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Abstract

Previous Knowledge Distillation based efficient image
retrieval methods employ a lightweight network as the stu-
dent model for fast inference. However, the lightweight stu-
dent model lacks adequate representation capacity for ef-
fective knowledge imitation during the most critical early
training period, causing final performance degeneration.
To tackle this issue, we propose a Capacity Dynamic Dis-
tillation framework, which constructs a student model with
editable representation capacity. Specifically, the employed
student model is initially a heavy model to fruitfully learn
distilled knowledge in the early training epochs, and the stu-
dent model is gradually compressed during the training. To
dynamically adjust the model capacity, our dynamic frame-
work inserts a learnable convolutional layer within each
residual block in the student model as the channel impor-
tance indicator. The indicator is optimized simultaneously
by the image retrieval loss and the compression loss, and a
retrieval-guided gradient resetting mechanism is proposed
to release the gradient conflict. Extensive experiments show
that our method has superior inference speed and accu-
racy, e.g., on the VeRi-776 dataset, given the ResNet101 as
a teacher, our method saves 67.13% model parameters and
65.67% FLOPs without sacrificing accuracy. Code is avail-
able at https://github.com/SCY-X/Capacity
Dynamic _Distillation.

1. Introduction

Image retrieval [2] aims to rank all the instances in a
retrieval set based on their relevance to the query image.
However, many image retrieval methods [45, 50] use heavy
networks to acquire a high accuracy, causing a low infer-
ence speed and hindering practical applications. As an effi-
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Figure 1. The mAP (%) of KD methods in per epoch on VeRi776
[30]. R101 and R34 denote the ResNet101 and ResNet34 students,
respectively. Our CDD+RGGR outperforms other KD methods
because the heavy student has more talented in effectively learning
distilled knowledge than a light student in the early epochs.

cient network compression technology [21, 52, 58], knowl-
edge distillation (KD) [42,43,57,59] has been widely val-
idated to be useful for boosting the performance of the
lightweight student model by transferring knowledge from
a heavy teacher model, which is also applied to accelerate
image retrieval, as done in [40, 54, 56].

Previous KD-based image retrieval methods [40,47] as-
sign a lightweight network as the student model to acquire
a fast inference speed. However, we have an experimental
observation that a lightweight student model is less talented
in effectively learning distilled knowledge than a heavy stu-
dent model in the early epochs, leading to final performance
degeneration. As shown in Fig. 1, a heavy ResNetl101
(i.e., our) improves its performance faster than the light
ones (ResNet34, other methods) in the early epochs (first 20
epochs) of KD optimization. This finding is consistent with
previous KD works [6,29,37], which have shown that a ca-
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pacity mismatch between teachers and students can hinder
light students from acquiring knowledge from large teach-
ers [6]. This is similar to a kid only comprehending a small
portion of taught knowledge [3]. In addition, many stud-
ies [1, 5, 14] have shown that the quality of the initial train-
ing period is crucial in determining the final optimization
solution. Thus, the light student needs to effectively learn
from large teachers during the critical early training stages.

Motivated by the above finding, we propose a new KD
framework, Capacity Dynamic Distillation (CDD), to al-
low dynamic model compression during KD learning. Un-
like existing KD-based image retrieval methods that use
a lightweight student model, CDD employs a heavy ini-
tial network as the student model. Thus the student has
a high representation capacity to comprehensively under-
stand knowledge from teachers in the early KD iterations.
To acquire a fast inference speed, we design a Distillation
Guided Compactor (DGC) module inserted after the heavy
convolutional layer of the student as the channel importance
indicator of each convolutional layer. Then, we implement a
parametric sparse loss on DGC during KD learning to find
the unimportant channel of the heavy convolutional layer,
thus gradually reducing the capacity of the student network.
The overall training process can be done end-to-end in one
KD training period. After training, the sparse DGC will
be pruned to a slim DGC, and the slim DGC and previous
heavy convolutional layer can convert to a slim convolu-
tional layer. Therefore, the heavy student model will be
converted to a lightweight model.

To dynamically edit the student model capacity, DGC is
optimized simultaneously by the image retrieval loss and
the parametric sparse loss, resulting in a gradient conflict
between knowledge accumulation and forgetting. To re-
lease the gradient conflict, we propose a retrieval-guided
gradient resetting mechanism (RGGR), which introduces a
binary mask to zero out the knowledge accumulation gra-
dient. Specifically, we first use the train data to simulate
the retrieval result. Then, RGGR selects channels with lit-
tle influence on simulation retrieval results and zeros the
knowledge accumulation gradient, achieving a high prun-
ability. As demonstrated in Fig. 1, when we activate RGGR
(at the 21st epoch), the heavy student model focuses more
on compression and suffers transient performance degrada-
tion. But, thanks to the well-trained KD optimization of stu-
dents in the early epochs, the student model finally achieves
a good balance between accuracy and inference speed.

The main contributions of this paper are listed as follows:

(1) We propose a capacity dynamic distillation framework
(CDD) to effectively learn distilled knowledge in the
early training epochs.

(2) We propose a retrieval-guided gradient resetting mech-
anism (RGGR) to release the gradient conflict between
the image retrieval loss and the parametric sparse loss.
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(3) Extensive experiments demonstrate that our method
is superior to state-of-the-art approaches in terms of
inference and computations, by a large margin of
24.13%MP and 21.94% FLOPs.

2. Related Works

Network Pruning. Network Pruning (NP) [7,31,52] aims
to obtain a light network by removing unimportant parts
from a well-trained yet heavy network. Recent NP works
primarily focus on structured pruning [31, 52], which ap-
plies sparsity functions to the convolutional layers of well-
trained large models to filter out unimportant channels.
However, NP often leads to a reduction in accuracy due to
its irreversible sparsification process, which can cause sig-
nificant damage to the network [7].

Knowledge Distillation. Most KD-based image retrieval
works [40, ] employ a lightweight model as the student
and transfers the knowledge among samples from teachers
to guide the student optimization. Although these works
have helped light students improve their accuracy, the weak
representational capacity hinders further accuracy improve-
ment of students. Therefore, recent KD works [3, 35] have
paid attention to this situation. However, they only focused
on how to transfer knowledge well to facilitate students’ un-
derstanding of teachers’ knowledge without considering en-
hancing students’ representational capacity. Although self-
distillation methods [24, ] assign a large student the
same size as the teacher to better understand the teacher’s
knowledge, they suffer from large students’ high computa-
tional cost in the inference phase. To address this issue, a
natural solution is to aggregate NP with KD in a two-stage
design, i.e., self-KD + NP. Specifically, the two-stage meth-
ods first assign a large student to effectively distilled knowl-
edge from teachers, and then the well-trained large student
network is pruned to a slim network. However, the two-
stage approach may suffer a significant performance loss
during the pruning stage since it still faces the challenge of
sparsification process deviation. In this paper, we present an
end-to-end KD method integrated with NP, which exploits
the proposed distillation guided compactor (DGC) module
to effectively alleviate the conflict between KD and NP.
Re-parameterization. = The re-parameterization (Rep)
methods [8, 10, 11] construct a sequence of multiple con-
volutional layers to replace a single convolutional layer of
an original network to enhance the feature learning ability
during training. Then, those sequences are simplified to a
convolutional layer to avoid extra computation consumption
during inference. Recently, Ding et al. [9] proposed a gra-
dient resetting and compactor re-parameterization (ResRep)
method, which is the first attempt to apply Rep to NP. Moti-
vated by this, we explore the gradient resetting technique in
knowledge distillation and propose zeroing out the selected
channel’s gradients according to feature retrieval results.

s
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Figure 2. The capacity dynamic distillation framework. The high-
capacity student can comprehensively understand teachers’ knowl-
edge in the early KD iterations. After training, the student can be
converted into a light network to acquire a fast inference speed.

3. Method

This section presents our CDD framework for efficient
image retrieval, which uses a new distillation pipeline for
a dynamic representational capacity student model. Unlike
previous KD methods [3,59] training a student model with
fixed representation capacity, our distillation strategy em-
ploys a heavy student network to learn transferred knowl-
edge effectively from teachers while gradually compressing
the student’s capacity for obtaining a final model with fast
inference speed. The DGC module is integrated into our
CCD framework to achieve dynamic representation com-
pression during KD learning, as described in Section 3.1.

Furthermore, we propose the RGGR mechanism to com-
press the student model by releasing the conflict between
retrieval-related losses and compression loss. RGGR first
evaluates the channel importance of students with respect
to image retrieval. Then, the gradients derived from image
retrieval-related losses are zeroed to eliminate the conflict in
the final objective. This approach ensures that the selected
channels’ weight values are solely optimized by the com-
pression loss, enabling more efficient convergence to zero.
RGGR method will be discussed in detail in Section 3.2.

3.1. Dynamic Representation Distillation

From Fig. 2, our CCD framework is designed to transfer
knowledge from a well-trained teacher model P;(y|z,6;)
to an untrained student model Ps(y|z,6), where x is the
model input and € denotes the model parameters. Differ-
ent from previous KD methods employing models follow-
ing the rule |6,| < |6, for model compression, CDD em-
ploys the student and the teacher satisfying |0;| > |6;| for
effective early learning, as discussed in Fig. 1.

3.1.1 Dynamic Representation Learning

Distillation Learning. From Fig. 2, we employ ResNet
[17] with cascaded residual blocks as an example. During

training, we consider globally and locally consistent distil-
lation to transfer knowledge from teachers to students.

For global-consistent distillation, we use the Kullback-
Leibler divergence (KL) loss Ly [21] to transfer logit
knowledge, as done in previous KD-based image retrieval
works [40, 41].  For local-consistent distillation, differ-
ent from layer-wise alignment adopted in previous works
[19,27], thanks to the large capacity student has the same
network depth as teachers, we perform a block-wise align-
ment by focusing on the 3 x 3 convolutional layer of each
residual block to more completely transfers knowledge as
follows:

M

La(f',1") = 32 3 DL(GAP(f%), GAP(f)), (1)
where f? is the feature map output by the 3x 3 convolutional
layer of teachers and f° is the corresponding feature map
from students; M is the number of residual blocks, such
as ResNet101 contains 33 residual blocks; DL(+, -) denotes
Euclidean distance loss; The GAP(+) denotes the global av-
erage pool layer to compress feature maps spatially.
Distillation Guided Compactor (DGC). To compress the
student model dynamically during the training period, we
add a proposed DGC module after each 3 x 3 convolutional
layer of students. Specifically, the DGC module here is a
1 x 1 convolutional layer without bias being initialized as
an identity matrix, which is used to evaluate the importance
of each channel of the 3 x 3 convolutional layer. In this
way, we can sparse the 1 X 1 convolutional layer during the
training period. After training, the 3 X 3 convolutional layer
can be pruned by merging these two layers. The merging
operation is introduced in Section 3.1.2.

To sparse the matrix, we implement G-LASSO loss L,

[9,23] on DGC to gradually decrease the student network’s
representational capacity as follows:

L) =" m 0

where W¢ € RP*P*1X1 represents kernel parameters of
DGC modules. The first and second dimensions of W€ rep-
resent the output and input channels, respectively.

Finally, the student’s overall loss L,;; includes Lg; pre-
sented in Eq. 1, KL loss Lg;, two widely used image re-
trieval losses and L,,, presented in Eq. 2 as follows:

1
Lon = §Ldl + Lig + Liri + Ly + oLy, 3)

where L;; is the label smooth regularization cross-entropy
[46], as done in [54]; Ly, is the triplet loss using hard sam-
ple mining strategy [20]; « is a hyper-parameter to control
the sparsity level, with a default value of 0.004.

Discussion. Intuitively, we argue that the DGC design is
better than the previous two-stage “self-KD+NP” methods
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because the sparse process can’t severely deviate under the
supervision of the teacher network. Furthermore, the DGC
design outperforms the previous end-to-end KD with NP”
methods because DGC can alleviate the conflict between
KD and NP by decoupling their action positions.

3.1.2 Efficient Inference with Pruning

After training, the output channel of DGC modules is
treated as an unimportant channel and discarded if the out-
put channel weight is less than the pruning threshold .
The default value of A\ is 1 x 1075, as done in [9, 12].
Thus, the DGC module is trimmed to a slim one We e
REXDXIX1 B < D. Then, the 3 x 3 convolutional layer
and the slim DGC module in one residual block can be sim-
plified to being a slim 3 X 3 convolutional layer as follows:

W=T(TW)@W"), B=Ba&W: @

where W € REXCX3x3 and B € R¥ represent the slim
3 x 3 convolutional layer’s kernel parameters and its bias,
respectively. F/ and C represent the output and input chan-
nel sizes of the slim 3 x 3 convolutional layer. T'(-) and &
denote the transpose function and the convolution operator,
respectively. W' € RP*Cx3x3 and B’ € RP represent the
3 x 3 convolutional layer’s kernel parameters and its bias.

Finally, the 3 x 3 convolutional layer and the We in
each residual block are merged into a slim 3 x 3 convo-
Iutional layer. Besides, the last bottleneck layer (i.e., 1 x 1
convolutional layer) in each residual block also is thinned
by discarding those unimportant channels according to the
channel value in W°. As a result, the heavy student can
be transformed into a lightweight network to acquire a fast
inference speed for image retrieval.

3.2. Retrieval-Guided Gradient Resetting

Although CCD has achieved early learning with large
representation capacity and efficient inference by dynamic
compression, the optimization conflict remains unsolved.
Specifically, the gradient conflict between the knowledge
accumulation gradient from image retrieval loss Ly =
%Ldl + L;q + Lyr; + Lk and the knowledge forgetting gra-
dient from pruning loss L,,, may cause a low compression
rate. More specifically, most of the output channels’ weight
of DGC may be updated to be approximated to 0 via L),
but never close enough for perfect pruning due to L. [9].

To this end, we propose the Retrieval-Guided Gradient
Resetting mechanism (RGGR) to release this gradient con-
flict, as shown in Fig. 3. Specifically, RGGR employs a
D-dimensional binary mask M € {0, 1} to zero the knowl-
edge accumulation gradient of some DGC'’s output channels
to acquire a resetting gradient G as follows:

G(Wf) _ OLgcee (X, Y, QS)Mi . a(?an()Q Y, 05)

owe owg @

where Wi = Wy, . denotes the YW matrix’s i-th output
channel; X and Y are data examples and labels respectively.
From Eq. (5), with M; = 0, the i-th output channel’s
knowledge accumulation gradient of DGC is reset to zero,
causing the first term to be ignored. Thus, M; = 0 can make
DGC'’s i-th output channel weight value steadily move to-
wards 0 to achieve high compression. Intuitively, once the
knowledge accumulation gradient of important output chan-
nels is zeroed, it causes a decrease in the retrieval perfor-
mance of students. Therefore, to maintain the student’s
retrieval performance, RGGR will zero out the knowledge
learning gradient of the output channel that has the most
negligible impact on the retrieval results as follows.
Retrieval Rank Matrix R Formulation. To evaluate the
channel importance of each residual block with respect to
image retrieval, we build a query set () and a gallery set
G on each block during training to simulate the retrieval
results. Different from using only one batch of teacher fea-
tures as the gallery set, we construct a large gallery set G
to reveal the overall distribution of the data X adequately.
Specifically, given a batch size of N samples, we extract
the teacher feature 7, = [ff, fL, ..., fi] € RM*P from
the 3 x 3 convolutional layer and GAP layers to update the
gallery G. The gallery set is implemented in a queue with
a fixed size L, which means the first-in-first-out policy is
followed to maintain the queue length, as done in [16,48].
For building the query set (), we should extract the stu-
dent feature F, = [f?, £, ..., f3] € RV*P from DGC and
GAP layers as the query set (). However, F; is not invariant
and semantic enough for presenting the image information
during early training, causing the matching results between
F, and F; to be unreliable. Therefore, we use F; instead of
Fs as the query set to retrieve the gallery set G. Formally,
we obtain the retrieval rank matrix R € RY*Z as follows:

R={rleR>"PlI<i<N1<j<L}, (6

where r; represents the ¢-th query feature retrieved from the
gallery set G and then returning the j-th gallery feature.
Binary Mask M Formulation based on R. Since the re-
trieval rank matrix R is obtained by sorting the retrieval
distance matrix, we conclude that R can indicate the out-
put channels with the most negligible impact on the re-
trieval result. In addition, to reduce the negative impact
of gallery features with low relevance, we select top-K re-
trieval gallery feature from R as the retrieval result R, €
RY*K to find unimportant output channel as follows:

Re={r'eRV"PII<i<N1<j<K}, (1)
where K = 2 empirically.
Thus, the unimportant output channel index I between
the query set () and the retrieval result R is as follows:

=0 01 8
7i=1j=1 15 ()
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Figure 3. The retrieval-guided gradient resetting mechanism (RGGR). For ease of visualization, we assume that the DGC’s output channel
is 3. RGGR believes that the DGC’s first channel has the most negligible influence on retrieval results by the absolute value of the channel

product between f; and r; Then, RGGR resets the accumulation

where I;; denotes the unimportant output channel index be-
tween the i-th query feature f and r} as follows:

Li=w(A(f5r),1<i<N1<j<K, (9

where w(+) represents a series of operations, including sort-
ing the importance of the output channels in ascending or-
der, picking the smallest one from the ordered index queue,
storing its index, and stopping picking when p = 50% ra-
tios of the index have been selected. The value of p is cho-
sen empirically. The function A(-) that evaluates the impor-
tance of each output channel of the DGC modules, based on
the absolute value of the product of £ and r;. as follows:

A7) = [Ad) A= | Fia - rha

,1<d< D, (10)
where f7,; and 7% ; represent the d-th channel value of f;
and the d-th channel value of 7%, respectively.

Overall, based on the unimportant output channel index
1, we update the binary mask M to zero the knowledge ac-
cumulation gradient of the unimportant output channel of
DGC as follows:

ifiel,

) 1<:<D.
otherwise,

an

4. Experiments

To demonstrate the superiority of our CDD+RGGR
method, we conduct evaluations on three widely used pub-
lic image retrieval datasets: In-Shop [32], VeRi776 [30],
and MSMT17 [51]. In what follows, we briefly introduce
datasets and performance metrics. Then, we conduct abla-
tion experiments and compare CDD+RGGR with state-of-
the-art methods. we conduct analysis experiments to exam-
ine the role of CDD+RGGR comprehensively.

gradient of the first channel to O to push its weight value toward 0.
4.1. Datasets and Performance Metric

In-Shop Clothes Retrieval (In-Shop) [32] is a com-
monly used clothes retrieval database, which contains
72,712 images of clothing items belonging to 7,986 cate-
gories. The training set includes 3,997 classes with 25,882
images. The query set with 14,218 images of 3,985 classes.
The gallery set has 3,985 classes with 12,612 images.

VeRi776 [30] is a vehicle retrieval dataset. The training
set contains 37,746 images of 576 subjects. The query set
of 1,678 images of 200 subjects. The gallery set of 11,579
images of the same 200 subjects.

MSMT17 [51] is the largest pedestrian retrieval
database, which contains 126,441 images of 4,101 pedes-
trian identities. The training set includes 32,621 training
images of 1,041 identities. The test set includes 11,659
query images and 82,161 gallery images of 3,060 identities.

The Cosine distance is used as the retrieval algorithm,
where the more similar the gallery image, the higher its
ranking. The retrieval accuracy is evaluated using mean av-
erage precision (mAP) [44] and rank-1 identification rate
(R1) [30]. Model size and computational complexity are
measured using the number of model parameters (MP) and
floating-point operations (FLOPs), respectivel.

4.2. Implementation Details

The software tools used for our experiments are Pytorch
1.12 [39], CUDA 11.6, and python 3.9. The hardware de-
vice is one GeForce RTX 3090Ti GPU. The network train-
ing configurations are as follows. (1) We use ImageNet pre-
trained ResNet101 [17] as backbones and set the last stride
of ResNetl01 to 1, as done in [ 1. (2) The teacher
network is frozen during students’ training. (3) The data
augmentation includes z-score normalization, random crop-
ping, random erasing [60], and random horizontal flip oper-

)
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Table 1. Ablation results on In-Shop [

] and VeRi776 [30].

In-Shop VeRi776
METHOD  TEACHER STUDENT o on =5 6p0(G) mAP(%) R1(%) MP (M) FLOPs (G) mAP(%) Ri(%)
Teacher - ResNet101  43.50 12.99 81.72 9523 43.50 12.99 80.50 96.42
CDD w/o DGC ResNetl0l ResNetl01 35.89 10.94 71.87  90.45 39.80 11.96 62.14  93.27
CDD ResNet101 ResNetl01 20.14 6.31 81.38 95.01 18.59 5.77 80.36  96.48
CDD+RGGR ResNet101 ResNetl01 14.97 4.68 81.28 95.14 14.30 4.46 80.67  96.66

ations, as done in [54]. (4) The mini-batch stochastic gra-
dient descent method [28] is used as the optimizer. The
mini-batch size is set to 96, including 16 identities, and
each identity holds 6 images. (5) Setting weight decays as
5 x 10~* and momentums as 0.9. (6) The cosine annealing
strategy [33] and linearly warmed strategy [15] are applied
to adjust learning rates. (7) The learning rates are initialized
to 1 x 1073, then linearly warmed up to 1 x 10~2 in the
first 10 epochs, the drop point for learning rates is the 40-th
epoch. For MSMT17 [51], the total training epoch is 120.
For In-Shop [32] and VeRi776 [30], the total training epoch
is 100. (8) Considering that pedestrians datasets and other
datasets have different aspect ratios, for MSMT17 [51], the
image resolution is set as 320 x 160. For In-Shop [32] and
VeRi776 [30], the image resolution is set as 256 x 256.

4.3. Ablation Experiments

As shown in Table 1, we conduct ablation experiments
on In-Shop [32] and VeRi776 [30]. Teacher means that we
directly use the ResNet101 teacher to evaluate performance.
CDD w/o DGC means that the student discards DGC mod-
ule, causing KD of Eq. 1 and NP of Eq. 2 to act on the same
3 x 3 convolutional layers.

First, compared to Teacher, we can find that CDD w/o
DGC slightly wins MP and FLOPs but severely degrades R1
and mAP. Specifically, CDD w/o DGC is inferior to Teacher
by 18.36% mAP and 3.15% R1 on VeRi776 [30]. These
results show that playing KD and NP on the same convo-
lutional layers can compress networks but is injured for re-
trieval performance. The fault lies in the potential conflict
between KD and NP because KD guides students to inherit
more teachers’ knowledge, but NP encourages students to
forget knowledge. Furthermore, with the usage of DGC,
CDD outperforms CDD w/o DGC in terms of all metrics.
For example, on VeRi776 [30], CDD outperforms CDD w/o
DGC by 18.22% mAP, 3.21% R1, 21.21M MP, and 6.19G
FLOPs. These comparisons demonstrate that DGC can al-
leviate the conflict between KD and NP.

Second, with using RGGR, the student further improved
inference performance without loss of accuracy perfor-
mance. Compared with CDD, CDD+RGGR saves 25.67%
MP and 25.80% FLOPs on In-Shop [32], and 23.08% MP
and 22.70% FLOPs on VeRi776 [30]. The comparison
demonstrates that RGGR can further boost the inference
performance of students without sacrificing accuracy.
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Table 2. Performance comparison on In-Shop.

METHOD ' TEACHER STUDENT MP FLOPs mAP RI
Fastretri [ 18] ResNet50 25.54 8.13 91.97
CCKD [40] * ResNetl01 ResNet34 21.54 7.31 80.6594.78

FT [25] * ResNetlO1 ResNet34 21.54 7.31 80.5194.55

SP [49] * ResNetl01 ResNet34 21.54 7.31 80.8194.89

AT [27] * ResNet101 ResNet34 21.54 7.31 80.8594.91
RKD [36] * ResNetl01 ResNet34 21.54 7.31 81.0394.81

PKT [38] * ResNetl01 ResNet34 21.54 7.31 80.59 94.68
MBDL [56] * ResNet101 ResNet34 21.54 7.31 80.7694.71
DKD [59] * ResNet101 ResNet34 21.54 7.31 80.9394.86
CSKD [53] * ResNet101 ResNet34 21.54 7.31 80.6594.77
KDPE [19] * ResNet101 ResNet34 21.54 7.31 78.99 94.08
ResRep [9]+ ResNet101 ResNet101 16.27 5.11 79.86 94.68
CDD+RGGR ResNet101 ResNet101 14.97 4.68 81.28 95.14

! The * represents the result is re-implemented.

Table 3. Performance comparison on VeRi776.

METHOD ' TEACHER STUDENT MP FLOPs mAP RI

PVEN [34] ResNet50 25.54 8.13 79.5095.60
ViT [13] = ) VIiT [13] 86.7 55.6 78.9295.84
CCKD [40]* ResNetl01 ResNet34 21.54 7.31 76.3495.23
FT [25] * ResNetl01 ResNet34 21.54 7.31 77.1895.77
AT [27] * ResNetl01 ResNet34 21.54 7.31 77.9895.41
SP [49] * ResNetl0l ResNet34 21.54 7.31 77.5095.77
RKD [36] * ResNetlOl ResNet34 21.54 7.31 78.5695.65
PKT [38] * ResNetl01 ResNet34 21.54 7.31 78.4595.47
MBDL [56] * ResNet101 ResNet34 21.54 7.31 77.9195.53
DKD [59] * ResNet101 ResNet34 21.54 7.31 76.4095.59
CSKD [53] * ResNet101 ResNet34 21.54 7.31 73.6094.34
KDPE [19] * ResNet101 ResNet34 21.54 7.31 74.2794.93
ResRep [9] = ResNet101 ResNet101 15.87 4.87 77.6095.11
CDD+RGGR ResNet101 ResNet101 14.30 4.46 80.67 96.66
UMTS [24] ResNet50 ResNet50 25.54 8.13 759 95.8
VKD [41] ResNet50 ResNet50 25.54 8.13 79.17 95.23
ResRep [9] * ResNet50 ResNet50 11.24 3.83 75.74 94.66
CDD+RGGR ResNet50 ResNet50 9.33 3.20 78.7595.95

! The * represents the result is re-implemented.

4.4. Comparison with State-of-the-art Methods

Table 2, 3 and 4 summarize comparisons on In-Shop
[32], VeRi-776 [30], and MSMT17 [51] datasets, respec-
tively. Here, both MP (M), FLOPs (G), mAP (%), R1
(%) are obtained by only using the student during infer-
ence. For a fair comparison, Hinton’s original Kullback-
Leibler divergence strategy [21] is applied to all compared
re-implemented KD methods, as done in previous works



Table 4. Performance comparison on MSMT17.

Table 5. Evaluation of two-stage cascaded designs on MSMT17.

METHOD ' TEACHER STUDENT MP FLOPs mAP RI Methods MP (M) FLOPs (G) mAP (%) R1 (%)
IANet [22] ResNet50 25.54 4.07 46.8 75.5 SSL [52] 15.11 3.57 46.23  70.89

BINet [4] i ResNet50 25.54 4.07 52.8 76.1 Self-KD + SSL [52] 14.84 3.56 5431 76.97
CCKD [40]* ResNet1l01 ResNet34 21.54 5.71 56.65 80.58 ResRep [Y] 14.85 3.59 51.17  74.61

FT [25] * ResNetlOl ResNet34 21.54 5.71 56.67 80.38

AT [27] * ResNetl01 ResNet34 21.54 5.71 58.7081.62

SP [49] * ResNetl01 ResNet34 21.54 5.71 57.3280.37
RKD [36] * ResNetlOl ResNet34 21.54 5.71 57.97 81.02
PKT [38] * ResNetl01 ResNet34 21.54 5.71 57.0280.31
MBDL [56] * ResNet101 ResNet34 21.54 5.71 57.18 80.50
DKD [59] * ResNetl01 ResNet34 21.54 5.71 56.95 80.63
CSKD [53] * ResNet101 ResNet34 21.54 7.31 54.8979.17
KDPE [19] * ResNetl01 ResNet34 21.54 7.31 52.4578.18
ResRep [9] * ResNet101 ResNet101 16.49 3.94 52.69 75.63
CDD+RGGR ResNet101 ResNet101 15.00 3.66 60.98 81.68

! The * represents the result is re-implemented.

[40, 41, 55]. Moreover, an advanced NP method (i.e.,
ResRep [9]) was also re-implemented to compare with our
method. The comparison analyses are discussed as follows.
In-Shop dataset. Table 2 shows that CDD+RGGR has sev-
eral significant advantages over other compression meth-
ods. Firstly, when using the same ResNet101 teacher,
CDD+RGGR achieves the highest performance across all
metrics compared to other KD methods. Specifically, re-
garding inference performance, CDD+RGGR outperforms
these methods by 5.27M MP and 2.63G FLOPs. Secondly,
compared to ResRep [9], CDD+RGGR achieves a higher
accuracy performance of 1.42% mAP and 0.46% R1 while
maintaining similar inference performance.

VeRi776 dataset. From Table 3, the compressed method
CDD+RGGR outperforms non-compressed methods like
PVEN [34] and ViT [13], which use complex backbone
networks. Compared with other compressed methods that
use the same ResNet101 teacher, CDD+RGGR can achieve
higher accuracy with a lighter and more efficient student
model with 14.30M MP and 4.46G FLOPs, along with
80.67% mAP and 96.66% R1. Specifically, regarding mAP
accuracy, CDD+RGGR outperforms RKD [36] by 2.11%,
PKT [38] by 2.22%, and all other competitors by a sig-
nificant margin while using only 61.01% FLOPs of other
KD methods. Besides, using ResNet50 as the teacher,
CDD+RGGR loses first place in mAP to VKD [41], a self-
distillation method that focuses on improving the accuracy
of the original model (i.e., teacher models) itself rather than
educating a lightweight student. Nevertheless, our approach
is still valuable because CDD+RGGR can save 63.47% MP
and 59.33% FLOPs with a slight loss in accuracy.

MSMT17 dataset. From Table 4, it is evident that the
CDD+RGGR method using the ResNet101 model as the
teacher network exhibits significant advantages in terms
of accuracy performance metrics when compared to the
non-compressed approaches, namely, IANet and BINet.

Self-KD + ResRep [9] 14.82 3.59 56.17  78.30
CDD + RGGR 15.00 3.66 60.98 81.68

Table 6. Ablation results on the retrieval matrix R on VeRi776.

Methods Retrieval Metric Queue FLOPs mAP R1
RGGR w/o Cosine  Euclidean v 5.05 80.6296.48
RGGR w/o Queue Cosine X 4.47 80.3296.42

RGGR Cosine v 446 80.67 96.66

Specifically, CDD+RGGR achieves the highest mAP (i.e.,
60.98%) and the highest R1 (i.e., 81.68%) among all the
methods. Additionally, it is worth noting that CDD+RGGR
also outperforms the KD methods by 6.54M MP and 2.05G
FLOPs in terms of inference performance, which further
underscores its superiority as a compression method.

4.5. Analysis Experiments

The two-stage method vs CDD+RGGR. To evaluate the
effectiveness of our integrated end-to-end KD+NP method,
we conducted a comparative study as shown in Table. 5.
For a fair comparison, we decompose our approach into a
cascaded setting. Specifically, we first employ self-KD to
distill a heavy student model. Then, the well-trained heavy
student model is pruned to a light student by ResRep [9].
Notably, RGGR retrieval-based metric is disabled, and we
use the convolutional layer weight metric of ResRep [9] in-
stead for stable training. Finally, the light student is fine-
tuned to restore some performance. From Table 5, it can
be observed that CDD + RGGR significantly outperforms
self-KD + ResRep by 4.18% mAP and 3.38% R1 because
ResRep may be difficult for the pruned model to completely
retain the performance of the distilled large student with-
out teachers’ guidance. Moreover, we have also compared
CDD + RGGR with another pruning method SSL [52], and
a similar conclusion can be observed. These results demon-
strate the superiority of the integrated end-to-end KD+NP
method over the two-stage cascaded method.

The ablation results for the retrieval matrix R. As shown
in Table 6, we conduct ablation experiments for the retrieval
matrix R on Veri776 [30]. Table 6, we can find that RGGR
performs better performance with the cosine distance and
queue mechanism in the retrieval matrix R.

The influence of top-K retrieval results (i.e. K in Eq.
(7)). When the value of K is increased, RGGR has more
reference information to zeroing the knowledge accumula-
tion gradient of unimportant channels. As shown in Fig. 5,
on Veri776 [30], the mAP performance of CDD+RGGR at
K > 1 outperforms at K = 1.
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Figure 4. The influences of p values. (a) on mAP. (b) on MP. (c) on FLOPs. As p increases, the knowledge accumulation gradient of more
channels is zeroed, resulting in a slight decrease in mAP and a noticeable improvement in inference performance.
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Figure 6. The output channel number of DGC in each residual
block on In-shop [32]. With RGGR, the output channel number of
DGC is significantly reduced, while mAP only drops 0.1%.

The influence of the channel selection mask ratio (i.e.,
p(%) in Eq. (9)). Fig. 4 show that the impact of p
values on performance. Specifically, as the value of p
increases, the knowledge accumulation gradient of more
channels becomes zero, leading to a slight decrease in mAP
performance but an increase in inference performance for
CDD+RGGR. For instance, increasing the p value from
40% to 70% on In-shop [32], the FLOPs performance im-
proved from 4.9 G to 4.3 G while mAP only dropped 0.27%.

Qualitative results. Fig. 6 shows the output channel num-
ber of slim DGC in each residual block on In-shop [32].
We can find that RGGR can effectively sparse DGC and
thus significantly reduce the output channel number. For
example, in the 32-th residual block, RGGR can reduce the
output channel number of DGC from 241 to 1.

5. Conclusion

This paper proposes a Capacity Dynamic Distillation
method for efficient image retrieval. Specifically, we use
a heavy model as students to fully understand teachers’
knowledge in early training. Simultaneously, the student
model is gradually compressed during the training by the
distillation guided compactor module. Furthermore, we
propose the retrieval-guided gradient resetting mechanism
to release the conflict between the learning gradient and the
forgetting gradient. Extensive experiments demonstrate the
heavy student model can be converted into a lightweight
model without critical performance degeneration.
Limitation. Although our method achieves promising re-
sults on efficient CNNs, the performance on the transformer
network is yet to be validated. In the future, we will extend
our method to transformer-based knowledge distillation.
Broader Impact. Our method demonstrates that the end-
to-end aggregation of KD and NP helps construct large-
capacity student models, which can inspire the commu-
nity to continue to explore compression methods for large-
capacity student models. In addition, our approach can
be applied to learn the efficient model on other matching-
dependent tasks (e.g., Object re-identification).
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