
Exploring and Exploiting Uncertainty for Incomplete Multi-View Classification

Mengyao Xie‡, Zongbo Han‡, Changqing Zhang∗, Yichen Bai, Qinghua Hu
College of Intelligence and Computing, Tianjin University

zhangchangqing@tju.edu.cn

Abstract

Classifying incomplete multi-view data is inevitable since
arbitrary view missing widely exists in real-world applica-
tions. Although great progress has been achieved, existing
incomplete multi-view methods are still difficult to obtain a
trustworthy prediction due to the relatively high uncertainty
nature of missing views. First, the missing view is of high
uncertainty, and thus it is not reasonable to provide a single
deterministic imputation. Second, the quality of the imputed
data itself is of high uncertainty. To explore and exploit the
uncertainty, we propose an Uncertainty-induced Incomplete
Multi-View Data Classification (UIMC) model to classify
the incomplete multi-view data under a stable and reliable
framework. We construct a distribution and sample multiple
times to characterize the uncertainty of missing views, and
adaptively utilize them according to the sampling quality.
Accordingly, the proposed method realizes more perceivable
imputation and controllable fusion. Specifically, we model
each missing data with a distribution conditioning on the
available views and thus introducing uncertainty. Then an
evidence-based fusion strategy is employed to guarantee the
trustworthy integration of the imputed views. Extensive ex-
periments are conducted on multiple benchmark data sets
and our method establishes a state-of-the-art performance
in terms of both performance and trustworthiness.

1. Introduction
Learning from multiple complementary views has the

potential to yield more generalizable models. Benefiting
from the power of deep learning, multi-view learning has
further exhibited remarkable benefits against the single-view
paradigm in clustering [1–3], classification [4, 5] and rep-
resentation learning [6, 7]. However, real-world data are
usually incomplete. For instance, in the medical field, pa-
tients with same condition may choose different medical
examinations producing incomplete/unaligned multi-view
‡Equal contribution.
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data; similarly, sensors in cars at times may be out of order
and thus only part of information can be collected. Flexible
and trustworthy utilization of incomplete multi-view data is
still very challenging due to the high uncertainty of missing
issues.

For the task of incomplete multi-view classification
(IMVC), there have been plenty of studies which could be
roughly categorized into two main lines. The methods [8, 9]
only use available views without imputation to conduct clas-
sification. While the other line [10–13] reconstructs miss-
ing data based on deep learning methods such as autoen-
coder [14,15] or generative adversarial network (GAN) [16],
and then utilizes the imputed complete data for classification.
Although significant progress has been achieved by exist-
ing IMVC methods, there are still limitations: (1) Methods
that simply neglect missing views are usually ineffective
especially under high missing rate due to the limitation in
exploring the correlation among views; (2) Methods that
impute missing data based on deep learning methods are
short in interpretability and the deterministic imputation way
fails to characterize the uncertainty of missing resulting in
unstable classification; (3) Few IMVC methods can handle
multi-view data with complex missing patterns especially
for the data with more than two views, which makes these
methods inflexible.

In view of above limitations, we propose a simple yet
effective, stable and flexible incomplete multi-view classi-
fication model. First, the proposed model characterizes the
uncertainty of each missing view by imputing a distribution
instead of a deterministic value. The necessity of charac-
terizing the uncertainty for missing data on single view has
been well recognized in recent works [17, 18]. Second, we
conduct sampling multiple times from the above distribution
and each one is combined with the observed views to form
multiple completed multi-view samples. The quality of the
sampled data is of high uncertainty, and thus we adaptively
integrate them according to their quality on the single view
and multi-view fusion. For single view, the uncertainty of
the low-quality sampled data tends to be large and should
not affect the learning of other views. Therefore, we con-
struct an evidence-based classifier for each view to obtain the
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opinion including subjective probabilities and uncertainty
masses. While for multi-view fusion, the opinions from mul-
tiple views are integrated based on DS rule, which ensures
the trustworthy utilization of arbitrary-quality views. The
main contributions of this work are summarized as follows:

• We propose an exploration-and-exploitation strategy for
classifying incomplete multi-view data by characteriz-
ing the uncertainty of missing data, which promotes
both effectiveness and trustworthiness in utilizing im-
puted data. To the best of our knowledge, the proposed
UIMC is the first work asserting uncertainty in incom-
plete multi-view classification.

• To fully exploit the high-quality imputed data and re-
duce the affect of the low-quality imputed views, we
propose to weight the imputed data from two aspects,
avoiding the negative effect on single view and multi-
view fusion. The uncertainty-aware training and fusion
significantly ensure the effectiveness and reliability of
integrating uncertain imputed data.

• We conduct experiments on classification for data with
multiple types of features or modalities, and evaluate
the results with diverse metrics, which validates that the
proposed UIMC outperforms existing methods in the
above tasks and is trustworthy with reliable uncertainty.

2. Related Work
2.1. Incomplete Multi-View Learning

Incomplete multi-view learning can be generally divided
into two main lines in terms of how to handle missing views.
Specifically, existing works mainly focus on neglecting or
complementing the missing views based on deep-learning
methods. Methods without imputation. The methods only
use present views and directly learn the common latent sub-
space or representation for all views in clustering [19–21]
and classification [8, 9]. Generative Methods. The meth-
ods impute missing views with the present views and then
utilize the reconstructed complete data to conduct down-
stream tasks [10, 11, 22–28]. Specifically, one of the most
popular ways is applying the structure of variational auto-
encoder on partial multi-view data to reconstruct missing
views [10, 11, 22]. Generative adversarial network is also
used to generate missing views [26–28]. Besides, there
are some methods to obtain imputations based on kernel
CCA [23], spectral graph [24], and information theory [25].
Compared with the above algorithms, our method obtains
multiple imputations instead of single imputation and then
dynamically evaluates the imputation quality. Thus the more
reliable downstream classification tasks can be performed.

2.2. Uncertainty Estimation

One of the key points of our method is to explore and
exploit the uncertainty in missing data. To achieve high-

quality uncertainty estimation, many approaches have been
proposed [29–31]. The uncertainty in deep learning can be
generally divided into aleatoric uncertainty and epistemic
uncertainty [32–34]. Aleatoric uncertainty refers to the un-
certainty caused by data and it measures the inherent noise
of data. Aleatoric uncertainty can be further divided into
homoscedastic uncertainty and heteroscedastic uncertainty,
while the first one which varies with different tasks is usu-
ally used to estimate the uncertainty in multi-task learn-
ing [35, 36], and the latter one which varies with input is
useful when the input space includes variable noise [37, 38].
On the other hand, epistemic uncertainty refers to uncertainty
caused by insufficient model training and can be eliminated
in theory. It can be estimated by predicting an uncertain
observation using models with different parameters, the in-
stability of predicting results just reflects the epistemic un-
certainty [32, 39]. In this work, we estimate the aleatoric
uncertainty of imputations by adopting subjective logic [40]
and Dempster-Shafer theory [41] to construct a trustworthy
and reliable multi-view classification network.

3. Method
The key goal of the proposed method is to explore and

exploit the uncertainty of incomplete multi-view data, pro-
moting both effectiveness and trustworthiness of the model.
We first introduce the background of incomplete multi-view
classification in Sec. 3.1 and then present how to characterize
the uncertainty of imputed view in Sec. 3.2, exploit the im-
putation uncertainty and integrate the uncertain decisions in
Sec. 3.3, and finally demonstrate how to obtain classification
predictions with multiple imputations in Sec. 3.4.

3.1. Background

Given N training inputs {Xn}Nn=1 with V views , i.e.,
X = {xv}Vv=1, and the corresponding class labels {yn}Nn=1,
multi-view classification aims to construct a mapping be-
tween input and label by exploiting the complementary
multi-view data. In this paper, we focus on the incomplete
multi-view classification task defined in Def. 3.1.

Definition 3.1 (Incomplete Multi-View Classification) For-
mally, a complete multi-view sample is composed of V views
X = {xv}Vv=1 and the corresponding class label y. An
incomplete multi-view observation X is a subset of the com-
plete multi-view observation (i.e., X ⊆ X) with arbitrary
possible V views, where 1 ≤ V ≤ V . Given an incomplete
multi-view training dataset {Xn,yn}Nn=1 with N samples,
incomplete multi-view classification aims to learn a mapping
between the incomplete multi-view observation X and the
corresponding class label y.

There are two main lines to solve the incomplete multi-
view classification problem, including imputing and neglect-
ing the missing views. Specifically, the imputation-based
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Figure 1. Illustration of the proposed UIMC. For clarity, we use 3-view data with one missing view as example in the Fig. 1a. The overall
process of UIMC consists of two stages. In the stage 1, we characterize the underlying uncertainty of missing view with a multivariate
Gaussian distribution N (µ,Σ) based on the non-parameterized nearest-neighbor strategy. Then we can obtain Ns complete instances
{X̂s}Ns

s=1 by Ns samplings from the distribution of the missing view. In the stage 2, for instance X̂s, to alleviate the negative impact from
low-quality imputations, we exploit the uncertainty of each view with evidential classification. Then the Dempster’s combination rule
introduced in Def. 3.2 is adopted to integrate the subjective opinions from multiple views, which enables the model to trustworthily exploit
the imputation data.

methods [10–13] complete the missing views based on ob-
served data, but they basically ignore that the untrustworthy
imputation will harm downstream tasks. In contrast, the
methods neglecting the missing views [8,9] train the classifi-
cation model only using the available views, which usually
lack of the exploration of the correlation among different
views. The proposed method aims to learn a more trustwor-
thy model by exploring and exploiting the uncertainty of the
missing views.

3.2. Imputing Missing Views

Given an incomplete multi-view data-instance X, we con-
sider reasonably imputing its missing views based on the
observed views, which could potentially promote the down-
stream classification model.

Characterizing uncertainty for missing views. Most of
existing incomplete multi-view classification methods [10–
13] impute the missing views with single imputation. For-
mally, they usually construct a deterministic mapping from
the incomplete multi-view data-instance X to complete data,
i.e., f : X → X. The single imputation ignores the high
uncertainty nature of the imputed data, which might neg-
atively impact downstream classification tasks due to the
untrustworthy imputation. This phenomenon has also been
well recognized in single-view classification tasks with miss-
ing attributes [18, 42]. Instead of imputing missing views
with deterministic mapping, we characterize the underlying
uncertainty of missing views with a distribution based on the
nearest-neighbor-based non-parameterized strategy.

Constructing the nearest neighbor set. Without loss
of generality, we consider that there is an incomplete multi-
view training instance X and its corresponding label y with
m-th view missing, we aim to impute the missing view xm

based on the information of other training samples whose

m-th view is available. Inspired by the classical classifi-
cation algorithm k-nearest neighbors [43], we employ a
non-parameterized method to construct the distribution of
missing view xm by exploring the neighbors of X. Specifi-
cally, for the v-th view (v ̸= m), given the available obser-
vation xv ∈ X, we construct a neighbor set by finding its
k-nearest neighbors in other samples with the same label in
the following way. Firstly, we construct the distance set Dv

by computing the distance between xv and xv
n, where xv

n is
the data of v-th view of the samples available for m-th view
and y = yn,

Dv =
{
−∥xv − xv

n∥
2 | xv

n,x
m
n are available and y = yn

}
.

(1)
Then we can obtain the nearest neighbor indicator set Iv

with

Iv =
{
i | − ∥xv − xv

i ∥
2 ∈ topk (Dv)

}
, (2)

where topk(·) is an operator to select the k-nearest neighbors
from the training set according to the distance set Dv . Note
that, during the test time, the missing view xm is imputed by
selecting the nearest neighbors from the training set being
independent with labels.

Imputation with statistical information. Given the near-
est neighbor indicator set I = {Iv}v ̸=m, we characterize the
distribution of the missing view xm with its neighbor set
{xm

i }i∈I statistically. Formally, we assume that the miss-
ing view xm follows a multivariate Gaussian distribution
N (µ,Σ), where µ and Σ are the mean vector and covari-
ance matrix calculated from neighbor set with

µ =

∑
i∈I x

m
i

|I|
,Σ =

1

|I| − 1

∑
i∈I

(xm
i − µ)(xm

i − µ)T .

(3)
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Then xm can be imputed by taking multiple samplings
from the multivariate Gaussian distribution N (µ,Σ). More
specifically, given an incomplete training instance X, we
can obtain Ns complete training instances {X̂s}Ns

s=1 via Ns

samplings. The imputation framework can be referred to
Fig. 1a.

3.3. Classifying Imputed Multi-View Samples

After obtaining imputed multi-view training dataset
{{X̂n,s}Nn=1}

Ns
s=1, we consider alleviating the negative im-

pact from low-quality imputations by exploiting the uncer-
tainty of imputed samples. Due to inherent noise in imputa-
tion, imputed multi-view data are usually of high uncertainty.
Therefore we first estimate the uncertainty of different views
based on an evidential multi-view learning framework and
then conduct uncertainty-based decision fusion. The overall
framework is shown in Fig. 1b.

Different from traditional classification algorithm, evi-
dential classification [44,45] defines a theoretical framework
to obtain the subjective opinions S = {{bk}Kk=1, u} includ-
ing subjective probabilities (belief masses) {bk}Kk=1 ≥ 0
and overall uncertainty mass u ≥ 0, where K denotes the
number of classes and

∑K
k=1 bk + u = 1. The subjective

opinion is associated with a Dirichlet distribution with pa-
rameters α = [α1, · · · , αK ]. Specifically, a belief mass bk
can be derived easily from the parameters of the correspond-
ing Dirichlet distribution with bk = (αk − 1)/α0, where
α0 =

∑K
k=1 αk is the Dirichlet strength.

To obtain the Dirichlet distribution parameters for each
view x̂v ∈ X̂, we construct the evidence neural network
by replacing softmax layer of traditional neural network
classifier with activation function such as softplus so that
the positive output can be regarded as evidence vector
ev = [ev1, · · · , evK ]. Then the parameters of Dirichlet dis-
tribution Dir(pv | αv) for view x̂v are obtained with
αv
k = evk + 1. Under the Variational framework, the eviden-

tial classification loss function Lv is a combination of clas-
sification loss Lv

c and a regularization term Lv
r [46]. More

specifically, the classification objective function can be re-
garded as an integral of the traditional cross-entropy loss on
the simplex determined by Dir(pv | αv). Specifically, it is
induced as:

Lv
c (α

v | xv) =

K∑
k=1

yk (ψ (αv
0)− ψ (αv

k)) , (4)

where yk is the k-th element of y represented by a one-
hot vector and ψ(·) is the digamma function. To obtain a
reasonable Dirichlet distribution, we employ the following
equation to add a prior for the Dirichlet distribution as the
regularization term:

Lv
r(α

v | xv) = DKL [Dir(pv | α̃v)∥Dir(pv | [1, · · · , 1])] ,
(5)

where α̃v = y + (1− y)⊙αv is the Dirichlet distribution
after replacing the αk corresponding to the label with 1.
Dir(pv | [1, · · · , 1]) is the uniform Dirichlet distribution.
Then for each view the overall loss function can be written
as

Lv(αv | xv) = Lv
c (α

v | xv) + λLv
r(α

v | xv), (6)

where λ is the annealing coefficient gradually changing from
0 to 1 during training to control constraint strength. We
could obtain the Dirichlet distribution Dir(pv | αv) by
minimizing Lv . Then the corresponding subjective opinions
could be derived with bvk = (αv

k − 1)/α0 and uv = 1 −∑K
k=1 b

v
k.

Now we consider integrating the subjective opinions from
different views according to the uncertainty. Dempster-
Shafer theory allows to integrate subjective opinions from
different sources to produce a more comprehensive opin-
ion [47]. Specifically, the Dempster’s combination rule
for two different views is defined in Def. 3.2. Accord-
ingly, the integrated multi-view subjective opinion can be
derived with Sm = S1 ⊕ S2 ⊕ · · · SV = {{bmk }Kk=1, u

m}.
The corresponding parameters of the integrated multi-view
Dirichlet distribution Dir(pm | αm) are obtained with
αm
k = bmk × αm

0 + 1.

Definition 3.2 (Dempster’s Combination Rule.) The sub-
jective opinion S = {{bk}Kk=1, u} after integration can be
obtained from two subjective opinion S1 = {{b1k}Kk=1, u

1}
and S2 = {{b2k}Kk=1, u

2} with S = S1 ⊕S2. Specifically, it
can be written as:

bk =
1

1− C

(
b1kb

2
k + b1ku

2 + b2ku
1
)
, u =

1

1− C
u1u2,

(7)
where C =

∑
i ̸=j b

1
i b

2
j .

To obtain reliable both single-view and integrated Dirichlet
distribution, we employ a multi-task strategy. Specifically,
the final loss function in classification period composes of
which of single and multiple views:

L =

N∑
n=1

Ns∑
s=1

{
Lm(αm) +

V∑
v=1

Lv(αv | xv
n,s)

}
, (8)

where

Lm(αm) =

K∑
k=1

yk (ψ (αm
0 )− ψ (αm

k ))

+ λDKL [Dir(pm | α̃m)∥Dir(pm | [1, · · · , 1])] .
(9)

The pseudo-code of UIMC is provided in Alg. 1.
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Algorithm 1: Training Process of UIMC
Input: Incomplete multi-view training set
{Xn,yn}Nn=1.

Initialize: Initialize the parameters of UIMC.
for n = 1 : N do

Impute missing view xmn by taking Ns samplings
from distribution N (µ,Σ) with Eq. 3.

end
while not converged do

for v = 1 : V do
Obtain evidence evn with DNN;
Obtain αv

n = evn + 1 and
Sv
n = {{bvn,k}Kk=1, u

v
n}.

end
Obtain αn = [αn,1, · · · , αn,K ] and
Sn = {{bn,k}Kk=1, un} through Def. 3.2.

Calculate overall loss L in Eq. 8;
Use an optimized algorithm to update the

parameters.
end
Output: Parameters of model.

3.4. Predicting with Multiple Imputations

During the test stage, for each incomplete sample, we
could obtain Ns imputed multi-view samples {X̂s}Ns

s=1.
Then we employ a voting strategy to acquire the classifica-
tion prediction with Ns imputations for each sample. Specif-
ically, given the Ns imputed test instances {X̂s}Ns

s=1, we can
obtain Ns label predictions {ŷs}Ns

s=1. The final predict label
for multi-view test instance X̂ would be the most frequent
element in {ŷs}Ns

s=1.

4. Experiments

In this section, we conduct extensive experiments on
multiple multi-view datasets with various missing rates
η =

∑V
v=1 Mv

V×N to answer the following questions, where
Mv indicates the number of observations without the v-th
view. Q1 Effectiveness (I). Is the proposed UIMC superior
to other methods? Q2 Effectiveness (II). How about the
quality of the imputed complete multi-view data of differ-
ent methods? Q3 Ablation study (I). Is multiple-imputation
strategy really better than single-imputation strategy? Q4
Ablation study (II). Do the uncertainty-guided classification
and fusion strategy help with performance? Q5 Stability.
How about the stability of the proposed method under the
sampling operation?

4.1. Datasets and Comparison Methods

To validate the effectiveness of UIMC, we conduct ex-
periments on five datasets. YaleB [48] is a 3-view dataset

contains 10 categories, and there are 65 facial images in
each category. ROSMAP [49] is a 3-view dataset contains
two categories: Alzheimer’s disease (AD) patients with 182
samples and normal control (NC) with 169 samples. Hand-
written [50] is a 6-view dataset contains 10 categories from
digit “0” to “9”. The number of samples in each category
is 200. BRCA [49] is a 3-view dataset for Breast Invasive
Carcinoma (BRCA) subtype classification, and it contains
5 categories. The number of samples in each category is
between 46 and 436. Scene15 [51] is a 3-view dataset con-
tains 15 categories for scene classification, and the number
of samples in each category is between 210 and 410.

We compare the proposed UIMC with the following meth-
ods: (1) Mean-Imputation simply imputes missing view
xm with the mean of all available observations on the m-th
view. (2) GCCA [52] extends Canonical Correlation Anal-
ysis (CCA) [53] to handle data with more than two views.
(3) TCCA [54] obtains a common subspace shared by all
views by maximizing the canonical correlation of multiple
views. (4) MVAE [10] extends variational autoencoder to
multi-view data and adopts product-of-experts strategy to
obtain a common latent subspace. (5) MIWAE [11] extends
importance-weighted autoencoder to multi-view data to im-
pute missing data. (6) CPM-Nets [9] directly learns the
joint latent representations for all views with available data,
and maps the latent representation to classification predic-
tions. (7) DeepIMV [8] applies the information bottleneck
(IB) framework to obtain marginal and joint representations
with the available data, and constructs the view-specific and
multi-view predictors to obtain the classification predictions.

4.2. Experiment Results

We now provide detailed empirical results to investigate
the above key questions, which can validate the effectiveness
and trustworthiness of our model.

Q1 Effectiveness (I). We evaluate our algorithm by
comparing it with the state-of-the-art incomplete multi-
view classification methods with different missing rates
η = [0, 0.1, 0.2, 0.3, 0.4, 0.5]. We employ classification ac-
curacy as the evaluation metric following prior works [55].
For the Mean-Imputation method, we impute the missing
views with corresponding means and then train classifiers
based on the completed multi-view data. For multi-view
learning methods including GCCA and TCCA, we first im-
pute the missing views with the corresponding means, and
then train GCCA/TCCA to obtain the joint concatenated rep-
resentation for all views. Finally, we train a classifier based
on the multi-view representation. For incomplete multi-
view generative methods including MVAE and MIWAE, we
take an impute-then-classify strategy. Specifically, we train
MVAE/MIWAE to obtain the imputed multi-view data, and
then train classifiers both on single-view and multi-view data
based on the imputation. For the classification methods that
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Table 1. Comparison in terms of classification accuracy (mean±std) with η = [0, 0.1, 0.2, 0.3, 0.4, 0.5] on five datasets.

Datasets Methods Missing rates
η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4 η = 0.5

YaleB

Mean-Imputation 1.0000± 0.001.0000± 0.001.0000± 0.00 0.9923± 0.00 0.9769± 0.01 0.9769± 0.01 0.9692± 0.01 0.9615± 0.01
GCCA 0.9692± 0.00 0.9385± 0.01 0.9077± 0.02 0.8615± 0.03 0.8385± 0.02 0.8231± 0.02
TCCA 0.9846± 0.00 0.9625± 0.00 0.9492± 0.01 0.90.77± 0.01 0.8846± 0.02 0.8615± 0.01
MVAE 1.0000± 0.001.0000± 0.001.0000± 0.00 0.9969± 0.00 0.9861± 0.00 0.9831± 0.01 0.9692± 0.02 0.9599± 0.01

MIWAE 1.0000± 0.001.0000± 0.001.0000± 0.00 0.9923± 0.00 0.9923± 0.01 0.9903± 0.01 0.9846± 0.01 0.9692± 0.03
CPM-Nets 0.9915± 0.02 0.9862± 0.01 0.9800± 0.01 0.9700± 0.02 0.9469± 0.01 0.9100± 0.02
DeepIMV 1.0000± 0.001.0000± 0.001.0000± 0.00 0.9846± 0.03 0.9231± 0.02 0.9154± 0.08 0.8923± 0.02 0.8718± 0.06

Ours 1.0000± 0.001.0000± 0.001.0000± 0.00 1.0000± 0.001.0000± 0.001.0000± 0.00 0.9981± 0.000.9981± 0.000.9981± 0.00 0.9962± 0.010.9962± 0.010.9962± 0.01 0.9847± 0.010.9847± 0.010.9847± 0.01 0.9769± 0.010.9769± 0.010.9769± 0.01

ROSMAP

Mean-Imputation 0.7429± 0.03 0.6809± 0.01 0.6714± 0.02 0.6571± 0.07 0.6429± 0.02 0.6072± 0.05
GCCA 0.6953± 0.03 0.6571± 0.02 0.6429± 0.04 0.6143± 0.03 0.5714± 0.06 0.5429± 0.06
TCCA 0.7143± 0.03 0.7072± 0.01 0.6857± 0.05 0.6500± 0.05 0.6286± 0.03 0.6036± 0.06
MVAE 0.7429± 0.02 0.7286± 0.05 0.7143± 0.05 0.6786± 0.03 0.6786± 0.06 0.6524± 0.06

MIWAE 0.7429± 0.03 0.7286± 0.02 0.6714± 0.05 0.6571± 0.03 0.6571± 0.05 0.6357± 0.08
CPM-Nets 0.7840± 0.05 0.7517± 0.04 0.7394± 0.06 0.7183± 0.04 0.6901± 0.08 0.6409± 0.08
DeepIMV 0.7607± 0.03 0.7429± 0.01 0.7143± 0.05 0.6643± 0.05 0.6524± 0.06 0.6250± 0.06

Ours 0.8714± 0.000.8714± 0.000.8714± 0.00 0.8429± 0.030.8429± 0.030.8429± 0.03 0.7714± 0.050.7714± 0.050.7714± 0.05 0.7464± 0.030.7464± 0.030.7464± 0.03 0.7214± 0.030.7214± 0.030.7214± 0.03 0.7143± 0.020.7143± 0.020.7143± 0.02

Handwritten

Mean-Imputation 0.9800± 0.00 0.9750± 0.00 0.9700± 0.01 0.9700± 0.01 0.9500± 0.01 0.9100± 0.01
GCCA 0.9500± 0.01 0.9350± 0.02 0.9100± 0.01 0.8875± 0.02 0.8425± 0.02 0.8200± 0.03
TCCA 0.9725± 0.00 0.9650± 0.00 0.9575± 0.02 0.9350± 0.01 0.9200± 0.01 0.9100± 0.02
MVAE 0.9800± 0.00 0.9750± 0.01 0.9700± 0.00 0.9650± 0.01 0.9575± 0.01 0.9500± 0.01

MIWAE 0.9800± 0.00 0.9800± 0.00 0.9725± 0.00 0.9650± 0.00 0.9475± 0.01 0.9375± 0.02
CPM-Nets 0.9550± 0.01 0.9475± 0.01 0.9375± 0.01 0.9300± 0.02 0.9225± 0.01 0.9125± 0.01
DeepIMV 0.9908± 0.040.9908± 0.040.9908± 0.04 0.9883± 0.020.9883± 0.020.9883± 0.02 0.9850± 0.040.9850± 0.040.9850± 0.04 0.9750± 0.02 0.9625± 0.04 0.9450± 0.06

Ours 0.9825± 0.00 0.9800± 0.00 0.9800± 0.00 0.9775± 0.000.9775± 0.000.9775± 0.00 0.9700± 0.010.9700± 0.010.9700± 0.01 0.9600± 0.010.9600± 0.010.9600± 0.01

BRCA

Mean-Imputation 0.7885± 0.02 0.7143± 0.03 0.7000± 0.04 0.6571± 0.02 0.6429± 0.03 0.6286± 0.02
GCCA 0.7371± 0.03 0.7143± 0.03 0.6971± 0.04 0.6762± 0.02 0.6514± 0.03 0.6381± 0.04
TCCA 0.7543± 0.02 0.7314± 0.03 0.7238± 0.04 0.7129± 0.03 0.6857± 0.04 0.6743± 0.03
MVAE 0.7885± 0.03 0.7691± 0.02 0.7347± 0.01 0.6968± 0.03 0.6633± 0.05 0.6388± 0.03

MIWAE 0.7885± 0.02 0.7352± 0.03 0.7314± 0.03 0.7105± 0.02 0.7029± 0.02 0.6857± 0.04
CPM-Nets 0.7388± 0.02 0.7317± 0.04 0.7107± 0.08 0.7233± 0.04 0.6980± 0.05 0.6788± 0.03
DeepIMV 0.7686± 0.03 0.7614± 0.02 0.7457± 0.02 0.7414± 0.02 0.7400± 0.02 0.6714± 0.04

Ours 0.8286± 0.010.8286± 0.010.8286± 0.01 0.7943± 0.010.7943± 0.010.7943± 0.01 0.7771± 0.010.7771± 0.010.7771± 0.01 0.7657± 0.020.7657± 0.020.7657± 0.02 0.7543± 0.020.7543± 0.020.7543± 0.02 0.7429± 0.020.7429± 0.020.7429± 0.02

Scene15

Mean-Imputation 0.7681± 0.02 0.6912± 0.01 0.6477± 0.01 0.6098± 0.01 0.5864± 0.02 0.5106± 0.02
GCCA 0.6611± 0.02 0.6511± 0.01 0.6176± 0.01 0.5708± 0.01 0.5385± 0.02 0.5006± 0.02
TCCA 0.6878± 0.02 0.6644± 0.01 0.6566± 0.01 0.6187± 0.01 0.5741± 0.01 0.5563± 0.02
MVAE 0.7681± 0.00 0.7346± 0.01 0.7157± 0.01 0.6689± 0.01 0.6444± 0.01 0.6098± 0.01

MIWAE 0.7681± 0.03 0.7179± 0.01 0.6990± 0.01 0.6566± 0.01 0.6265± 0.02 0.5875± 0.02
CPM-Nets 0.6990± 0.02 0.6566± 0.02 0.6388± 0.00 0.6265± 0.01 0.5903± 0.01 0.5708± 0.01
DeepIMV 0.7124± 0.00 0.6934± 0.02 0.6656± 0.01 0.6410± 0.00 0.5853± 0.02 0.5719± 0.01

Ours 0.7770± 0.000.7770± 0.000.7770± 0.00 0.7581± 0.010.7581± 0.010.7581± 0.01 0.7347± 0.000.7347± 0.000.7347± 0.00 0.6990± 0.010.6990± 0.010.6990± 0.01 0.6689± 0.010.6689± 0.010.6689± 0.01 0.6254± 0.020.6254± 0.020.6254± 0.02

can directly work on incomplete multi-view data including
CPM-Nets and DeepIMV, we train the classifiers on the in-
complete data without imputing missing views. We adopt
the same network architecture for all methods, and the com-
parison results are shown in Table 1. From the empirical
results, it is observed: (1) UIMC achieves competitive per-
formance on complete multi-view data (η = 0). (2) UIMC
outperforms all comparison methods on most datasets when
η ̸= 0 especially when the task is difficult. For example,

the performance of the proposed method on ROSMAP from
η = 0.1 to η = 0.5 is significantly superior to other methods.
(3) UIMC achieves the highest classification accuracy with
relatively high missing rates which validates that UIMC is
very robust to incomplete multi-view data. For example, the
accuracy declines only 2.28% on BRCA from η = 0.3 to
η = 0.5 compared with 7% of other methods.

Q2 Effectiveness (II). We conduct experiments for visual-
izing the imputed complete multi-view data on Handwritten
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(a) Impute with zero (O) (b) Impute with mean (O) (c) CPM-Nets (Z)

(d) MVAE (O) (e) MIWAE (O) (f) Ours (O)

Figure 2. Visualization of imputed complete data (Handwritten) under η = 0.5, where multiple views are concatenated. “O” and “Z” indicate
concatenation with original data (and imputed views) and learned common latent representation from multiple available views, respectively.

with η = 0.5. Specifically, we takeNs = 30 samplings from
the distribution according to the available views to obtain
the imputed complete data. As shown in Fig. 2, the mar-
gins between different classes are much clearer since UIMC
explores the correlation among different views. Although
our imputation strategy may introduce noise, our model still
achieves the best performance.

Q3 Ablation study (I). To demonstrate the necessity
of conducting multiple samplings to impute missing views
instead of deterministic imputation, we conduct ablation
experiment to compare the multiple samplings with naive
deterministic imputation. As shown in Fig. 3, the method
termed single-imputation is designed as imputing the missing
views with the mean of neighbors. The superior performance
of UIMC verifies that our multiple-imputation strategy can
achieve more excellent performance than single-imputation
empirically.

Q4 Ablation study (II). We conduct ablation experi-
ment to investigate the effect of exploiting uncertainty in
guiding multi-view fusion and classification. Specifically,
we compare ours with a naive version termed Naive-IMVC
which ignores the uncertainty introduced with imputation.
Concretely, the key difference between Naive-IMVC and
UIMC is that Naive-IMVC trains classifiers on each single-
view and the integrated multi-view data optimized with
cross-entropy loss Lce = −

∑K
k=1 yk log (pk), where pk

is the predicted probability for class k, while UIMC adopts
an uncertainty-guided multi-view fusion and classification
strategy. As shown in Fig. 3, we compare UIMC with
Naive-IMVC on Handwritten, YaleB, and Scene15 with
η = [0, 0.1, 0.2, 0.3, 0.4, 0.5]. The classification accuracy of
UIMC is superior to Naive-IMVC, which indicates that our
method can exploit the uncertainty of imputations and make
predictions more efficiently and credibly.

Q5 Stability. We impute missing views by taking mul-
tiple samplings from the estimated multivariate Gaussian
distributions. Since the randomness is involved in sampling
process, each sampling operation yields different complete
data and then the corresponding classification predictions
might be different. To obtain stable and robust prediction,
our method adopts a voting strategy to obtain the final clas-
sification, which can mitigate the negative impact of the
uncertainty from sampling operation. To investigate the
prediction variance from the sampling process, we fix the
missing patterns of incomplete multi-view data (i.e., the
missing views of each sample is fixed), and then conduct
Ni = 10 samplings to obtain 10 sets of different complete
multi-view data. Then we test these 10 imputed multi-view
data sets on a pre-trained classification model to obtain 10
prediction results. We conduct this experiment on ROSMAP,
BRCA, Handwritten, and Scene15 whose number of classes
are 2, 5, 10 and 15, respectively. As shown in Fig. 4, the rel-
atively small proportion of “Inconsistent” indicates that the
prediction of our model is quite stable, where “Consistent”
and “Inconsistent” indicate the conditions of 10 tests with
the same and different predictions, respectively, .

5. Conclusion

In this work, we propose a novel framwork for incom-
plete multi-view classification termed Uncertainty-induced
Incomplete Multi-View Data Classification (UIMC), which
can elegantly explore and exploit the uncertainty arising
from imputation, producing effectiveness and trustworthi-
ness. Specifically, UIMC focuses on imputing missing views
in consideration of the imputation quality. Since UIMC
conducts sampling multiple times from the estimated distri-
bution of missing view, it inevitably introduces uncertainty.
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(a) Handwritten (b) YaleB (c) Scene15

Figure 3. Classification performance of UIMC, single-imputation, and Naive-IMVC on three datasets with η = [0, 0.1, 0.2, 0.3, 0.4, 0.5].

(a) Handwritten (b) BRCA

(c) Scene15 (d) ROSMAP

Figure 4. Evaluating the stability of UIMC on four datasets with η = [0, 0.1, 0.2, 0.3, 0.4, 0.5].

We employ evidential classifier to characterize the view-
specific uncertainty and further utilize Dempster’s combina-
tion rule to fuse the uncertain opinions of multiple (imputed)
views. We conduct extensive experiments and the empir-
ical results solidly validate the effectiveness and stability
of the proposed UIMC. The limitation of this work is that
the imputation distributions have been determined before
multi-view fusion and classification. Thus, our future work
will focus on jointly learning the parameterized distributions
of the missing views and the multi-view classifier, and in this
way the two components could promote mutually. Another

interesting line is theoretical analysis to show the necessity
of introducing uncertainty for missing views.
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