
Poly-PC: A Polyhedral Network for Multiple Point Cloud Tasks at Once

Tao Xie1,3 Shiguang Wang2,3 Ke Wang1 Linqi Yang1 Zhiqiang Jiang1

Xingcheng Zhang3 Kun Dai1 Ruifeng Li1* Jian Cheng2

1Harbin Institute of Technology 2University of Electronic Science and Technology of China 3SenseTime Research
{xietao1997, wangke, nana07, jzq, daikun, lrf100}@hit.edu.cn

{wangshiguang, chenjian}@uestc.edu.cn {zhangxingcheng}@sensetime.com

Abstract

In this work, we show that it is feasible to perform multi-
ple tasks concurrently on point cloud with a straightforward
yet effective multi-task network. Our framework, Poly-PC,
tackles the inherent obstacles (e.g., different model architec-
tures caused by task bias and conflicting gradients caused
by multiple dataset domains, etc.) of multi-task learning on
point cloud. Specifically, we propose a residual set abstrac-
tion (Res-SA) layer for efficient and effective scaling in both
width and depth of the network, hence accommodating the
needs of various tasks. We develop a weight-entanglement-
based one-shot NAS technique to find optimal architec-
tures for all tasks. Moreover, such technique entangles the
weights of multiple tasks in each layer to offer task-shared
parameters for efficient storage deployment while providing
ancillary task-specific parameters for learning task-related
features. Finally, to facilitate the training of Poly-PC, we
introduce a task-prioritization-based gradient balance al-
gorithm that leverages task prioritization to reconcile con-
flicting gradients, ensuring high performance for all tasks.
Benefiting from the suggested techniques, models optimized
by Poly-PC collectively for all tasks keep fewer total FLOPs
and parameters and outperform previous methods. We also
demonstrate that Poly-PC allows incremental learning and
evades catastrophic forgetting when tuned to a new task.

1. Introduction
With the advances in deep learning, modern architec-

tures offer tremendous improvements in 3D understand-
ing [29, 36, 39, 54], e.g., point classification, segmentation,
and detection, etc. Nevertheless, these networks are inef-
ficient when handling numerous tasks since they are often
intended to accomplish a single task. Even if parallel com-
puting can address this issue, the memory footprints and
storage costs grow linearly with the number of networks,

*Corresponding author.

rendering them unaffordable with constrained resources.
Multitask learning (MTL) [3, 12, 13] offers a solution to

this difficulty. In vision tasks, MTL models have been pre-
dominantly proposed to simultaneously perform depth esti-
mation, surface normal estimation, and semantic segmenta-
tion on an input image [14, 19, 52]. Besides, the joint part-
of-speech tagging, chunking, and named-entity recognition
for Natural Language Processing (NLP) have also been in-
vestigated [8, 9]. Since a substantial piece of the network
(i.e., the backbone) is shared among tasks, an MTL model
offers benefits in terms of complexity, inference time, and
learning efficiency. However, training multiple tasks for
point cloud poses two key challenges:

1) In contrast to common vision tasks, where a backbone
that performs well on image classification can be directly
ported to other tasks, the backbone for point cloud tasks
must be carefully developed. Consequently, it is not feasible
for all point cloud tasks to directly share a single backbone.

2) Instead of using a multi-task dataset as input, we seek
to jointly perform multiple tasks on point cloud with mul-
tiple dataset domains as input. Thus, in such a circum-
stance, multi-task learning would result in considerable dis-
parities in directions and magnitude of different task gradi-
ents, a phenomenon known as task interference or negative
transfer [34]. Meanwhile, task difficulty induced by multi-
ple dataset domains is also different, so task prioritization
should be considered to prevent placing undue emphasis on
easier tasks when optimizing the multi-task network.

To address the first challenge, we introduce residual set
abstraction (Res-SA) layer, a scalable point feature learning
module that can adapt to requirements for a variety of tasks
in terms of width and depth of the network. Simultane-
ously, when multiple tasks are presented to us, to reduce the
manpower loss caused by manually designing the network,
we seek to find the optimal architecture for each task us-
ing neural network search (NAS). Thus, we construct differ-
ent search spaces (neighbour points number, group radius,
width, and depth, etc.) for multiple tasks on Res-SA. Then,
inspired by AutoFormer [4], BigNAS [49] and slimmable

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1233

networks [48], we propose weight-entanglement-based one-
shot NAS technique that entangles the weights of different
tasks in the same layer, enabling different tasks to share
parameters in their common parts for efficient storage de-
ployment and offering task-specific parameters for learn-
ing task-related features. Moreover, unlike previous works
that share or monopolize all parameters in one layer for all
tasks, such strategy allows different tasks to share a certain
proportion of parameters in a single layer, achieving fine-
grained parameter sharing.

For negative transfer, previous methods narrow down the
problem to two types of differences (i.e., gradient magni-
tudes and directions) among task gradients, and propose
several algorithms [5, 6, 12, 18, 35, 50] to homogenize the
differences. However, these methods exclusively focus on
one aspect of task gradient differences and also disregard
the difficulty of various tasks. Intuitively, it is conceiv-
able for easy tasks to dominate learning while harder ones
stagnate during multi-task training. In response, we intro-
duce a task-prioritization-based gradient balance algorithm
that resolves negative transfer as a whole by homogeniz-
ing both gradient magnitudes and directions across tasks
via task prioritization. Specifically, we evaluate task prior-
itization using the previous loss record. Then, we use task
prioritization to homogenize task gradient magnitudes and
directions in the current epoch, endowing difficult task with
larger grad scale and enabling direction of final merged gra-
dient vector closer to that of the difficult task. Since the task
prioritization is dynamically adjusted, our algorithm avidly
concentrates on the difficult task learning at each epoch and
ensures that each task converges to the optimal solution.

Over the well-trained Poly-PC, we undertake an evolu-
tionary search with model size constraint to identify promis-
ing architectures for different tasks. Experiments show that
the searched models with weights inherited from the super-
net outperform several baselines and are comparable with
the state-of-the-arts trained individually for specific tasks.
We also demonstrate that Poly-PC allows incremental learn-
ing and evades catastrophic forgetting when generalizing to
a new task. Thus, Poly-PC is parameter-efficient and can
scale up more gracefully as the number of tasks increases.

The key contributions can be summarized as follows:
1) We propose Poly-PC to perform multi-task learning on
point cloud. To the best of our knowledge, Poly-PC is the
first framework that takes multiple dataset domains as in-
put for multi-task learning on point cloud. 2) We intro-
duce Res-SA layer that meets the needs of different tasks
in both the width and depth of the network. 3) We de-
velop weight-entanglement-based one-shot NAS technique
to find optimal architectures for different tasks as well as
shared parameters inside each layer for efficient storage. 4)
We propose task-prioritization-based gradient balance algo-
rithm that resolves negative transfer as a whole to promote

the training of Poly-PC. 5) We demonstrate that Poly-PC
allows incremental learning with fewer parameters.

2. Related work

Point cloud analysis. Point cloud analysis, e.g., point
classification, detection, and segmentation, is particularly
vital for downstream tasks. The development of point-based
methods can be traced back to PointNet [29] and Point-
Net++ [30]. PointNet focuses on the processing of raw ir-
regular point clouds and the learning of global information
representations, primarily by employing point-wise multi-
layer perceptrons (MLP) and a symmetric function (i.e.,
max-pooling). As an expansion of PointNet, PointNet++
introduces set abstraction (SA) as the local aggregator for
encoding local structures and presents a universal hierarchi-
cal encoder-decoder pipeline for point cloud analysis. Fol-
lowing this encoder-decoder architecture, some plug-and-
play methods [17, 20, 22, 33, 39, 51] have been proposed,
mainly focusing on local feature extractors by convolutions,
graphs, or self-attention mechanisms to thoroughly explore
local geometric information. However, these works focus
on optimizing task-specific components, which can not be
directly ported to other tasks.

Gradient homogenization for MTL. During the train-
ing of an MTL model, gradient magnitudes and directions
of various tasks interact intricately via backpropagation.
For gradient magnitudes, recent dynamic weighting algo-
rithms update weights periodically according to the uncer-
tainty of losses [13] and the rates of change of losses [19].
GradNorm [5] seeks to learn all tasks at the same pace, but
they propose to learn these weights as parameters, result-
ing in additional memory consumption. Instead, both Ro-
toGrad [12] and IMTL-G [18] normalize and scale each gra-
dient of the shared parameters by locating weights. For gra-
dient direction, Maninis et al. [23] and Sinha et al. [37] pro-
pose to make task gradients statistically indistinguishable
via adversarial training. More recently, GradDrop [6] ran-
domly drops elements of the task gradients based on a sign-
purity score, whereas PCGrad [50] proposes to drop the pro-
jection of one task gradient onto another if they are in con-
flict. In this work, we propose a task-prioritization-based
gradient balance algorithm that resolves negative transfer
as a whole to promote the training of the network.

3. Methodology

Poly-PC concurrently learns K distinct tasks on point
cloud, that is, discovering K mappings from K different
datasets {χk} to a task-specific collection of labels {yk},
k = 1, 2, ...,K. Poly-PC aims at finding optimal architec-
tures to ensure high performance for all tasks while using
as few total parameters as possible, i.e., how to design and
optimize Poly-PC.

1234

N
 ×

 D

R
es

-M
LP

 c
ha

nn
el

 c
ho

ic
e

···

R
ed

uc
tio

n
la

ye
r

N
' ×

 D
'

R
eL

U

...

Dataset

Stem MLP

Stem MLP

Stem MLPDataset

Dataset

Res-SA layer choice

Res-SA layer choice

Res-SA layer choice

. . .

. . .

. . .

Res-SA layer choice

Res-SA layer choice

Res-SA layer choice

Backbone

MLP

MLP

MLP

head

head

head

task2

task

task1

...

Pre-layers Heads

.

Convolutional
Layer ···

Weighted-entanglement-based one-shot NAS

Poly-PC

Res-SA layer Res-MLP

Su
bs

am
pl

e

M
LP B
N

R
eL

U

M
LP B
N

ra
di

us
 &

 n
ei

gh
bo

ur
 n

um
be

r

M
LP

 c
ha

nn
el

 c
ho

ic
e

R
es

-M
LP

 c
ha

nn
el

 c
ho

ic
e

R
es

-M
LP

 c
ha

nn
el

 c
ho

ic
e

···

R
es

-M
LP

 c
ha

nn
el

 c
ho

ic
e

M
LP

 c
ha

nn
el

 c
ho

ic
e

Prediction

Prediction

Prediction

Depth-alterable Depth-alterable

Figure 1. Above: The overall architecture of Poly-PC. Bottom left: The structure of Res-SA layer. Bottom right: One Res-MLP layer
in Φmid or Φpost and weight-entanglement-based one-shot NAS technique that entangles the weights of different tasks in one layer to
consider their common parts as task-shared weights and the rests as task-specific weights. Note that the stem MLP layer and each Res-SA
layer are dynamic. The parts with solid lines mean they are chosen whereas those with dashed lines are not. The channel choice means the
output channel of each layer in the backbone. The partial color in Weight-entanglement-based one-shot NAS part means the task-shared
weight and task-specific weight respectively, while colors in other parts have no symbolic meaning and are simply for aesthetic purposes.

3.1. Design Poly-PC

Poly-PC is characterized by three components: pre-
layer, backbone, and head networks, as shown in Fig. 1.

Pre-layers. Since Poly-PC accepts multiple dataset do-
mains as input while the dimensions of these domains are
different, we employ a multilayer perceptron (MLP) to map
xk ∈ χk into the same dimension as x̂k before backbone.
Each task k has its exclusive parameters ψk for such MLP.

Backbone. The backbone consists of a stem MLP used
to map the input into a higher dimension and several Res-
SA layers used to extract point features. The backbone con-
cludes a set of task-shared parameters θs for K tasks and
task-specific parameters θk for task k to transform each in-
put x̂k into a intermediate representation zk = f(x̂k; θs, θk)
∈ Rd, where d denotes the dimension of z.

Heads. Additionally, each task k has a head network
hk, with exclusive parameters ϕk, which takes the interme-
diate feature zk as input and outputs the prediction pk =
hk(zk;ϕk) for the corresponding task.

In this work, we focus on finding optimal backbone for
each task rather than designing network heads. As illus-
trated in Sec. 1, we design a scalable point feature extraction
module (Res-SA layer) to meet the needs of various tasks
and find optimal architectures for all tasks while keeping
as few total parameters as possible (weight-entanglement-

based one-shot NAS).
Residual set abstraction layer. We choose classical set

abstraction (SA) layer [30] as baseline due to its wide range
of applications on point cloud. Intriguingly, we find that
adding more SA blocks or channels naively does not result
in a discernible improvement in accuracy, primarily due to
gradient vanishment and overfitting. In contrast, we present
residual set abstraction (Res-SA) layer to scale up the clas-
sic SA in an effective and efficient way. Res-SA inherits
most of the principles of SA layer, as shown in the bot-
tom left of Fig. 1, using a subsampling layer (e.g., FPS al-
gorithm [30]) to downsample the input points, a grouping
layer to search neighbors for each sampled point, and a re-
duction layer to consolidate features inside the neighbors.
The only difference is the point feature extraction. Res-SA
decouples the point feature extraction into following steps:

gi = Φpost(R(Φlast(Φmid(Φpre([fi,j ; (pi,j − pi)/r])))),
(1)

where r is the group radius; pi is the i-th sampled point
coordinate; pi,j and fi,j are the j-th neighbor point coor-
dinate and feature of pi respectively; Φpre and Φlast are
basic feature extractor composed of an MLP followed by a
batch normalization and an activation layer; Φmid and Φpost

are depth-alterable (i.e., how many times Res-MLP repeats)
residual MLP blocks, in which each block is combined

1235

by MLP, normalization and activation layers (repeated two
times), as shown in the bottom right of Fig. 1; R is the re-
duction layer (e.g., max-pooling) that aggregates features
for point i from its neighbors. By embedding residual con-
nections into Φmid and Φpost, Res-SA can be readily ex-
panded to dozens of layers without vanishing gradient prob-
lem. Moreover, bottleneck design and inverted bottleneck
design are leveraged in Φmid and Φpost, respectively.

Weight-entanglement-based one-shot NAS. Previous
one-shot NAS methods [10, 25] typically share weights
across subnets yet isolate the weights of various opera-
tors inside the same layer. These methods perform ad-
mirably when employed to search architectures for a sin-
gle task. Nonetheless, such technique cannot enable each
task to share the weights of the different operators in
the same layer, nor can it offer partially shared and un-
shared parameters inside a single layer. Inspired by Aut-
oformer [4], BigNAS [49] and slimmable networks [48],
we propose weight-entanglement-based one shot NAS tech-
nique to tackle this issue, which entangles the weights of all
tasks in each Res-SA layer, allowing different tasks to share
weights for their common parts.

More concretely, as shown in the bottom right of Fig. 1,
for the i-th convolution of K tasks in the Res-SA, we pre-
defineK search spaces for the input channel Sin

k and output
channel Sout

k . Accordingly, the weight W i of the i-th con-
volution is defined as W i ∈ [Cout, Cin, ks], where Cout

and Cin are large enough to accommodate the requirements
of different tasks and ks is the kernel size. Then, we find the
task-shared weights P i of W i by slicing P i = W i[:Couts ,
:Cins , :], where Couts and Cins are the minimum num-
ber of {Sout

1 , Sout
2 , ... , Sout

K } and {Sin
1 , Sin

2 , ... ,Sin
K }

respectively. For each batch in supernet training, we fol-
low the central idea of SPOS [10], uniformly sampling a
number Cin

k from Sin
k and Cout

k from Sout
k for the k-th

task. We slice out the weights W i
k for current batch by

W i
k = W i[:Cout

k ,:Cin
k ,:], which is used to produce the out-

put. Notably, the common parts P i of W i
k (k = 1, 2, ...,K)

is viewed as task-shared weights optimized in the global
group while the others viewed as task-specific weights op-
timized in the task-specific group. The implementation de-
tails are given in Appendix C.2.

Such weight sharing within a single layer provokes the
weight updating of W i

k to be entangled with each other,
that is, the training of any task will impact the task-shared
parameters. In this work, we apply weight-entanglement-
based one-shot NAS to all convolution and normalization
layers of the backbone, enabling different tasks to share pa-
rameters in their common parts and monopolize the rests.
The designed search space is given in Sec. 5.2.

Task-specific principle features. We further embed a
task-specific attention module into Res-SA, allowing Poly-
PC to acquire additional task-specific principle features.

The attention module learns a soft attention mask for the
output features, which automatically determines the impor-
tance of features for the individual task along the channel
dimension, resulting in self-supervised, end-to-end learn-
ing of more task-specific principal features. We adopt
SENet [11] as attention module and integrate it before re-
duction layer into Res-SA. Each task k has its exclusive pa-
rameters Λk.

3.2. Optimize Poly-PC

We seek to optimize the architectural parameters {ψ1,
ψ2, ..., ψK , θs, θ1, θ2, ..., θK , ϕ1, ϕ2, ..., ϕK , Λ1, Λ2, ..,
ΛK} of Poly-PC by concurrently minimizing all task losses,
that is, Lk(pk, yk) for k = 1, 2, ...,K. It is a prior mul-
tiobjective optimization problem [35] in which an unique
proxy loss comprised of a linear combination of the task
losses, L =

∑
kwkLk, is optimized. Whereas this solution

streamlines the optimization problem, it may also result in
negative transfer, thus lowering overall performance due to
unequal competition across tasks for the task-shared param-
eters. Moreover, Poly-PC is designed for jointly optimizing
multiple point cloud tasks under different dataset domains,
where the varied dataset domains will further exacerbate the
negative transfer.

In this work, we propose task-prioritization-based gradi-
ent balance (TGB) algorithm to resolve negative transfer as
a whole by homogenizing both magnitude and direction of
task gradients.

Task prioritization. The central theme of proposed al-
gorithm is to prioritize learning for difficult task, where dif-
ficulty is measured by the previous loss record. We define
task difficulty as task prioritization, which is measured as
the ratio of the change rate for the task-specific loss at time
t − 1 and t − 2 to the change rate of the total loss at time
t− 1 and t− 2, formulated as:

rk = (
Lt−1
k /Lt−2

k

Lt−1/Lt−2
)α, k = 1, 2...,K, (2)

where t is an epoch index; Lt−1
k is the loss of the k-th task at

t−1 epoch; Lt−1 is the total loss of all tasks at t−1 epoch;
α is a hyper-parameter (set to 1 in our implementation).

Following [19], we also normalize rk as:

THt
k =

Kexp(rk/T)∑K
i=1exp(ri/T)

, k = 1, 2...,K, (3)

with K being the number of tasks. The temperature T (set
to 2) determines the softness of the task weighting in the
softmax operator. THt

k is task prioritization measure of the
k-th task. Note that for t = 1, 2, we initialize rk = 1 since
there is no prior information about losses.

Gradient-magnitude homogenization. At t epoch, we
also endeavor to homogenize gradient magnitudes wt

kL
t
k

1236

(a) Gradient descent (b) PCGrad (c) Ours

Figure 2. The combined update vector of gk and gchard with
naive gradient descent, PCGrad, and our algorithm. The naive
gradient descent simply adds the two gradient vectors. PCGrad
first projects gk onto the normal plane of gchard (vice versa), and
then adds gchard and the projected gradient. Our algorithm con-
structs consensus vectors g∗k of gk to enable the direction of the
final merged gradient vector closer to that of gchard, compelling
the network to concentrate on the difficult task in current epoch.

across tasks, as large magnitude discrepancies may cause
some tasks to dominate the learning process. Without the
prior of task prioritization, we expect that the loss scale
wt

kL
t
k of task k contributes equally to the overall loss Lt:

wt
kL

t
k =

1

K
Lt ⇒ wt

k =
Lt

KLt
k

. (4)

However, the total loss Lt and the task k loss Lt
k at t epoch

are not available. Note that we use the sum losses of all
iterations for task k at t epoch as Lt

k, so we cannot derive
Lt
k at the beginning of t epoch. Similarly, we can not derive

Lt at t epoch. To tackle this issue, we assume that Lt
k have

the same proportion ofLt at t epoch as it does at t−1 epoch:

Lt
k

Lt
=
Lt−1
k

Lt−1
⇒ wt

k =
Lt−1

KLt−1
k

. (5)

It is a plausible assumption if all tasks are learned at a com-
parable pace. By incorporating the task prioritization THk

into wt
k, we can get the loss weight of task k at t epoch as:

Ŵ t
k = THt

kw
t
k. (6)

For t = 1, 2, we also initialize wt
k = 1.

Therefore, for t ≥ 2, the total loss can be formulated as:

L =
∑

kŴ
t
KL

t
k(hk(f(x̂k; θs, θk);ϕk), yk) (7)

Gradient-direction homogenization. Gradient-direction
homogenization is established by the sign of the rele-
vant gradient vector components associated with each task.
Specifically, given a gradient vector of the most difficult
task (the largest THt

k), we build consensus vectors of other
tasks by preserving those components that point toward the
identical direction (i.e., those with the same sign) and alter-
ing the conflicting components. In this way, the direction in
which the gradient vectors of all tasks add up will be closer
to the direction of the difficult task, enabling the network to
emphasis on learning of the difficult task.

We elaborate how to deal with the conflicting compo-
nents. Given loss W t

kL
t
k of the task k, we perform a back-

ward pass to obtain gradients of θs: gk = ▽θsW
t
kL

t
k. To

measure the agreement between different task gradients, we
first find the gradient of the most difficult task at t epoch ac-
cording to Eq. (3) as gchard. Then, we define the following
function:

Ψ(gk, gchard)
(i) =

{
1, sgn(g

(i)
k) = sgn(g

(i)
chard)

0, otherwise
(8)

where g(i)k indicates the i-th gradient component of the k-th
task and sgn(·) represents the sign function. Function Ψ(·)
verifies whether the signs of the gradient components be-
tween task k and the most difficult task agree in an element-
wise manner. When two components possess the identical
sign for a given i, it yield 1; if difference, it yields 0. The
overall size of the gradient vectors is denoted by the number
of task-shared parameters, i.e., n = |θs|.

After which, we determine the value of each component
under the consensus gradient g∗k of task k. The value of the
i-th component g∗k is formulated as follows:

(g∗k)
(i) = Ψ(gk, gchard)

(i)g
(i)
k , i = 1, 2..., n. (9)

Specifically, Ψ(gk, gchard)
(i) = 1 implies that gradient

component i is consistent between the task k and the dif-
ficult task. If there is no consensus (Ψ(gk, gchard)

(i) = 0),
however, the (g∗k)

(i) is set as zero to resolve the conflict.
Finally, the gradient vector of the shared parameters θs

is formulated as:

g∗θs =
1

K
(g∗1 + g∗2 + gchard + ...+ g∗K), (10)

where g∗θs is utilized to update the shared parameters θs.
Compared with naive gradient descent and PCGrad [50],

our proposed algorithm leverages task prioritization to ho-
mogenize task gradient directions in the current epoch, en-
abling the direction of the final merged gradient vector
closer to that of difficult task, as shown in Fig. 2. Since the
difficulty degree of each task is dynamically adjusted, our
proposed algorithm focuses on the learning of difficult tasks
at each epoch, and finally ensures that each task converges
to the optimal solution.

4. Search pipline
Supernet training. At each iteration of supernet train-

ing, we randomly sample a subnet for each task from the
search space (detailed in Sec. 5.2) and update its associ-
ated weights in Poly-PC while freezing the rest, where the
task-shared parameters are optimized in global group and
the task-specific parameters are optimized in task-specific
group. More details are given in Appendix C.1.

Evolution search under resource constraints. Over
the well-trained Poly-PC, we undertake an evolution search
on it to identify the optimal subnets for each task. Subnets

1237

are assessed and selected based on the evolution algorithm
manager. Our objective here is to maximize the proxy per-
formance of each task while minimizing the model size (Pa-
rameters). Detailed process is also given in Appendix C.2.

5. Experiment

In this work, we first assess the performance of Poly-
PC when simultaneously training three tasks, including 3D
shape classification, semantic segmentation, and object de-
tection. Then, we demonstrate that Poly-PC allows incre-
mental learning when fitted to a new task or dataset.

5.1. Dataset and metric

ModelNet40 [44]. The ModelNet40 dataset contains
12,311 CAD models with 40 object categories. They are
split into 9,843 models for training and 2,468 for test-
ing. Following [22], we employ the overall accuracy (OA)
across all classes to evaluate Poly-PC for ModelNet40.

S3DIS [1]. The S3DIS dataset is comprised of 271
rooms in six sections spanning three buildings. Following
a standard process, we evaluate Poly-PC as: area 5 is with-
held during training and utilized during testing. Mean class-
wise intersection over union (mIoU) and overall pointwise
accuracy (OA) are used as evaluation metrics.

SUN RGBD [38]. The dataset consists of 5K RGB-D
training photos annotated with amodal-oriented 3D bound-
ing boxes for 37 object types. We follow the standard data
splits for the dataset. We adhere to standard data processing
procedures of VoteNet [27] and use mean average precision
(mAP) at different IoU thresholds, i.e., 0.25 and 0.5 to re-
port the results for SUN RGBD.

5.2. Implementation Details

Searching space. We design a large search space that
includes several variable factors in Res-SA building lay-
ers: neighbour points number, group radius, Res-MLP layer
numbers in Φmid and Φpost, reduction rate ϵ1, expansion
rate ϵ2, and output channels. We also search the channel
of stem MLP. Note that each task has its own search space.
The detailed description of the searching space for Poly-PC
(base) and Poly-PC (large) is given in Appendix B.

SuperNet training. Poly-PC is end-to-end optimized
by using the following settings: AdamW optimizer with
weight decay 0.05, initial learning rate 0.008 with cosine
annealing, a batch size of 16 for ModelNet40, 8 for S3DIS,
and 8 for SUN RGBD. We train Poly-PC for 50k iterations
total with 24 Tesla V100 GPUs, that is, classification, seg-
mentation and detection take up 8 GPUs respectively. For
classification and segmentation, we use the same head with
PointNet++ [30]. For detection, we adopt the same head
with VoteNet [27]. The backbone has four Res-SA lay-
ers. We use the same data augmentations provided in Point-

Net++ for 3D shape classification and semantic segmenta-
tion, and the same data augmentations provided in VoteNet
for 3D object detection. Note that we place the upsampling
(i.e., feature propagation [30]) layer in the head of each task
and treat them as task-specific parameters.

Evolution search. The evolution search algorithm is im-
plemented by using the same protocol as SPOS [10]. The
population size is set to 50 and the number of generations
is set at 20. In each generation, the top 10 architectures
are selected as the parents for the generation of offspring
networks through mutation and crossover. The detailed im-
plementation is given in Appendix C.2.

5.3. Comparing with State-of-the-art Methods

We compare Poly-PC against baselines and the state-of-
the-arts on ModelNet40, S3DIS, and SUN RGBD datasets.
Results are summarized in Tab. 1, Tab. 2, and Tab. 3.

Method Points FLOPs (G) Params (M) OA

PointCNN [16] 1k 1.6 0.6 92.2
PointConv [43] 1k - 18.6 92.5
Kpconv [39] 7k 1.7 15.2 92.9
DGCNN [42] 1k 4.8 1.8 92.9
DeepGCN [15] 1k 3.9 2.2 93.6
ASSANet [31] 1k 2.4 3.6 92.4
ASSANet-L [31] 1k 28.9 118.4 92.9
PointMLP [22] 1k 31.4 12.6 93.7
Point Trans. [54] 1k 9.4 13.9 93.7

PointNet++ [30] 1k 3.2 1.5 90.7
PointNet++ [30] 5k 3.2 1.5 91.9
Poly-PC (base) 1k 2.9 1.9 92.6 (+1.9)
Poly-PC (large) 1k 5.9 5.5 93.7 (+3.0)

Table 1. Shape classification results on the ModelNet40 dataset.

ModelNet40. The results are presented in Tab. 1. When
using 1k points as input, Poly-PC (base) surpasses Point-
Net++ [30] by 1.9 units in overall accuracy with a de-
crease of 0.3G FLOPs and an increase of 0.4M number
of parameters. Moreover, Poly-PC (large) delivers on par
accuracy as the state-of-the-art methods DEEPGCN [15],
PointMLP [22] and Point Transformer [54] with compara-
ble FLOPs and parameters.

S3DIS. Tab. 2 compares Poly-PC (base/large) with
PointNet++ [30] and the state-of-the-arts on S3DIS dataset.
Poly-PC (base) outperforms PointNet++ by 6.1 units in
mIoU and 2.4 units in overall accuracy with similar FLOPs
and parameters. Poly-PC (large) also achieves competi-
tive results compared with the state-of-the-art methods KP-
Conv [39], ASSANet-L [31] and PointNext-B [32] under
fewer FLOPs and parameters. In this work, we investigate
the usage of a framework to execute multiple point cloud
tasks concurrently, which has significant implications for fi-
nal model deployment, despite the fact that Poly-PC yields
lower segmentation accuracy than current state-of-the-arts
designed deliberately for segmentation task.

SUN RGBD. We evaluate Poly-PC against several com-
peting approaches on SUN RGB-D dataset for 3D object de-
tection. Results are summarized in Tab. 3. Poly-PC (base)

1238

Method Flops (G) Params (M) OA mIoU

PointCNN [16] - 0.6 85.9 57.3
PCCN [2] 7.3 5.4 - 58.3
PAT [47] - 6.1 - 60.1
Kpconv [39] 2.1 14.9 - 67.1
ASSANet [31] 2.5 2.4 - 63.0
ASSANet-L [31] 36.2 115 - 66.8
Point Trans. [54] 7.8 5.6 90.8 70.4
PointNeXT-S [32] 3.6 0.8 87.9 63.4
PointNeXT-B [32] 8.8 3.8 89.4 67.5

PointNet++* [30] 1.0 1.0 85.8 56.9
Poly-PC (base) 1.0 1.0 88.2 (+2.4) 63.0 (+6.1)
Poly-PC (large) 5.6 5.6 89.5 (+3.7) 66.0 (+9.1)

Table 2. Semantic segmentation results on the S3DIS dataset, eval-
uated on area 5.

achieves 62.3 mAP@0.25 and 40.2 mAP@0.5, exceeding
the baseline VoteNet [27] by 3.2 units under mAP@0.25
and 4.4 units under mAP@0.5 respectively. Moreover,
Poly-PC (large) achieves 63.5 on mAP@0.25 and 41.9
mAP@0.5, which outperforms most previous state-of-the-
arts that only use the point cloud. We do not design so-
phisticated head for detection task compared with Group-
free [21] and RBGNet [41], but achieve comparable perfor-
mance with them, demonstrating that the optimal backbone
can also enhance performance.

Overall performance. In this part, we compare the
overall performance of Poly-PC under such three tasks with
the baseline (i.e., PointNet++ and VoteNet), along with the
total parameters for jointly optimizing these tasks. Notably,
we integrate PointNet++ and VoteNet together as the whole
baseline of Poly-PC since they both leverage the SA layer
as backbone. We also denote Poly-PC* that accommodates
classification and segmentation task to compare with cur-
rent state-of-the-arts that only validate performance on such
two task. We define S-Score as the proxy measure of overall
performance derived by linear sum of all task performances.
As shown in Tab. 4, Poly-PC (base) outperforms the base-
line by 10 units in terms of S-Score, demonstrating the ef-
fectiveness of provided techniques. Poly-PC* (base/large)
also achieves equivalent performance compared to the cur-
rent state-of-the-art, which solely verifies performance on
classification and segmentation tasks. Specifically, Poly-
PC* (base) exceeds ASSANet [31] 0.2 unit in S-Score,
while containing over 3M fewer parameters. Poly-PC*
(large) also yields nearly the same performance as Kp-
conv [39], but with almost 20M fewer parameters.

5.4. Ablation Study

We first compare the results of jointly training these tasks
with those of individually training these tasks to demon-
strate the efficacy of Poly-PC. Then, We discuss the in-
fluence of different proposed modules (i.e., Res-SA layer,
weight-entanglement-based one-shot NAS and TGB algo-

*We report the results of MMDetection3D (https://github.
com/openmmlab/mmdetection3d), which are better than the offi-
cial paper.

Method Flops (G) Params (M) mAP@0.25 mAP@0.5

F-PointNet [28]† - 11.8 54.0 -
ImVoteNet* [26]† 241 42.5 64.5 38.6

3Detr [24] 9.8 7.1 59.1 32.7
MLCVNe [46] 7.2 1.2 59.8 -
H3DNet [53] 14.5 6.3 60.1 39.0
BRNet [7] 8.0 3.2 61.1 43.7
VENet [45] 30.3 4.9 62.5 39.2
Group-free* [21] 11.2 19.8 63.0 45.2
RBGNet [41] 3.5 2.2 64.1 47.2

VoteNet* [27] 5.8 1 59.1 35.8
Poly-PC (base) 6.1 1 62.3 (+3.2) 40.2 (+4.4)
Poly-PC (large) 18.8 7.8 63.5 (+4.4) 41.9 (+6.1)

Table 3. 3D object detection results on the SUN-RGBD val set.
Note that † means it uses RGB as addition inputs and our method
is geometric only.

Method OA mIoU mAP@0.25 S-Score Params (t)

PointNet++ & VoteNet 91.9 56.9 59.1 207.9 3.5M

Poly-PC (base) 92.6 63.0 62.3 217.9 3.4M
Poly-PC (large) 93.7 66.0 63.5 223.2 13.7M

PointCNN [16] 92.2 57.3 - 149.5 1.2M
Kpconv [39] 92.9 67.1 - 160.0 30.1M
ASSANet [31] 92.4 63.0 - 155.4 6.0M
Poly-PC* (base) 92.6 63.0 - 155.6 2.7M
Poly-PC* (large) 93.7 66.0 - 159.7 8.5M

Table 4. The overall performance of Poly-PC with baseline and
other state-of-the-arts. Params (t) denotes the total parameters.

rithm) on the results, followed by an in-depth examina-
tion of each module’s internal design. Notably, as the gen-
eral one-shot NAS methods can not allow parameter shar-
ing among tasks, we do not compare proposed weight-
entanglement-based one-shot NAS with them.

Joint training vs individual training. We train the opti-
mal subnet searched by Poly-PC for each task from scratch
and compare the results with Poly-PC for all tasks. As illus-
trated in Tab. 5, performance of subnets derived by Poly-PC
can achieve competitive results compared with individually
training for each task, slightly lower in classification and
segmentation while higher in detection. Moreover, a large
portion parameters of the subnets in Poly-PC are shared for
all tasks, which is more storage-efficient. The implementa-
tion details of the baseline is given in Appendix F.

The effect of different proposed modules. We start
with the baseline that uses the naive SA layer in Poly-PC to
train multiple tasks. The results are summarized in Tab. 6.
The second row shows that the proposed Res-SA layer im-
proves the performance from 59.5 to 60.3 for segmenta-
tion and 60.4 to 60.8 for detection. Including the weight-
entanglement-based one-shot NAS technique into Poly-PC
further improves the results to 92.3, 61.1 and 61.6 for clas-
sification, segmentation and detection respectively. Then,
integrating attention module into Poly-PC further improves
the results to 92.4, 61.9 and 61.8, respectively. Finally, as
expected, when equipped with all modules, the results are
improved to 92.6, 63.0 and 62.3, respectively, demonstrat-
ing the validation of our proposed modules.

The naive SA vs residual SA. A straightforward base-
line to Res-SA is that using naive set abstraction layer
in the backbone. We conduct experiments by using the

1239

Training scopes cls seg det Params (b)

Poly-PC (base) individual 93.0 63.2 61.9 1.323M
Poly-PC (base) joint & nas 92.6 63.0 62.3 0.877M

Poly-PC (large) individual 93.8 67.1 63.2 15.677M
Poly-PC (large) joint & nas 93.7 66.0 63.5 10.443M

Table 5. The effect of joint training or individual training. Params
(b) means that the total parameters of all tasks in the backbone
network.

Res-SA NAS Att TGB cls seg det

Baseline 91.9 59.5 60.4
EXP1 ✓ 91.9 60.3 60.8
EXP2 ✓ ✓ 92.3 61.1 61.6
EXP3 ✓ ✓ ✓ 92.4 61.9 61.8
EXP4 ✓ ✓ ✓ ✓ 92.6 63.0 62.3

Table 6. The effect of proposed modules in Poly-PC (base). Att
means proposed attention module.

Res-SA SA cls seg det

base ✓ 92.3 61.8 59.2
base ✓ 92.6 63.0 62.3
large ✓ 92.9 63.4 61.7
large ✓ 93.7 66.0 63.5

Table 7. Performance of Poly-PC with SA and Res-SA layer.
GMH GDH PCGrad DWA cls seg det

✓ 92.3 61.3 62.0
✓ 92.8 61.8 61.8

✓ 92.4 62.2 61.7
✓ ✓ 92.6 63.0 62.3

Table 8. Performance of Poly-PC (base) with different algorithms
to tackle negative transfer.

naive SA layer to replace the Res-SA layer in Poly-PC
(base and large) while keeping other configurations (i.e.,
weight-entanglement-based one-shot NAS and TGB algo-
rithm, etc.). As shown in Tab. 7, naive width scaling and
depth scaling in SA layer can not result in a discernible im-
provement in accuracy, primarily due to gradient vanish-
ment and overfitting. However, Poly-PC (large) achieves
much higher performance than these naive scaling strate-
gies, mainly due to the residual connection, bottleneck and
inverted bottleneck designs in Res-SA layer.

0 50 100 150 200 250
Epoch

0
2
4
6
8

10
12
14
16

Lo
ss

Origin Loss1
Origin Loss2
Origin Loss3
Weighted Loss1
Weighted Loss2
Weighted Loss3

Figure 3. Illustration of task loss scales by applying gradient-
magnitude homogenization of TGB or not.

The effect of TGB algorithm. In this part, we com-
pare our TGB algorithm with other typical algorithms (e.g.,
PCGrad [50] and Dynamic Weight Average [19]) used to
tackle negative transfer in vision tasks. Since our TGB
algorithm solves negative transfer by homogenizing task

cls seg det obj. cls (OA) Params (e)

PointNet++ [30] 90.7 56.9 - 77.9 100%
Poly-PC (base) 92.6 63.0 62.3 86.8 88%
Poly-PC (large) 93.7 66.0 63.5 87.9 50%

Table 9. Incremental learning of Poly-PC. Params(e) means that
the percentage of additional parameters that each method needs
when generalizing to a new task.

gradients in terms of both magnitudes and directions, we
also decouple our algorithm into two components: gradient-
magnitude homogenization (GMH) and gradient-direction
homogenization (GDH). As depicted in Tab. 8, our TGB al-
gorithm achieves higher performances compared with PC-
Grad and DWA algorithm, further demonstrating the val-
idation of our algorithm. Fig. 3 shows an example of loss
trend when the gradient-magnitude homogenization of TGB
is applied or not. Origin Loss1, Loss2 and Loss3 yield dif-
ferent loss scales, causing gradient-magnitude differences,
while weighted Loss1, Loss2 and Loss3 are approximately
equalized by using the gradient-magnitude homogenization
rule in Eq. (6).

5.5. Incremental learning of Poly-PC

When a new task is presented to Poly-PC, Poly-PC only
needs to use the task-specific parameters to fit this task
while freezing all task-shared parameters. Thus, Poly-PC
is designed to enable incremental learning. When Poly-PC
is trained on above three datasets, we add the real-world ob-
ject classification dataset ScanObjectNN [40] into Poly-PC.
The training recipe and details of ScanObjectNN is given
in Appendix D. As shown in Tab. 9, Poly-PC (base/large)
achieve 86.8/87.9 overall accuracy (OA) for ScanObjectNN
with fewer parameter proportions, further demonstrating
that Poly-PC can avoid catastrophic forgetting and achieve
genuinely incremental learning.

6. Conclusion
In this work, we introduce Poly-PC, a unified frame-

work for multi-task learning on point cloud with multi-
ple dataset domains. Poly-PC achieves high performance
for all tasks and keeps storage-efficient for model deploy-
ment through model design (i.e., Res-SA layer and weight-
entanglement-based one shot NAS) and model optimization
(i.e., task-prioritization-based gradient balance algorithm).
We also demonstrate that Poly-PC can adapt to a new task
by small task-specific parameters while keeping the same
performance for other tasks. Comprehensive experiments
show that Poly-PC delivers superior performance on multi-
ple point cloud tasks.

Acknowledgement. This work was in part by Na-
tional Natural Science Foundation of China under Grant
62176072 and 62073101, in part by by the National Nat-
ural Science Foundation of China (No. 62071104, No.
U2233209 and No. U2133211).

1240

References
[1] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioan-

nis Brilakis, Martin Fischer, and Silvio Savarese. 3d seman-
tic parsing of large-scale indoor spaces. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 1534–1543, 2016. 6

[2] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point
convolutional neural networks by extension operators. ACM
Transactions on Graphics, 37(4), 2018. 7

[3] R Caruana. Multitask learning: A knowledge-based source
of inductive bias1. In Proceedings of the Tenth International
Conference on Machine Learning, pages 41–48. Citeseer,
1993. 1

[4] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin
Ling. Autoformer: Searching transformers for visual recog-
nition. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 12270–12280, 2021. 1,
4

[5] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and An-
drew Rabinovich. Gradnorm: Gradient normalization for
adaptive loss balancing in deep multitask networks. In In-
ternational conference on machine learning, pages 794–803.
PMLR, 2018. 2

[6] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong,
Henrik Kretzschmar, Yuning Chai, and Dragomir Anguelov.
Just pick a sign: Optimizing deep multitask models with gra-
dient sign dropout. Advances in Neural Information Process-
ing Systems, 33:2039–2050, 2020. 2

[7] Bowen Cheng, Lu Sheng, Shaoshuai Shi, Ming Yang, and
Dong Xu. Back-tracing representative points for voting-
based 3d object detection in point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8963–8972, 2021. 7

[8] Ronan Collobert and Jason Weston. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th international
conference on Machine learning, pages 160–167, 2008. 1

[9] José GC de Souza, Matteo Negri, Elisa Ricci, and Marco
Turchi. Online multitask learning for machine translation
quality estimation. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 219–228, 2015.
1

[10] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
European conference on computer vision, pages 544–560.
Springer, 2020. 4, 6

[11] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 4

[12] Adrián Javaloy and Isabel Valera. Rotograd: Gradient ho-
mogenization in multitask learning. In International Confer-
ence on Learning Representations, 2022. 1, 2

[13] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geome-

try and semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7482–7491,
2018. 1, 2

[14] Jae-Han Lee, Chul Lee, and Chang-Su Kim. Learning
multiple pixelwise tasks based on loss scale balancing. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5107–5116, 2021. 1

[15] Guohao Li, Matthias Muller, Ali Thabet, and Bernard
Ghanem. Deepgcns: Can gcns go as deep as cnns? In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 9267–9276, 2019. 6

[16] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. Advances in neural information processing systems,
31, 2018. 6, 7

[17] Ying Li, Lingfei Ma, Zilong Zhong, Dongpu Cao, and
Jonathan Li. Tgnet: Geometric graph cnn on 3-d point cloud
segmentation. IEEE Transactions on Geoscience and Re-
mote Sensing, 58(5):3588–3600, 2019. 2

[18] Liyang Liu, Yi Li, Zhanghui Kuang, J Xue, Yimin Chen,
Wenming Yang, Qingmin Liao, and Wayne Zhang. Towards
impartial multi-task learning. ICLR, 2021. 2

[19] Shikun Liu, Edward Johns, and Andrew J Davison. End-
to-end multi-task learning with attention. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1871–1880, 2019. 1, 2, 4, 8

[20] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8895–
8904, 2019. 2

[21] Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong.
Group-free 3d object detection via transformers. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 2949–2958, 2021. 7

[22] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Re-
thinking network design and local geometry in point cloud:
A simple residual mlp framework. In International Confer-
ence on Learning Representations, 2021. 2, 6

[23] Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas
Kokkinos. Attentive single-tasking of multiple tasks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1851–1860, 2019. 2

[24] Ishan Misra, Rohit Girdhar, and Armand Joulin. An end-to-
end transformer model for 3d object detection. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 2906–2917, 2021. 7

[25] Houwen Peng, Hao Du, Hongyuan Yu, Qi Li, Jing Liao, and
Jianlong Fu. Cream of the crop: Distilling prioritized paths
for one-shot neural architecture search. Advances in Neural
Information Processing Systems, 33:17955–17964, 2020. 4

[26] Charles R Qi, Xinlei Chen, Or Litany, and Leonidas J
Guibas. Imvotenet: Boosting 3d object detection in point
clouds with image votes. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 4404–4413, 2020. 7

[27] Charles R Qi, Or Litany, Kaiming He, and Leonidas J
Guibas. Deep hough voting for 3d object detection in point

1241

clouds. In proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 9277–9286, 2019. 6, 7

[28] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J
Guibas. Frustum pointnets for 3d object detection from rgb-
d data. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 918–927, 2018. 7

[29] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 1, 2

[30] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 2, 3, 6, 7, 8

[31] Guocheng Qian, Hasan Hammoud, Guohao Li, Ali Thabet,
and Bernard Ghanem. Assanet: An anisotropic separable
set abstraction for efficient point cloud representation learn-
ing. Advances in Neural Information Processing Systems,
34:28119–28130, 2021. 6, 7

[32] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai,
Hasan Hammoud, Mohamed Elhoseiny, and Bernard
Ghanem. Pointnext: Revisiting pointnet++ with improved
training and scaling strategies. 6, 7

[33] Shi Qiu, Saeed Anwar, and Nick Barnes. Geometric back-
projection network for point cloud classification. IEEE
Transactions on Multimedia, 24:1943–1955, 2021. 2

[34] Sebastian Ruder. An overview of multi-task learning in deep
neural networks. arXiv preprint arXiv:1706.05098, 2017. 1

[35] Ozan Sener and Vladlen Koltun. Multi-task learning as
multi-objective optimization. Advances in neural informa-
tion processing systems, 31, 2018. 2, 4

[36] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 770–779, 2019.
1

[37] Ayan Sinha, Zhao Chen, Vijay Badrinarayanan, and An-
drew Rabinovich. Gradient adversarial training of neural
networks. arXiv preprint arXiv:1806.08028, 2018. 2

[38] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.
Sun rgb-d: A rgb-d scene understanding benchmark suite. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 567–576, 2015. 6

[39] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6411–6420, 2019. 1,
6, 7

[40] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud
classification: A new benchmark dataset and classification
model on real-world data. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 1588–
1597, 2019. 8

[41] Haiyang Wang, Shaoshuai Shi, Ze Yang, Rongyao Fang,
Qi Qian, Hongsheng Li, Bernt Schiele, and Liwei Wang.

Rbgnet: Ray-based grouping for 3d object detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1110–1119, 2022. 7

[42] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 6

[43] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9621–9630, 2019. 6

[44] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015. 6

[45] Qian Xie, Yu-Kun Lai, Jing Wu, Zhoutao Wang, Dening Lu,
Mingqiang Wei, and Jun Wang. Venet: Voting enhance-
ment network for 3d object detection. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 3712–3721, 2021. 7

[46] Qian Xie, Yu-Kun Lai, Jing Wu, Zhoutao Wang, Yiming
Zhang, Kai Xu, and Jun Wang. Mlcvnet: Multi-level con-
text votenet for 3d object detection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10447–10456, 2020. 7

[47] Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li,
Jinxian Liu, Mengdie Zhou, and Qi Tian. Modeling point
clouds with self-attention and gumbel subset sampling. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 3323–3332, 2019. 7

[48] Jiahui Yu and Thomas S Huang. Universally slimmable net-
works and improved training techniques. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 1803–1811, 2019. 2, 4

[49] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-
aodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling
up neural architecture search with big single-stage models.
In European Conference on Computer Vision, pages 702–
717. Springer, 2020. 1, 4

[50] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. Gradient surgery for
multi-task learning. Advances in Neural Information Pro-
cessing Systems, 33:5824–5836, 2020. 2, 5, 8

[51] Min Zhang, Haoxuan You, Pranav Kadam, Shan Liu, and
C-C Jay Kuo. Pointhop: An explainable machine learning
method for point cloud classification. IEEE Transactions on
Multimedia, 22(7):1744–1755, 2020. 2

[52] Zhenyu Zhang, Zhen Cui, Chunyan Xu, Yan Yan, Nicu Sebe,
and Jian Yang. Pattern-affinitive propagation across depth,
surface normal and semantic segmentation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4106–4115, 2019. 1

[53] Zaiwei Zhang, Bo Sun, Haitao Yang, and Qixing Huang.
H3dnet: 3d object detection using hybrid geometric primi-
tives. In European Conference on Computer Vision, pages
311–329. Springer, 2020. 7

1242

[54] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 16259–16268, 2021. 1, 6, 7

1243

