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Abstract

Data augmentation (DA) is an efficient strategy for im-
proving the performance of deep neural networks. Recent
DA strategies have demonstrated utility in single image
super-resolution (SR). Little research has, however, focused
on the DA strategy for light field SR, in which multi-view
information utilization is required. For the first time in light
field SR, we propose a potent DA strategy called CutMIB to
improve the performance of existing light field SR networks
while keeping their structures unchanged. Specifically, Cut-
MIB first cuts low-resolution (LR) patches from each view
at the same location. Then CutMIB blends all LR patches
to generate the blended patch and finally pastes the blended
patch to the corresponding regions of high-resolution light
field views, and vice versa. By doing so, CutMIB en-
ables light field SR networks to learn from implicit geo-
metric information during the training stage. Experimen-
tal results demonstrate that CutMIB can improve the re-
construction performance and the angular consistency of
existing light field SR networks. We further verify the ef-
fectiveness of CutMIB on real-world light field SR and light
field denoising. The implementation code is available at
https://github.com/zeyuxiao1997/CutMIB.

1. Introduction

Light field cameras, which can record spatial and angular
information of light rays, have rapidly become prominent
imaging devices in virtual and augmented reality. Light
fields are suitable for various applications, such as post-
capture refocusing [35, 55], disparity estimation [52], and
foreground occlusion removal [54, 69], thanks to the abun-
dance of 4D spatial-angular information they contain. Com-
mercialized light field cameras generally adopt micro-lens-
array in front of the sensor, which poses an essential trade-
off between the angular and spatial resolutions [29, 35].
Therefore, light field super-resolution (SR) has been an im-
portant and popular topic. Convolutional neural network
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Figure 1. Comparisons on the reconstruction fidelity (PSNR, ↑)
and the angular consistency (MSE, ↓) between light fields super-
resolved through different methods. Following [9], we super-
resolve the whole light field of the scene Bicycle from the HCI
dataset to analyze the angular consistency of the super-resolved
results in terms of disparity estimation using SPO [70]. Note that,
CutMIB improves the values of PSNR and lowers the values of
MSE by a large margin as compared to naı̈ve light field SR meth-
ods (e.g., ATO [27], InterNet [53], IINet [33], and DPT [47]).

(CNN) based and Transformer based methods have recently
shown promising performance for light field SR [7, 8, 10,
26, 31, 33, 47, 52, 53, 56], outperforming traditional non-
learning based methods [1, 38] with noticeable gains. This
performance boost is obtained by training deep methods on
external datasets. Few works have investigated data aug-
mentation (DA) strategies for light field SR, which can im-
prove the model performance without the need for addi-
tional training datasets given that obtaining these light field
data is often time-consuming and expensive [19,23,36,48].

DA has been well studied in high-level vision tasks (e.g.,
image recognition, image classification, and semantic seg-
mentation) for achieving better network performance and
alleviating the overfitting problem [14,44,49,64,66,71]. For
example, as one of the pioneering strategies, Mixup [66]
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Figure 2. Illustrative examples of (a) CutBlur and (b) our proposed CutMIB. CutBlur generates augmented SAIs view-by-view via the
“cutting-pasting” operation. CutMIB generates the augmented light field via the “cutting-blending-pasting” operation. The implicit geo-
metric information can be utilized during the training stage.
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Figure 3. Analyzing CutBlur and CutMIB from a phase spectrum
perspective. (a) The center view image in a 5 × 5 light field. The
red rectangle denotes the area for the cutting and pasting operation.
(b) The phase spectrum of the original LR center view image. (c)
is the calculated residual map between (b) and (d). (d) The phase
spectrum of the LR center view image with the pasted LR patch us-
ing CutBlur. We cut an HR patch from the HR center view image,
and paste it to the LR center view image. (e) The phase spectrum
of the LR center view image with the pasted blended patch using
CutMIB. We cut all HR patches from the HR light field, blend
them, and then paste the blended patch to the LR center view im-
age. (f) is the calculated residual map between (b) and (e).

blends two images to generate an unseen training sample.
The effectiveness of the DA strategy on light field SR has
received very little attention. Instead, only geometric trans-
formation strategies such as flipping and rotating are used in
light field SR. Recently, Yoo et al. [60] propose CutBlur, a
DA strategy for training a stronger single image SR model,
in which a low-resolution (LR) patch is cut and pasted to the
corresponding high-resolution (HR) image region, and vice
versa. A straightforward way to utilize the DA strategy on
light field SR is to perform CutBlur on each view in a light
field and train single image SR networks view by view, as

shown in Figure 2(a). However, the ignorance of the inher-
ent correlation in the spatial-angular domain makes it sub-
optimal. We provide a visual observation using the phase
spectrum since it contains rich texture information [46, 62]
in Figure 3. Specifically, we use CutBlur on the LR center
view (Figure 3(a)) in a 5×5 light field, cut an HR patch, and
then paste it to the original LR image, and analyze the phase
spectrum of the processed LR image. We can directly ob-
serve from the calculated residual map in Figure 3(c) that
there is little additional information from the pasted HR
patch using the CutBlur strategy. This encourages us to re-
alize the need for a more effective strategy to exploit patches
from multiple views.

Based on the aforementioned observation, we propose
CutMIB, a novel DA strategy specifically designed for light
field SR, as shown in Figure 2(b). Our CutMIB, which is
inspired by CutBlur [60], first cuts LR patches from differ-
ent views in an LR light field at the same position. The
cut LR patches are then blended to generate the blended
LR patch, which is then pasted to the corresponding areas
of various HR light field views, and vice versa. There-
fore, each augmented light field pair has partially blended
LR and blended HR pixel distributions with a random ra-
tio. By feeding the augmented training pairs into light field
SR networks, these networks can not only learn “how” and
“where” to super-resolve the LR light field (i.e., benefit
from the cutting-blending operation [60]), but also utilize
the implicit geometric information in multi-view images,
resulting in better performance and higher angular consis-
tency among super-resolved light field views (i.e., benefit
from the blending operation [2, 5, 17]). Figure 3(f) illus-
trates that pasting the blended HR patch to the LR center
view (Figure 3(a)) results in more additional details in the
pasted area. This demonstrates that our CutMIB can more
effectively use multi-view information in a light field.

Thanks to CutMIB, we can improve both the reconstruc-
tion quality and the angular consistency of light field SR
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results while maintaining the network structures unchanged
(see Figure 1). Additionally, we verify the effectiveness of
the proposed CutMIB on real-world light field SR and light
field denoising tasks.

Contributions of this paper are summarized as follows:
(1) We propose a novel DA strategy, CutMIB, to improve

the performance of existing light field SR networks. To our
best knowledge, it is the first DA strategy for light field SR.
Through the “cutting-blending-pasting” operation, CutMIB
is designed to efficiently explore the geometric information
in light fields during the training stage.

(2) Extensive experiments demonstrate CutMIB can
boost the reconstruction fidelity and the angular consistency
of existing typical light field SR methods.

(3) We verify the effectiveness of CutMIB on real-world
light field SR and light field denoising tasks.

2. Related work
Light field super-resolution. Classic non-learning-based
methods utilize projection and optimization techniques to
super-resolve the LR observations, relying on geomet-
ric [30, 38] and mathematical [1, 57] modeling of the 4D
light field structure. Due to their promising performance
when trained on large external datasets, CNN-based meth-
ods now predominate light field SR. Yoon et al. [61] pro-
pose the first light field SR network LFCNN by reusing
the SRCNN architecture [15] with multiple channels. Af-
ter that, several CNN-based methods have been designed to
exploit across-view redundancy in the 4D light field, either
explicitly [26,51,68] or implicitly [34,52,53,56,59,63,72].
Transformer [4, 13, 45] based methods have recently made
significant progress in light field SR [31, 32, 47]. Further-
more, Cheng et al. [9] address the domain gap issue in light
field SR by applying a zero-shot learning framework, which
learns the SR mapping function solely from the input. In
contrast to these methods, we propose CutMIB to boost the
performance of existing light field SR methods without in-
creasing the inference time and changing architectures.
Data augmentation strategies in high-level vision. DA
strategies in high-level vision tasks can be roughly divided
into the following categories. (1) Geometric transforma-
tion, including horizontal flip, vertical flip, and rotation.
(2) Photometric transformation, such as color jitter [40].
(3) Information-dropping strategies, including Cutout and
random erasing [71] and Cutout [14]. This strategy pri-
marily causes the loss or misunderstanding of spatial in-
formation between neighboring pixels. (4) Search-based
strategies, including AutoAug [11] and RandAug [12].
The search-based strategy utilizes reinforcement learning to
search from a pool of augmentation policies for an optimal
combination. (5) Mixing-based strategies, Mixup [66] and
CutMix [64]. Mixing-based augmentation employs multi-
image information by creating mixed input images with soft

labels for training. (6) Feature-level augmentation, such
as [44, 49]. (7) GAN-based augmentation, such as [3]. In
contrast to the abovementioned strategies, we propose Cut-
MIB, which specializes in light field SR in low-level vision.
Data augmentation strategies in low-level vision. As a
pioneering work along the line of DA for low-level vision,
Timofte et al. [43] propose seven techniques to improve
the performance of example-based single image SR, one of
which is DA. Consistent improvements are gained across
models and datasets using rotation and flipping operations.
However, they only utilize simple geometric manipulations
with traditional SR models [41, 42, 65] and an early deep
method, SRCNN [15]. Feng et al. [16] analyze Mixup [66]
in single image SR to suppress the model overfitting phe-
nomenon. The paper most related to us is [60], in which
a comprehensive analysis of the existing DA strategies is
applied to the single image SR task, and a novel DA strat-
egy called CutBlur is proposed. In addition, CutBlur shows
promising results in image denoising and JPEG artifact re-
moval. However, when directly applying CutBlur to light
field SR, it achieves satisfactory results, neither in recon-
struction accuracy nor angular consistency. In this paper,
we draw inspiration from CutBlur and then design a novel
DA strategy for light fields to fully exploit and utilize the
multi-view information during the training stage.

3. Method
3.1. Problem Formulation

Following [51, 53, 56, 59, 63, 68], we convert the in-
put light field from the RGB space to the YCbCr chan-
nel and only super-resolve the Y channel images, leaving
Cb and Cr channel images being bicubic upscaled. Con-
sequently, without considering the channel dimension, an
LR light field can be formulated as a 4D tensor LLR ∈
RU×V×H×W , where U and V represent angular dimen-
sions, and H and W represent spatial dimensions. Specifi-
cally, an LR light field can be considered as a U×V array of
LR sub-aperture images (SAIs), and the resolution of each
LR SAI ILR

i is H × W , where i ∈ [1, U × V ]. The light
field SR task aims at generating a super-resolved light field
LSR ∈ RU×V×rH×rW and the resolution of each HR SAI
IHR
i is rH × rW . r denotes the upsampling scale factor.

In this paper, we set r = 2 and r = 4, i.e., we verify the
effectiveness of CutMIB on ×2 and ×4 light field SR tasks.
The reconstructed HR light field is desired to be close to the
ground-truth light field LHR ∈ RU×V×rH×rW .

Without loss of generality, a light field SR network aims
to learn the mapping function f(·) of an LR light field LLR

to an HR light field LSR, which can be denoted as

LSR = f(LLR). (1)

A light field SR network is optimized with a loss function,
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Figure 4. Schematic illustration of our proposed CutMIB strategy tailored for light field. Orange and pink rectangles represent the LR and
HR light fields, respectively. Different textures in rectangles represent different views. Best viewed in color.

and L1 is the most commonly used one. Given a training
set {LLR

i ,LHR
i }Ni=1, which contains N LR input light fields

and their HR counterparts. The goal of training light field
SR network is to minimize the L1 loss function

L(Θ) =
1

N

N∑
i=1

∥∥LSR
i − LHR

i

∥∥
1

=
1

N

N∑
i=1

∥∥f (
LLR
i

)
− LHR

i

∥∥
1
,

(2)

where Θ is the parameters of the light field SR network.

3.2. CutMIB

As illustrated in Figure 2(b) and Figure 4, the goal of
CutMIB is to generate a pair of new training samples by the
cutting-blending-pasting operation:

(1) Cutting: cut the random regions in k SAIs from LLR

and get k LR patches PLR = {pLR
i }ki=1

pLR
i = M ⊙ ILR

i , i ∈ [1, k], (3)

where k ≤ K, and M ∈ {0, 1}H×W denotes a binary
mask indicating where to cut and ⊙ denotes the element-
wise multiplication operation. K indicates all views in an
LF and K=U×V .

(2) Blending: k LR patches are blended to get the
blended LR patch PLR

blend

PLR
blend =

1

k

k∑
i=1

pLR
i . (4)

(3) Pasting: the blended LR patch PLR
blend are pasted to

the corresponding k HR SAIs IHR
i and corresponding re-

gion. Note that, due to the resolution mismatch of the
blended LR patch and the corresponding region in HR SAIs,
we utilize the bicubic kernel to upsample PLR

blend with the

factor of r and get PLR↑
r

blend.
The HR blended patch and the generated LR SAIs can

be achieved similarly. Based on the above operations, we

get the augmented SAI as

ÎHR→LR
i = PHR↓r

blend + (1−M)⊙ ILR
i ,

ÎLR→HR
i = PLR↑r

blend + (1−M)⊙ IHR
i ,

(5)

where 1 is a binary mask filled with ones. Therefore, a
pair of new training samples {L̂HR→LR, L̂LR→HR} can be
generated by combining {ÎHR→LR

i , ÎLR→HR
i } according

to the view position.

3.3. Discussion: Variants of CutMIB

The cutting-blending-pasting operation allows CutMIB
to exploit and utilize the multi-view information contained
in light field pairs during the training stage. So naturally, we
have two questions here: (1) which SAIs should be consid-
ered in CutMIB, and (2) how many SAIs should be consid-
ered in CutMIB? We design several variants to answer the
above two questions, as shown in Figure 5.

Given a highly redundant light field, SAIs are stacked
along four specific directions into different view stacks, re-
ducing computational costs significantly while maintaining
high performance in the light field SR task. These four spe-
cific directions, namely horizontal (θ1, θ=0◦), vertical (θ2,
θ=90◦), main diagonal (θ3, θ=45◦) and antidiagonal (θ4,
θ=135◦), contain the implicit geometric information along
one direction of the light field. The variants of CutMIB
consider SAIs along these four directions and their typical
combinations to perform the cutting-blending-pasting oper-
ation. In addition, we consider the random selection of SAIs
for CutMIB. Detailed results for the variants of CutMIB are
shown in Section 4.2.

4. Experiments
4.1. Experimental Settings

Network structures. We adopt several advanced and typi-
cal light field SR networks to verify the effectiveness of our
CutMIB strategy. We first consider CNN-based methods,
including ATO [27], InterNet [31], IINet [33], and Dist-
gSSR [52], in which well-designed CNN-based structures
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Figure 5. Variants of CutMIB on a light field with 5 × 5 angular resolution. Red rectangles denote the views in a light field utilized in
CutMIB (i.e., the cutting-blending-pasting operationsss). Gray rectangles denote the views trained without the CutMIB strategy.

Table 1. Training InterNet [53] with different variants of CutMIB ( SAIs at different typical positions and different number of SAIs ).

Method HCInew HCIold INRIA STFgantry EPFL Average

PSNR ∆ PSNR ∆ PSNR ∆ PSNR ∆ PSNR ∆ PSNR ∆

InterNet 30.942 - 37.104 - 30.743 - 30.343 - 28.773 - 30.440 -

θ1 30.978 +0.036 37.143 +0.039 30.793 +0.050 30.370 +0.027 28.838 +0.065 30.491 +0.051
θ2 30.972 +0.030 37.141 +0.037 30.766 +0.023 30.368 +0.025 28.817 +0.044 30.474 +0.034
θ3 30.977 +0.035 37.148 +0.044 30.793 +0.050 30.367 +0.024 28.840 +0.067 30.492 +0.052
θ4 30.979 +0.037 37.152 +0.048 30.795 +0.052 30.368 +0.025 28.838 +0.065 30.492 +0.052

θ1+θ2 30.980 +0.038 37.150 +0.046 30.792 +0.049 30.375 +0.032 28.834 +0.061 30.490 +0.050
θ3+θ4 30.981 +0.039 37.147 +0.043 30.798 +0.055 30.369 +0.026 28.844 +0.071 30.495 +0.055

θ1+θ2+θ3+θ4 31.002 +0.060 37.177 +0.073 30.804 +0.061 30.445 +0.102 28.846 +0.073 30.510 +0.070

k = 1 30.942 0.000 37.111 +0.007 30.736 -0.007 30.338 -0.005 28.777 +0.004 30.440 0.000
k = 10 30.999 +0.057 37.173 +0.069 30.808 +0.065 30.441 +0.098 28.847 +0.074 30.510 +0.070
k = 20 31.006 +0.064 37.179 +0.075 30.808 +0.065 30.449 +0.106 28.852 +0.079 30.515 +0.075
InterNet 31.009 +0.067 37.184 +0.079 30.813 +0.069 30.460 +0.117 28.856 +0.082 30.519 +0.080

are proven effective on light field SR. Transformer-based
method, DPT [47], is also adopted in our experiments.
Training settings and implementation details. We follow
the same experimental setting as in [31,31,33,47,56] and re-
train selected networks on the mixed datasets [22,28,37,58]
from scratch based on their publicly available codes. In
total, 144 scenes are used for training and 23 for test-
ing. The training and testing LR light fields are generated
by bicubic downsampling with MATLAB. We keep each
method’s training hyper-parameters (e.g., learning rate and
batch size) the same as reported in the original paper. We
crop 320× 320 patches for training light field SR methods.
The spatial size of the patch used in CutMIB is randomly set
to 16 ∼ 72. All experiments are conducted using PyTorch
on two NVIDIA 1080Ti GPUs.
Inference settings. We evaluate our proposed CutMIB
strategy and its variants on several benchmarks from Ba-
sicLFSR1, including EPFL, HCInew, HCIold, INRIA, and
STFgantry. We utilize PSNR on the Y channel to evalu-
ate the performance of different methods. To quantitatively
evaluate the results, we choose PSNR on the Y channel as
the main metric.

4.2. Results of CutMIB Variants

To determine which SAIs and how many SAIs should be
considered in CutMIB for better performance, we explore

1https://github.com/ZhengyuLiang24/BasicLFSR

the impact of different variants of CutMIB on the perfor-
mance of InterNet in terms of ×4 light field SR.
Which SAIs should be considered in CutMIB? We show
several typical views and their combinations in the upper
part of Table 1. We can observe two phenomena from the
table. (1) The views along specific directions do not matter
in CutMIB, although the implicit geometric information of
these views is practical in other tasks [20,25,39,68]. As can
be seen from the table, various views along different direc-
tions remain the same as the final results. For instance, the
difference between the average results of θ1 and θ3 is only
0.001dB. (2) Involving more views yields better results. As
we can see, θ1 + θ2 + θ3 + θ4 gains over θ1 with about
0.020dB. This is consistent with Section 1 analysis because
more SAIs can provide more implicit geometric information
during the training stage.
How many SAIs should be considered in CutMIB? As
in the lower part of Table 1, the more views (i.e., the larger
the k), the better performance. This is consistent with the
conclusion obtained above. Therefore, we utilize all views
in CutMIB to achieve the best results.

4.3. Results of CutMIB

We first test our proposed CutMIB and CutBlur [60] on
various benchmark datasets in Table 2. The table shows that
as compared to CutBlur, the networks trained with CutMIB
achieve greater reconstruction performance. Taking ATO as
an example, we can see that training with CutMIB results in
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Table 2. Quantitative comparison with existing light field SR methods. We show the PSNR (dB, ↑) results for ×2 and ×4 light field SR
tasks on benchmark datasets. We compare the baseline methods with the methods trained with CutBlur and CutMIB .

Method HCInew HCIold INRIA STFgantry EPFL Average

×2 PSNR ∆ PSNR ∆ PSNR ∆ PSNR ∆ PSNR ∆ PSNR ∆

ATO 37.170 - 43.956 - 36.133 - 39.456 - 34.228 - 36.454 -
ATO 37.236 +0.066 44.210 +0.254 36.196 +0.063 39.609 +0.153 34.294 +0.066 36.543 +0.089
ATO 37.324 +0.154 44.233 +0.277 36.350 +0.217 39.929 +0.472 34.442 +0.214 36.686 +0.232

InterNet 37.072 - 44.290 - 35.671 - 38.169 - 33.904 - 36.113 -
InterNet 37.236 +0.164 44.546 +0.256 36.104 +0.433 38.557 +0.387 34.320 +0.416 36.473 +0.360
InterNet 37.320 +0.248 44.590 +0.300 36.043 +0.372 39.004 +0.834 34.300 +0.397 36.508 +0.395

IINet 37.690 - 44.664 - 36.536 - 39.595 - 34.667 - 36.897 -
IINet 37.749 +0.059 44.727 +0.063 36.510 -0.026 39.780 +0.186 34.689 +0.021 36.933 +0.036
IINet 37.836 +0.146 44.746 +0.082 36.519 -0.018 40.264 +0.669 34.755 +0.087 37.022 +0.125
DPT 37.288 - 44.057 - 36.381 - 39.342 - 34.480 - 36.637 -
DPT 37.353 +0.066 44.274 +0.217 36.403 +0.022 39.455 +0.113 34.485 +0.005 36.684 +0.047
DPT 37.471 +0.183 44.340 +0.283 36.476 +0.095 39.738 +0.396 34.562 +0.082 36.784 +0.147

DistgSSR 37.956 - 44.917 - 36.579 - 40.360 - 34.802 - 37.100 -
DistgSSR 37.952 -0.004 44.898 -0.019 36.569 -0.010 40.335 -0.025 34.792 -0.001 37.089 -0.011
DistgSSR 37.967 +0.011 44.919 +0.002 36.575 -0.004 40.380 +0.020 34.811 +0.009 37.107 +0.007

Method HCInew HCIold INRIA STFgantry EPFL Average

×4 PSNR ∆ PSNR ∆ PSNR ∆ PSNR ∆ PSNR ∆ PSNR ∆

ATO 30.813 - 36.893 - 30.677 - 30.573 - 28.515 - 30.292 -
ATO 30.896 +0.083 36.991 +0.098 30.798 +0.121 30.585 +0.012 28.612 +0.097 30.385 +0.093
ATO 30.950 +0.138 37.050 +0.157 30.829 +0.152 30.771 +0.198 28.631 +0.116 30.430 +0.138

InterNet 30.942 - 37.104 - 30.743 - 30.343 - 28.773 - 30.440 -
InterNet 30.980 +0.039 37.149 +0.045 30.800 +0.056 30.371 +0.028 28.845 +0.072 30.496 +0.056
InterNet 31.009 +0.067 37.184 +0.079 30.813 +0.069 30.460 +0.117 28.856 +0.082 30.519 +0.080

IINet 31.313 - 37.547 - 31.086 - 31.198 - 29.005 - 30.792 -
IINet 31.357 +0.044 37.595 +0.047 31.026 -0.060 31.300 +0.102 29.046 +0.041 30.818 +0.025
IINet 31.422 +0.109 37.613 +0.066 31.089 +0.003 31.450 +0.252 29.106 +0.102 30.884 +0.092
DPT 31.135 - 37.212 - 30.924 - 31.060 - 28.881 - 30.631 -
DPT 31.177 +0.043 37.364 +0.151 30.959 +0.034 31.092 +0.032 28.940 +0.059 30.688 +0.057
DPT 31.279 +0.144 37.385 +0.173 31.072 +0.147 31.334 +0.274 29.029 +0.148 30.791 +0.160

DistgSSR 31.410 - 37.588 - 31.015 - 31.635 - 29.015 - 30.840 -
DistgSSR 31.418 +0.008 37.599 +0.011 31.022 +0.007 31.638 +0.003 29.023 +0.008 30.847 +0.008
DistgSSR 31.445 +0.035 37.618 +0.030 31.030 +0.015 31.681 +0.046 29.034 +0.019 30.864 +0.024

Ground-truth ATO ATO† InterNet InterNet† IINet IINet† DPT DPT†

Figure 6. Visual comparisons of different models trained without and with the proposed CutMIB on ×2 and ×4 light field SR. † means the
networks are trained with the CutMIB. Please zoom in for better visualization and best viewed on the screen.
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Figure 7. Disparity estimation results achieved by SPO [70] using ×2 light field SR results generated by different methods. Please zoom
in for better visualization and best viewed on the screen.

Ground-truth Ground-truth Noisy ATO ATO† InterNet InterNet† IINet IINet†

Figure 8. Visual comparisons (view coordinates: (4, 4) in an 8 × 8 light field) of different models trained without and with the proposed
CutMIB on light field denoising under the setting of σ = 50. Please zoom in for better visualization and best viewed on the screen.

Table 3. Quantitative comparison with existing light field denois-
ing methods. We show the PSNR (dB, ↑) results for σ = 10,
σ = 20, and σ = 50 light field denoising task. We compare the
baseline methods with the methods trained with CutMIB .

Method σ = 10 σ = 20 σ = 50

PSNR ∆ PSNR ∆ PSNR ∆

ATO 42.509 - 39.957 - 36.057 -
ATO 42.612 +0.103 40.051 +0.094 36.202 +0.145

InterNet 42.706 - 39.997 - 35.920 -
InterNet 42.776 +0.070 40.112 +0.115 36.152 +0.232

IINet 43.164 - 40.481 - 36.525 -
IINet 43.177 +0.013 40.613 +0.132 36.606 +0.081

a 0.319 dB gain compared with training using CutBlur does
on the STFGantry dataset.

Table 2 also shows quantitative comparisons of the
methods trained without and with CutMIB on benchmark
datasets. The table shows that existing light field SR net-
works trained with CutMIB outperform the correspond-
ing baselines by a considerable margin. Specifically, on
×4 light field SR of HCInew, ATO trained with Cut-
MIB achieves 30.950 dB (PSNR), while the same network
trained without CutMIB only gets 30.813 dB (PSNR). Also,
as shown in Figure 1, methods trained with our CutMIB ob-
tain results with better angular consistency.

Qualitative results on ×2 and ×4 light field SR are pre-
sented in Figure 6. It is clear that the networks trained with
CutMIB provide better qualitative results than their base-
lines, with more accurate details and fewer blurs (such as
the area of the bicycle handlebar and the telescope mount).

Since HR and angular-consistent light fields are beneficial
to disparity estimation, we apply SPO [70] to estimate dis-
parity maps of the super-resolved light field images to per-
form disparity estimation. As can be seen in Figure 7, the
disparity maps estimated by the results generated from the
networks trained with CutMIB have sharper edges and more
accurate results, indicating the effectiveness of our CutMIB.

4.4. Extensions: Applications of CutMIB

Light field denoising. We validate the effectiveness of Cut-
MIB on the light field denoising task. We follow the same
settings in [6, 21], and generate the datasets for training
and testing based on Stanford Lytro Light Field Archive.
We center-crop each scene and set the angular resolution of
each light field equal to 8 × 8. Zero-mean Gaussian noise
with a standard variance of σ = 10, σ = 20, and σ = 50
are synthesized for each training data and testing data. We
retrain ATO, InterNet, and IINet on the generated datasets
under three different settings. We change the input angu-
lar number from 5 to 8, and remove the upsampling opera-
tion in each network for light field denoising. The average
PSNR results between the denoised light fields and ground-
truth ones are used to evaluate different methods quantita-
tively in Table 3. As can be seen in the table, all the methods
trained with our proposed CutMIB achieve higher recon-
struction fidelity than their baseline versions, validating the
advantage of our CutMIB. We also show the qualitative re-
sults in Figure 8 at the level of σ = 50. Networks trained
with CutMIB can generate more realistic and accurate de-
tails, especially in the area of branches and walls.

1678



Real-world light field Real-world ATO ATO† InterNet InterNet† IINet IINet† DPT DPT†

Figure 9. Visual comparisons of different methods on ×4 real-world light field SR. Please zoom in for better visualization.

Table 4. Quantitative comparison with ×4 light field SR methods
under different isotropic Gaussian kernels on EPFL. We compare
the baseline methods with the methods trained with CutMIB .

Method k = 1.8 k = 2.5 k = 3.2

PSNR ∆ PSNR ∆ PSNR ∆

ATO 26.776 - 25.260 - 24.243 -
ATO 26.851 +0.075 25.289 +0.029 24.263 +0.020

IINet 26.884 - 25.299 - 24.252 -
IINet 26.898 +0.014 25.308 +0.009 24.265 +0.013

InterNet 26.887 - 25.310 - 24.267 -
InterNet 26.937 +0.050 25.324 +0.014 24.274 +0.007

DPT 26.781 - 25.200 - 24.174 -
DPT 26.781 0.000 25.210 +0.010 24.182 +0.008

Light field SR under isotropic gaussian kernels. Existing
light field SR networks are trained and evaluated on simu-
lated datasets that assume simple and uniform degradation
(i.e., bicubic degradation). Degradations in real applications
are much more complicated. Here we evaluate light field
SR networks on light fields degraded using isotropic gaus-
sian kernels to measure the generalizability. The degrada-
tion process of a light field can be denoted as [50]

ILR
i = (IHR

i ⊗ ki) ↓r +ni, (6)

where ⊗ represents the convolution operation, and ↓r rep-
resents downsampling by a factor r. ni is the real-world
noise. Following the setting in [18,24], the kernel size of ki
is set as 21, and the kernel widths are set to 1.8, 2.5, and 3.2
for evaluation. Note that this work focuses on not designing
a blind light field SR network; we set each view to have the
same degradation kernel and do not account for noise. As
can be seen in Table 4, all results drop a lot. This is mainly
because we do not explicitly address the degradation ker-
nel mismatch issue. Still, networks trained with CutMIB
generate results with higher PSNR values.
Real-world light field SR. We also conduct experiments
to prove that networks trained with CutMIB can generalize
well to real-world light fields. We choose a real-world light
field from the HFUT dataset [67], and we super-resolve this
light field directly using the baseline networks and their cor-
responding versions trained with CutMIB. As can be seen
in Figure 9, networks trained with CutMIB produce visually
more promising results with clearer details.

Table 5. PSNR (dB) comparison of different data augmentation
strategies in light field SR.

DA strategy Cutout (8px) Mixup Blend RGB permute
InterNet Average result: 30.440
k = 5 +0.049 +0.043 +0.045 +0.042
k = 10 +0.026 +0.046 +0.043 +0.038
k = 20 +0.031 +0.050 +0.049 +0.011
k = 25 +0.001 +0.025 +0.045 +0.009

4.5. Discussion: Other DA Strategies
In this section, we evaluate the performance of Inter-

Net [53] trained with different typical DA strategies using k
random views. (1) Cutout [14]: we randomly erase 8 pixels
in k views of a light field. (2) Mixup [66]: we blend two im-
ages on k views to generate an unseen training sample. (3)
Blend: we blend image with vector v = (v1, v2, v3), where
vi ∼ Unif(0.6, 1). (4) RGB permute: we randomly permute
RGB channels. Results are shown in Figure 5. It can be seen
that these DA strategies can improve the performance of In-
terNet, although they are not designed for the task of light
field SR. We can also find that, performance gains of these
DA strategies are not as significant as CutMIB, demonstrat-
ing CutMIB can make better use of multi-view information.

5. Conclusion
In this work, we propose a novel data augmentation strat-

egy, i.e., CutMIB, for light field SR. Our CutMIB is able to
train better light field SR networks without changing their
structures or post-processing operations. We demonstrate
the effectiveness and versatility of our proposed CutMIB
on the light field SR task, which can achieve improved re-
construction quality and better angular consistency. We also
verify the effectiveness of CutMIB on light field denoising
and real-world light field SR. In future work, we will ex-
plore other data augmentation strategies for light field SR
to further improve the performance of existing networks. In
addition, we will extend CutMIB to other high-dimensional
data processing tasks.
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