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Figure 1. We propose GANHead to generate diverse head avatars with complete geometry and realistic texture. The generated avatars can

be deformed to target poses and expressions through FLAME [22] parameters, which generalize well to unseen poses and expressions.

Abstract

To bring digital avatars into people’s lives, it is highly

demanded to efficiently generate complete, realistic, and

animatable head avatars. This task is challenging, and it is

difficult for existing methods to satisfy all the requirements

at once. To achieve these goals, we propose GANHead

(Generative Animatable Neural Head Avatar), a novel gen-

erative head model that takes advantages of both the fine-

grained control over the explicit expression parameters and

the realistic rendering results of implicit representations.

Specifically, GANHead represents coarse geometry, fine-

gained details and texture via three networks in canonical

space to obtain the ability to generate complete and realistic

∗Corresponding author

Project page: https://wsj-sjtu.github.io/GANHead/

head avatars. To achieve flexible animation, we define the

deformation filed by standard linear blend skinning (LBS),

with the learned continuous pose and expression bases and

LBS weights. This allows the avatars to be directly ani-

mated by FLAME [22] parameters and generalize well to

unseen poses and expressions. Compared to state-of-the-art

(SOTA) methods, GANHead achieves superior performance

on head avatar generation and raw scan fitting.

1. Introduction

How to efficiently generate photorealistic and animat-

able head avatars without manual effort is an open prob-

lem in computer vision and computer graphics, which has

numerous applications in VR/AR, games, movies, and the

metaverse. In these applications, it is desirable that the head
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avatar models fulfill the following requirements: (1) Com-

plete, i.e., the 3D model can cover the entire head including

the frontal face, the back of head, and the hair region; (2)

Realistic, where the avatar is expected to display vivid tex-

ture and detailed geometry; (3) Animatable, i.e., the avatar

is supposed to be fully riggable over poses and expressions,

and can be controlled with low-dimensional parameters; (4)

Generative model can be more flexibly applied to various

downstream tasks, therefore, the head avatar model is pre-

ferred to be generative rather than discriminative for large-

scale content generation tasks.

We investigate the research on neural head avatars and

summarize previous works in Tab. 1. 3D morphable models

(3DMMs) built from registered meshes have been widely

employed to model head avatars. Principal component anal-

ysis (PCA) is applied to shape and texture, and novel sub-

jects can be generated by sampling the coefficients of PCA

bases. However, registering real-world raw scans to a tem-

plate mesh with fixed topology is non-trivial, and it is diffi-

cult to define a fixed topology for complex regions like hair.

As a result, most of these methods only model the facial

region [3±6, 13, 15, 23, 39], while a few cover the full head

without hair [2, 11, 22, 33, 36]. Moreover, the oversimplifi-

cation of PCA makes the models lack of realism.

In parallel with explicit meshes, implicit representations

have been utilized to approximate complex surfaces. Some

discriminative models [14,19,24,31,49] successfully model

the complete head geometry with realistic texture. How-

ever, these methods can only be applied to the reconstruc-

tion task, incapable of generating new samples. Mean-

while, 3D-aware GANs based on implicit representations

[7,8,29,48] can generate multi-view-consistent frontal face

images. Nevertheless, the heads are still incomplete. In

addition, it is difficult to animate the neural head avatars

generated by 3D-aware GANs. Recently, several implicit

generative models [18, 41, 47, 50] achieve realistic and ani-

matable head avatars. However, these models either cannot

generate complete head with satisfactory geometry [18,50],

or can only be animated implicitly via the learned latent

codes [47], which is inconvenient and limits the general-

ization ability to unseen poses and expressions.

It is natural to ask a question: can we build a model

that can generate diverse realistic head avatars, and mean-

while be compatible with the animation parameters of the

common parametric face model (such as FLAME [22])?

In this work, we propose a generative animatable neural

head avatar model, namely, GANHead, that simultaneously

fulfills these requirements. Specifically, GANHead repre-

sents the 3D head implicitly with neural occupancy func-

tion learned by MLPs, where coarse geometry, fine-gained

details and texture are respectively modeled via three net-

works. Supervised with unregistered ground truth 3D head

scans, all these networks are defined in canonical space via

Scheme Methods Complete Realistic Animatable Generative

Explicit

3DMMs
[2, 3, 15, 40] ✗ ✗ ✓ ✓

3D-aware
GANs

[7, 8, 29, 48] ✗ ✓ ✗ ✓

Personalized
Avatars

[16, 49] ✓ ✓ ✓ ✗

[14, 31, 44] ✗ ✓ △ ✗

Implicit

Head Models

[50] ✗ ✓ △ ✓

[18] ✗ ✓ ✓ ✓

[47] ✓ ✓ △ ✓

Ours ✓ ✓ ✓ ✓

Table 1. A summary of current head avatar methods. △ denotes

that the head avatar can only be animated implicitly via the learned

latent codes, and cannot generalize well to unseen expressions.

auto-decoder structures that are conditioned by shape, detail

and color latent codes, respectively. This framework allows

GANHead to achieve complete and realistic generation re-

sults, while yielding desirable generative capacity.

The only remaining question is how to control the im-

plicit representation with animation parameters? To answer

this question, we extend the multi-subject forward skinning

method designed for human bodies [9] to human faces, en-

abling our framework to achieve flexible animation explic-

itly controlled by FLAME [22] pose and expression param-

eters. Inspired by IMAvatar [49], the deformation field in

GANHead is defined by standard vertex based linear blend

skinning (LBS) with the learned pose-dependent corrective

bases, the linear blend skinning weights, and the learned

expression bases to capture non-rigid deformations. In this

way, GANHead can be learned from textured scans, and no

registration or canonical shapes are needed.

Once GANHead is trained, we can sample shape, de-

tail and color latent codes to generate diverse textured

head avatars, which can then be animated flexibly by

FLAME parameters with nice geometry consistency and

pose/expression generalization capability. We compare our

method with the state-of-the-art (SOTA) complete head

generative models, and demonstrate the superiority of our

method.

In summary, our main contributions are:

• We propose a generative animatable head model that

can generate complete head avatars with realistic tex-

ture and detailed geometry.

• The generated avatars can be directly animated by

FLAME [22] parameters, robust to unseen poses and

expressions.

• The proposed model achieves promising results in

head avatar generation and raw scan fitting compared

with SOTA methods.
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2. Related Work

Explicit Face and Head Morphable Models. Explicit rep-

resentation is wildly used for 3D face modeling, which is

built by performing Principal Component Analysis (PCA)

on numerous registered 3D facial scans and represents a

3D face as the linear combination of a set of orthogonal

bases. Blanz and Vetter [3] first proposed the concept of

3D Morphable Face Model (3DMM). Since then, many ef-

forts [1, 4±6, 15] have been devoted to improve the perfor-

mance of 3DMM by either improving the quality of cap-

tured face scans or the structure of 3D face model. Con-

sidering the limited representation power of traditional 3D

Morphable Models and the difficulty of acquiring registered

3D data, deep learning based 3DMMs appeared [37±40],

which learn 3D priors from 2D face images or videos with

the help of differentiable rendering. However, these meth-

ods [3±6, 15, 32] can only model the facial region.

Recently, some 3D Morphable Models that can represent

the entire head have been proposed [2,11,12,22,33,36]. For

example, Li et al. [22] propose the FLAME model which

represents 3D head by rotatable joints and linear blend skin-

ning. Although these methods can model the entire head,

they still cannot model the hair region since it is hard to

define a fixed topology for complex regions like hair and

register the raw scan to it, while our model has the ability to

generate complete head avatars with diverse hairstyles.

Implicit Face and Head Models. In parallel with explicit

meshes, implicit representations [26±28, 30] can also be

used to model 3D shapes [26, 30]. Park et al. [30] propose

DeepSDF to represent shape using signed distance function

predicted by an autodecoder. Since then, implicit represen-

tations have become popular in 3D modeling, as well as 3D

face and head modeling [35, 46], since implicit represen-

tations are better at modeling complex surfaces and realis-

tic textures. Many works [20, 35, 43] successfully recon-

struct high fidelity static heads which cannot be animated.

Recent works [14, 31, 34, 49] recover animatable realis-

tic head avatars from monocular RGB videos, but needed

to train a model for each person. In addition, 3D-aware

GANs [7,8,17,29,48] are proposed to generate multi-view-

consistent static frontal face images, but failed to extract

complete head meshes (including the back of the head) due

to the lack of 3D supervision.

Recently, several implicit generative models [18, 47,

50] are proposed to achieve realistic and animatable head

avatars. Hong et al. [18] propose the first NeRF-based

parametric human head model which controls the render-

ing pose, identity and expression by corresponding latent

codes. Yenamandra et al. [47] propose i3DMM, a deep im-

plicit 3D morphable model containing entire heads and can

be animated by learned latent codes. However, these models

either can not generate complete head meshes with satisfac-

tory geometry [18, 50], or can only be animated implicitly

via the learned latent codes [47], which limits the general-

ization ability to unseen poses and expressions. In contrast,

our method can generate animatable head avatars with com-

plete geometry and realistic texture using implicit represen-

tation, which can also be generalized well to unseen poses

and expressions.

3. Method

In this work, we propose GANHead, a generative model

learned from unregistered textured scans. Once GANHead

is trained, complete and realistic head avatars that are ready

for animation can be obtained by sampling three latent

codes. An overview of GANHead is illustrated in Fig. 2.

In this section, we first recap the deformation formu-

lation of parametric head model FLAME [22], and illus-

trate its important role in helping GANHead build a defor-

mation module with good generalization ability to unseen

poses and expressions (Section 3.1). Second, we introduce

the canonical generation module (Section 3.2) that gener-

ates diverse vivid head avatars in canonical space, followed

by the deformation module (Section 3.3) which deforms the

generated avatars to new poses and expressions controlled

by FLAME parameters. Finally, to train GANHead model

from raw scans, the data pre-processing procedures, train-

ing strategy and losses are introduced in Section 3.4.

3.1. Preliminary: GANHead vs FLAME

FLAME [22] is a wildly used parametric model that cov-

ers the entire head (without hair), which is deformed by:

M(β,θ,ψ) = LBS(TP (β,θ,ψ), J(β),θ,W), (1)

where β, θ andψ denote the shape, pose and expression pa-

rameters respectively. LBS(·) is the standard vertex based

linear blend skinning (LBS) and W denotes the skinning

weights. J(·) calculates joints location from mesh vertices,

and TP is calculated by:

TP (β,θ,ψ) = T +BS(β;S) +BP (θ;P) +BE(ψ; E),
(2)

where, T is the template head. BS(β;S), BP (θ;P) and

BE(ψ; E) are per-vertex offsets calculated by shape param-

eters β, pose parameters θ and expression parameters ψ

with corresponding bases S , P and E .

Different from FLAME, our framework aims to model

the complete head geometry (including hair) and realis-

tic texture. Therefore, we employ implicit representation

due to its flexibility, rather than the polygon mesh used

in FLAME. Specifically, the textured canonical shape (i.e.

head with identity information in natural pose and expres-

sion) is represented by neural occupancy function learned

by MLPs, which is controlled by the learned latent codes.

439



𝜽

𝒛shape
Canonical 

Generation 

Module

Deformation 

Module
Renderer

(c) Deformation Module

𝑛𝒛detail𝒛color ...

...

2D LossesOcc Loss, 3D Losses

(a) GANHead Framework

𝜷 𝜽 𝝍
• 𝒛∗: 𝑠ℎ𝑎𝑝𝑒, 𝑑𝑒𝑡𝑎𝑖𝑙, 𝑐𝑜𝑙𝑜𝑟 𝑙𝑎𝑡𝑒𝑛𝑡 𝑐𝑜𝑑𝑒𝑠
• 𝜷, 𝜽, 𝝍: FLAME parameters
• occ : occupancy value
• 𝑛, 𝑐: 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑎𝑛𝑑 𝑐𝑜𝑙𝑜𝑟
• 𝑥d: 𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 𝑝𝑜𝑖𝑛𝑡
• 𝑥c: 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 𝑝𝑜𝑖𝑛𝑡
• 𝑥c′: 𝑠ℎ𝑎𝑝𝑒 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 𝑝𝑜𝑖𝑛𝑡
• 𝐟s, 𝐟n: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
• , ∶ 𝑝𝑜𝑠𝑒 𝑎𝑛𝑑 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑠
• ∶ 𝐿𝐵𝑆 𝑤𝑒𝑖𝑔ℎ𝑡𝑠
• ∶ 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
• ∶ 𝑛𝑜𝑟𝑚𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
• ∶ 𝑡𝑒𝑥𝑡𝑢𝑟𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
• ∶ 𝑠ℎ𝑎𝑝𝑒 𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
• ∶ 𝑏𝑎𝑠𝑒𝑠 𝑎𝑛𝑑 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

(b) Canonical Generation Module

𝒛shape 𝑜𝑐𝑐

𝝍, 𝜽
𝐟s 𝑛

𝑐
𝒛detail𝒛color

𝐟n 𝑥c𝜷 𝑥c′

× 𝜽
LBS 𝑥d

LBS Loss

× 𝝍

canonical space deformed space

Figure 2. Method overview. Given shape, detail and color latent codes, the canonical generation model outputs coarse geometry and

detailed normal and texture in canonical space. The generated canonical head avatar can then be deformed to target pose and expression

via the deformation module. In the first training stage, occupancy values of the deformed shapes are used to calculate the occupancy loss,

along with the LBS loss, to supervise the geometry network and the deformation module. In the second stage, the deformed textured

avatars are rendered to 2D RGB images and normal maps, together with the 3D color and normal losses, to supervise the normal and

texture networks.

Although implicit representations are more powerful, it

is difficult for them to deform and generalize to unseen

poses and expressions. To address this, we combine the im-

plicit representations with the fine-grained control modeled

in FLAME [22] to enjoy the merits of both sides. However,

the number of vertices is not fixed in implicit representation,

such that the original bases and LBS weights in the FLAME

model cannot be directly used in our framework. To fur-

ther tackle this issue, we utilize an MLP to learn continuous

pose and expression bases, as well as the LBS weights. In

order to control the avatars generated by GANHead using

the same pose and expression parameters as the FLAME

model, we calculate the ground truth by finding the nearest

neighbors of the query points on the fitted FLAME surface,

to supervise the learning of neural bases and weights.

3.2. Canonical Generation Module

GANHead models head shape and texture in canonical

space via the canonical generation module, and we further

design a deformation module in Section 3.3 to make it con-

trollable by pose θ and expression ψ parameters which are

consistent with FLAME [22]. It is remarkable that canoni-

cal heads are defined as: heads with identity information in

natural pose and expression.

The canonical generation module consists of three neural

networks that represent the shape (including coarse shape

and fine-grained normal) and texture respectively.

Shape: We model the canonical head shape as the 0.5 level

set of the occupancy function predicted by the geometry

network G:

G(xc, zshape) : R
3 × R

ns → occ, fs, (3)

where xc denotes the point in canonical space, and zshape ∈
R

ns is the shape latent code that conditions G to generate

diverse shapes. fs ∈ R
nf is a feature vector carrying shape

information which is then used to help predict fine-grained

surface normal and texture. G consists of a 3D style based

feature generator followed by an MLP conditioned by the

generated feature, similar to [9].

To model the details of the head, we use an MLP to pre-

dict the surface normal:

N (xc, zdetail, fs) : R
3 × R

nd × R
nf → n, fn, (4)

where zdetail ∈ R
nd is the detail latent code that controls

the detail generation. n is the predicted normal of the query

point xc, together with a feature vector fn ∈ R
nf used for

texture prediction.

Texture: We model the head texture in canonical space via

a texture MLP T :

T (xc, zcolor, f ,θ,ψ) : R
3×R

nc ×R
2nf ×R

15×R
50 → c,

(5)

where zcolor ∈ R
nc is the color latent code that enables

controllable texture generation. f = fs ⊕ fn is the con-

catenation of the shape and normal feature vectors. θ and
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ψ denote the pose and expression parameters, respectively,

which are consistent with FLAME [22].

3.3. Deformation Module

To achieve flexible deformation with 3D geometry con-

sistency and good generalization to unseen poses and ex-

pressions, we design our deformation module upon the

FLAME [22] deformation field, as discussed in Section 3.1.

The deformation module first predicts the continuous pose

and expression bases, as well as LBS weights of the canon-

ical points xc, and then deforms them to xd via added per-

vertex offsets followed by linear blend skinning (LBS).

The continuous bases and weights are predicted via an

MLP:

C(xc) : R
3 → E ,P,W, (6)

where E ∈ R
3×50, P ∈ R

36×3 and W ∈ R
5 are the pre-

dicted expression bases, pose-dependent corrective bases

and LBS weights of each canonical point xc. Different

from [49], we expect the network C can be used to multiple

individuals like traditional parametric face models, rather

than a single person. To this end, we define the network C
in shape natural space by adding a shape removing network

D in front of C:

D(xc,β) : R
3 × R

100 → xc
′, (7)

with xc
′ denotes the shape natural canonical point, and β is

the shape parameter consistent with FLAME [22]. Accord-

ingly, Eq. 6 can be rewritten as:

C(xc
′) : R3 → E ,P,W. (8)

Once the continuous bases and weights are predicted, the

canonical head avatar can be deformed to target pose and

expression by adding offsets followed by performing stan-

dard linear blend skinning (LBS):

XP (θ,ψ) = Xc +BP (θ;P) +BE(ψ; E), (9)

Xd(β,θ,ψ) = LBS(XP (θ,ψ), J(β),θ,W),

where Xc = {xc1, . . . , xcn} and Xd = {xd1, . . . , xdn}
denote the sets of the canonical and deformed points re-

spectively. β, θ and ψ are the shape, pose and expression

parameters consistent with FLAME [22], which makes the

generated avatars easy to animate by FLAME parameters.

To be clear that E , P and W are the predicted continuous

bases and weights rather than the corresponding FLAME

components in Eq. 1.

As mentioned before, the shape, normal and texture net-

works are all defined in canonical space to learn more de-

tails and generalize well to unseen poses and expressions,

which means that if we input canonical query points to the

canonical generation module, the output is an head avatar

in canonical space, while if we input the canonical cor-

respondence of the deformed query points, we will obtain

the occupancy values, normals and colors of the deformed

head avatar. The canonical correspondence of the deformed

points Xd is obtained by iteratively finding the root of Eq.

9 given deformed points Xd [10].

3.4. Training

Data: We use the textured scans in FaceVerse-Dataset [42]

to train our generative model GANHead. To obtain FLAME

fitting results (shape parameters β, pose parameters θ and

expression parameters ψ) of the dataset for training, 3D fa-

cial landmarks are required for rigid alignment (i.e. calcu-

late the scale, translation and rotation factors to align the

FLAME model with raw scans). To this end, we first calcu-

late the 3D to 2D correspondence by rendering the scans to

RGB images and depth images, then use Dlib [21] to detect

the 2D landmarks and project them onto the 3D scans.

Training strategy: We train the GANHead model in two

stages similar to gDNA [9]: the coarse geometry network

and deformation module are trained in the first stage, while

the detail normal and texture networks are trained in the

second stage. The canonical space is defined as the avatar

opening its mouth slightly to help the model learn more de-

tails of the inner mouth.

Losses: In the first stage, We define the loss function as:

Lstage1 = Locc + λdLdeshape + λlLlbs + λrLreg. (10)

Specifically, Locc measures the binary cross entropy be-

tween the predicted occupancy G(xd, zshape,β,θ,ψ) and

the ground truth occupancy ogt(xd) of the sampled points

xd. Ldeshape supervises the shape removing network by

enforcing the shape removing ability on FLAME vertices

similar to [9]:

Ldeshape = ∥D(M(β,θ0,ψ0),β)−M(β0,θ0,ψ0)∥
2

2 ,

(11)

with M(·) and D(·) denotes the FLAME model and shape

removing network, respectively. β, θ and ψ are FLAME

parameters, and the subscript 0 indicates that the parame-

ter is all zeros. The LBS loss Llbs provides weak super-

vision for the learned LBS weights W , pose bases P and

expression bases E by constraining them to the correspon-

dent FLAME components similar to [49]:

Llbs = ∥W −Wgt∥
2

2
+ λp ∥P − Pgt∥

2

2
+ λe ∥E − Egt∥

2

2
,

(12)

where Wgt, Pgt and Egt are the LBS weights, pose-

dependent corrective bases and expression bases of FLAME

model. It is remarkable that all the FLAME components are

sampled to the same dimension as the query points Xc by

finding the nearest neighbours of the query points on the

fitted FLAME surface. Following [9, 10], we add two aux-

iliary losses during the first training epoch (see Sup. Mat.
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Expression 1 Expression 2 Expression 3LBS weight

Figure 3. Head avatars generation and animation. We generate three head avatars by randomly sampling GANHead, and then deform

them to the target expressions controlled by FLAME parameters. We show three samples, and they are all deformed to the same expressions.

We also show the learned LBS weights of the canonical heads. Shapes are visualized as normal maps to highlight the geometry details.

for details). In addition, we employ a regularization term

for the shape code via Lreg = ∥zshape∥
2

2
.

In the second stage, the training loss is defined as:

Lstage2 = λcLcolor + λnLnormal + λrLreg. (13)

The color loss Lcolor includes the 2D and 3D supervision

of the texture:

Lcolor = ∥Ir − Igt∥
2

2
+ λ ∥c− cgt∥

2

2
, (14)

where Igt and Ir are the rendered RGB images of the

ground truth scan and the output of GANHead respectively.

cgt and c denotes the ground truth color and the predicted

color of the query points. The normal loss also includes 2D

and 3D supervision:

Lnormal = ∥Nr −Ngt∥
2

2
+ λ(1− nT

gt · n), (15)

where Ngt and Nr are the rendered normal maps. ngt and

n are the normalized normal values of the query points,

and we enforce them point to the same direction. Further-

more, we regularize the detail and color code via Lreg =

∥zdetail∥
2

2 + λ ∥zcolor∥
2

2.

4. Experiments

GANHead is proposed to generate diverse realistic head

avatars that can be directly animated by FLAME [22] pa-

rameters. In this section, we evaluate the superiority of

GANHead in terms of the head avatar generation quality

and the animation flexibility of the generated avatars. Fur-

thermore, we also fit GANHead to unseen scans and com-

pare the performance to SOTA animatable head models to

evaluate its expressiveness.

4.1. Implementation Details

Dataset: We train our model on 2289 textured scans out

of 2310 (110 identities, each with 21 expressions) from the

training set of the FaceVerse-Dataset [42]. Scans of a sub-

ject with hat are removed to avoid interfering with the learn-

ing of hair. And the test set of the FaceVerse-Dataset (375

scans from 18 subjects) are used to evaluate the raw scan

fitting. We further conduct experiments on a subset of Mul-

tiface dataset [45] to verify the generalization ability of our

model on different datasets (See Sup. Mat.).

Training details: We use PyTorch to implement our

model, and Adam optimiser is used for training. We train

250 epochs with a batch size of 32 for the first stage, and

200 epochs with a batch size of 4 for the second stage.

The 3D and 2D correspondence are precomputed before the

second stage. The whole training takes about 3 days on 4

NVIDIA 3090 GPUs. Please refer to Sup. Mat. for more

details.

4.2. Generation and Animation Capacities

Random Generate: We randomly sample the shape, detail

and color latent codes to generate head avatars. The gen-

erated canonical head avatars and the visualization of their

respective LBS weights are shown in Fig. 3 (the first col-

umn). We find that GANHead can generate diverse head

avatars with detailed geometry and nice textures.

Deform to Target Poses and Expressions: The avatars

generated by GANHead can be easily animated controlled

by FLAME [22] parameters. Here we deform the generated

avatars (The first column in Fig. 3) to the target expressions
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Figure 4. Extreme poses and expressions. We generate a head avatar and then deform it to several extreme poses and expressions which

have never showed up in the training set.

Interpolation

Figure 5. Interpolation. We interpolate the shape, detail and color

latent codes between two samples, and show the geometry, detail

and texture of the interpolation results.

represented by FLAME [22] parameters. The results show

that the generated avatars can be well controlled by FLAME

parameters, and the poses and expressions are well disen-

tangled from the geometry.

Deform to Unseen Extreme Expressions and Poses:

In GANHead, the deformation module controlled by

FLAME [22] parameters makes the generated avatars gen-

eralize well to unseen poses and expressions. Here we gen-

erate a head avatar, and deform it to six extreme poses and

expressions by changing the FLAME parameters θ and ψ.

As shown in Fig. 4, the generated avatar can be deformed to

extreme expressions and poses that are not included in the

training set, while displaying great geometry consistency.

This is hard to achieve by previous implicit model.

Latent Code Interpolation: We interpolate the shape, de-

tail and color latent codes of two samples that look vary dif-

ferent, as shown in Fig. 5. We can see a smooth transition

between the two samples.

4.3. Ablation Study

To validate the importance of each components of GAN-

Head, we conduct ablation experiments on a subset (420

scans from 20 identities) of the training set.

How to deform the implicit head avatar is a significant

problem in implicit modeling. Deformation under the con-

trol of low dimensional meaningful variables is more diffi-

cult. Here we illustrate the superiority of the deformation

module in GANHead by comparing our method to care-

fully designed baselines. These baselines are built by re-

placing our deformation module with the following defor-

mation methods:

Forward skinning for human head (Head-FS). Since our

deformation module is designed based on the multi-subject

forward skinning for human body [9], we design a baseline

that simply applies the forward skinning method to human

head. The multi-subject forward skinning method is built

upon the human body model SMPL [25], so we directly

change the SMPL model to human head model FLAME

[22] to model the deformation of human head. As can be

observed in the top row of Fig. 6, the model can be well

generated, but the generated avatar cannot be deformed to

new expressions since the original forward skinning method

does not model the non-rigid deformation controlled by ex-

pression blendshapes.

FLAME deformation field (F-Def). F-Def directly uses

the pose-dependent corrective bases, expression bases and

LBS weights, as well as the standard linear blend skinning

of the FLAME head model [22] to deform the generated

avatars. Since FLAME is based on explicit representation,

the number of vertices is fixed, we sample the bases and

weights to the same number of points as our query points.

From Fig. 6 (the second row), we observe that the model

can generate acceptable canonical shape, but jagged distor-

tion will appear when deforming the avatar.

GANHead deformation module without LBS loss (w/o

LBS loss). The LBS loss plays an important role in the

learning of canonical geometry. Here we remove the LBS

loss, and the results are shown in Fig. 6 (the third row). It

can be observed that the canonical shape is poor, and the

geometry is learned in the blendshapes.

4.4. Comparisons on Scan Fitting

Although the principal function of GANHead is to gen-

erate animatable head avatars with complete geometry and

realistic texture, GANHead can also be fitted to raw scans

like traditional 3DMMs. In this section, we demonstrate the

fitting ability of GANHead through qualitative and quanti-

tative results on the FaceVerse test set [42].

443



O
u

r
s

w
/o

 L
B

S
 l

o
ss

F
-D

ef
H

ea
d

-F
S

DeformedCanonical

Figure 6. Comparison with baseline methods. The baseline

methods either generate poor canonical geometry (w/o LBS Loss)

or cannot deform well. In contrast, our method can generate real-

istic geometry which can also be well deformed to the target poses

and expressions.

GT Scan Ours i3DMM FLAME

Figure 7. Raw scan fitting. We compare our fitting results on the

test set of FaceVerse-Dataset [42] with two SOTA head models.

Fitting GANHead to raw scans can be achieved by op-

timizing the shape, detail and color latent codes using the

following loss function:

Lfit = Locc + L3D + λrLreg, (16)

where Locc measures the binary cross entropy between

the predicted occupancy and the ground truth occupancy.

L3D = λc ∥cgt − c∥2
2
+ λn(1 − nT

gt · n) supervises the re-

constructed color and normal of the query points. Lreg =

λ1 ∥zshape∥
2

2
+ λ2 ∥zdetail∥

2

2 + λ3 ∥zcolor∥
2

2 is the regular-

ization term for the three latent codes.

We compare our raw scan fitting results with two SOTA

Region Method Ch. (↓) F-Score (↑) Color (↓)

Full
Avatar

FLAME 4.883 72.78 ±

i3DMM 2.583 88.49 8.819

Ours 2.186 90.37 8.324

Face

FLAME 1.755 89.59 ±

i3DMM 1.208 97.30 6.423

Ours 0.695 99.23 6.529

Table 2. Fitting comparison. We report the symmetric Chamfer

distance (×10
−2), F-Score computed with a threshold of 0.05, and

color distance on the FaceVerse test set.

generative head models (i3DMM [47] and FLAME [22])

that can model complete head and can be animated, which

are closest to the objective of this paper. For the fair com-

parison, we fit FLAME to raw scans by iteratively solv-

ing the optimization problem for each scan, and retrain the

i3DMM model on the FaceVerse training set. The quali-

tative results are shown in Fig. 7. Apparently, our model

achieves the best reconstruction quality on both shape (in-

cluding expression) and texture. FLAME does not model

hair, consequently it cannot fit the hair region of raw scans,

while i3DMM and our method can model hair region. We

further report symmetric Chamfer distance (Ch.) and F-

Score for assessing the geometry reconstruction quality, and

symmetric color distance for texture assessment, as shown

in Tab. 2. Our method significantly superior to FLAME

and i3DMM in shape and expression reconstruction, es-

pecially in the facial region. As for the texture, although

i3DMM has slightly better symmetric color distance in the

facial region, our method numerically outperforms i3DMM

in the full head avatar (head and shoulder) by a margin and

achieves a better overall visual effect.

5. Conclusion

We propose GANHead (Generative Animatable Neural

Head Avatar model), a novel generative head model that

combines the fine-grained control of explicit 3DMMs with

the realism of implicit representations. Specifically, GAN-

Head represents coarse geometry, detailed normal and tex-

ture via three networks in canonical space to generate com-

plete and realistic head avatars. The generated head avatars

can then be directly animated by FLAME parameters via

the deformation module. Extensive experiments demon-

strate the superiority of GANHead in head avatar genera-

tion and raw scan fitting. We further discuss the limitations

and broader social impact in Sup. Mat.
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