive graph-level
matching. We first introduced a memory-bank based strat-
egy to learn near-global adaptive threshold, which can ef-
ficiently select highly-confident samples for pseudo-label
consistency. Besides, we utilized the hierarchical label
structure to improve the SSL from two aspects, including an
extra head for fine-grained classification and graph match-
ing for contrastive feature learning. Extensive experiments
on various benchmarks demonstrate our superiority in clas-
sification results and robustness. In the future, we would
like to improve our method under the unbalanced hierarchi-
cal label structure, where different super classes may have
different number of fine-grained categories.
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