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Abstract

Unpaired image-to-image translation aims to learn
proper mappings that can map images from one domain to
another domain while preserving the content of the input
image. However, with large enough capacities, the network
can learn to map the inputs to any random permutation of
images in another domain. Existing methods treat two do-
mains as discrete and propose different assumptions to ad-
dress this problem. In this paper, we start from a different
perspective and consider the paths connecting the two do-
mains. We assume that the optimal path length between
the input and output image should be the shortest among
all possible paths. Based on this assumption, we propose a
new method to allow generating images along the path and
present a simple way to encourage the network to find the
shortest path without pair information. Extensive experi-
ments on various tasks demonstrate the superiority of our
approach. The code is available at https://github.com/Mid-
Push/santa.

1. Introduction

Many important problems in computer vision can be
viewed as image-to-image translation problems, including
domain adaptation [22, 46], super-resolution [7, 66] and
medical image analysis [2]. Let X and Y represent two
domains, respectively. In unpaired image-to-image transla-
tion, we are given two collections of images from the two
domains with distributions {PX , PY} without pair informa-
tion. Our goal is to find the true conditional (joint) distribu-
tion of two domains PY|X (PX ,Y ); with the true conditional
(joint) distribution, we are able to translate the input images
in one domain such that the outputs look like images in an-
other domain while the semantic information of the input
images is preserved. For example, given old human faces in
one domain and young human faces in another domain, we

Figure 1. Illustration of our shortest path assumption. Almost
existing methods only use two discrete domains {X ,Y}. Instead,
we consider the paths connecting two domains and assume that
the optimal mapping generates shortest path, e.g., x1 → y1 rather
than x1 → y2.

want to learn the true joint distribution across the two do-
mains. Then we can translate the old face into young face
image while preserving the important information (e.g., the
identity) of the input face (see Fig. 1).

However, there can exist an infinite number of joint dis-
tributions corresponding to the given two marginal distri-
butions [39]. It means that the problem is highly ill-posed
and we may not derive meaningful results without any ad-
ditional assumptions. As one of the most popular assump-
tions, cycle consistency [71] assumes that the optimal map-
ping should be one-to-one and has been achieving impres-
sive performance in many tasks. However, the one-to-one
mapping assumption can be restrictive sometimes [48], es-
pecially when images from one domain have additional in-
formation compared to the other domain. As an alterna-
tive, contrastive learning based method [48] has become
popular recently. It assumes that the mutual information
of patches in the same location of the input and translated
image should be maximized. Then it employs the infoNCE
loss [57] to associate corresponding patches and disassoci-
ate them from others. However, it has been shown that the
choices of samples in the contrastive learning can have large
impact on the results and most of recent image translation
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methods are trying to improve it, e.g., negative sample min-
ing [30, 58, 68] and positive sample mining [24].

Departing from existing unpaired image translation
methods, we consider the paths connecting images in the
first domain to images in the second domain and propose a
shortest path assumption to address the ill-posed joint dis-
tribution learning problem. Specifically, we assume that the
path, connecting one image in the first domain to its cor-
responding paired image in another domain, should be the
shortest one compared to other paths (see Fig. 1). However,
as we are only given images from two discrete domains,
we have no access to real images on the paths. To address
this problem, we first make a shared generating assump-
tion to allow synthesizing images along the path: images
are generated with the same function from the shared latent
code space and the domain variable (as a surrogate of the
domain-specific information). Then by changing the value
of the domain variable, we obtain a path connecting the in-
put and output image. In order to find a proper mapping, we
need to minimize the path length, which can be formulated
as expectation of the norm of the Jacobian matrix with re-
spect to the domain variable. To reduce the cost of comput-
ing the high-dimensional Jacobian matrix computation, we
further propose to use finite difference method to approx-
imate the Jacobian matrix and penalize the squared norm.
The contributions of this paper lie in the following aspects:

1. We propose a shortest path assumption to address the
ill-posed unpaired image translation problem. We also
conduct experiments to justify our assumption.

2. We propose a simple and efficient way to allow syn-
thesizing images on the path connecting two domains
and penalize the path length to find a proper mapping.
Our method is the fastest one among all unpaired im-
age translation methods.

3. Extensive experiments are conducted to demonstrate
the superiority of our proposed method.

2. Related Work

Image-to-Image Translation With paired data, one can
employ the Generative Adversarial Network (GAN) [19]
to generate high-fidelity images while enforcing the con-
sistency between the result and target [28]. With unpaired
data, there can be an infinite number of mappings between
two domains. To address this issue, cycle consistency is
proposed to enforce the network to be a one-to-one map-
ping and is shown to achieve impressive visual performance
[32, 35, 63, 71]. Cycle consistency becomes an important
factor to image translation methods [9, 14, 31, 43, 54–56].
However, the one-to-one assumption admits multiple solu-
tions [45] and may be too restrictive for some datasets [48].

As an alternative to cycle consistency, relationship preserva-
tion methods encourage relationships present in the input be
analogously reflected in the output [5,17,21,48,58,60,70].
For example, DistanceGAN [5] enforces the network to pre-
serve the distance order of two random inputs after the
translation. Decent [60] encourages the density changes
to be close for all patches. Shared latent space assump-
tion is also a popular assumption in image translation which
states that for any given pair of images, there exists a shared
latent code in the latent space [27, 34, 36, 37]. For in-
stance, UNIT [37] employs two weight-sharing VAEs for
image reconstruction and translation. MUNIT [27] and
DRIT [34] take a step further and assume that the repre-
sentation can be decomposed into shared content code and
domain specific style code. Multimodal image translation
can be achieved by combing same content with different
style codes. In contrast to UNIT, UFDN [36] employs a
shared VAE and apply adversarial training to obtain do-
main invariant representations. Contrastive learning is gain-
ing more attention in image-to-image translation recently.
They assumes that the two corresponding patches in the
input and output images should have larger mutual infor-
mation that others [21, 29, 30, 48, 58, 70]. Recently multi-
modal [1, 25, 27, 34, 40, 41, 44, 47, 52, 65, 72] and multi-
domain [6, 10, 11, 36], few-shot translation [38, 50] are also
gaining wide popularity. [4] proposed a new setting where
no domain label is available. [59] considers the case where
content of images in two domains are not aligned.

Latent Space Interpolations HomoGAN [8] proposed
to interpolate two different samples in the latent space and
proposed to minimize the homomorphic gap between the la-
tent space and the attribute space for the face attribute trans-
lation task. DLOW [18] applies weighted adversarial train-
ing on the intermediate domains for the domain adaptation
task. CoMoGAN [49] proposes the functional instance nor-
malization layer to help continuous mapping from source
domain with the guidance of the physical models, e.g., a
tone mapping for continuous translation from day to night.
The good empirical performances of HomoGAN, DLOW,
and ComoGAN highlight the effectiveness of intermediate
domains, but they all need additional supervision (e.g., at-
tribute or class labels), which makes them unsuitable for
our task. [3, 51, 62] propose to minimize the arc length to
find meaningful interpolations of unconditional generative
models given two fixed random noises. For multi-modal
and multi-domain image translation, we may interpolate be-
tween two style codes within the same domain [11, 27, 40],
but they do not support interpolation between two different
domains.

Optimal Transport Our method is also deeply con-
nected to the Monge problem in optimal transport:
inff

∫
X c(x, f(x))p(x)dx, where f(x) ∈ Y , and the

Kantonorovich formulation: infπ
∫
X ,Y c(x, y)π(x, y)dxdy,
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where π is the joint distribution measure. One important
problem is to define the cost function c. Many methods
consider the cost c(x, y) = |x− y| and c(x, y) = |x− y|2.
Unfortunately, these cost functions may not be suitable for
our image-to-image translation task since the Euclidean dis-
tance in image space across two domains may not be mean-
ingful. If labels are given, one may consider computing
the cost in the feature space [13, 15, 61]. [16] uses different
cost functions c for different image translation tasks. Op-
timal transport has also been applied in finding the corre-
spondence between two sets of images [53, 67]. However,
they are also not applicable in our setting since there is no
guarantee that the data in two domains are paired.

3. Shortest Path Regularized Unpaired Image
Translation

In this section, we first introduce the shortest path as-
sumption. Then, we present our generative model that
builds the path connecting the two domains. Finally, we
give the exact formulation of our shortest path regulariza-
tion and its efficient approximation.

3.1. Shortest Path Assumption

Given samples from two marginal distributions {xi} ∼
PX and {yj} ∼ PY , our goal is to infer the true condi-
tional distribution PY|X or the joint distribution PX ,Y =
PY|XPX . Since there can be infinite number of possible
joint distributions that can yield the given marginals, it is
impossible to infer the true joint distribution without addi-
tional assumptions.

To tackle this issue, we make the shortest path assump-
tion. Specifically, we assume that for any image x1 ∈ X ,
the path from x1 to its true paired image y1 ∈ Y is the short-
est one on the manifold. As shown in Figure 1, there can be
many paths of translating x1 to the domain Y , e.g., x1 → y1
and x1 → y2. We assume the optimal path x1 → y1 is
the shortest one, i.e., the length of curve γ1 is less than the
lengths of other curves including γ2. The intuition is that
given pair (x1, y1), they share the same latent content z de-
spite in different domains. When connecting x1 to another
point y2, they share less information and the content infor-
mation in x1 may not be kept in x2, which is undesirable
in image-to-image translation. Therefore, transforming x1

to y1 should be easier than transforming x1 to y2. As a
consequence, the path x1 → y1 should be shorter than the
path x1 → y2 since no additional latent change is needed.
We provide experimental justification of this assumption in
Section 4.3.

3.2. Building the Path

Motivated by the shortest path assumption, we would
like to build paths that connecting two domains. How-

ever, most existing image translation methods train a sin-
gle network G to translate x ∈ X into another domain, i.e.,
G(x) ∈ Y [48,71], which is incapable of generating images
along the path. We first present a way to allow networks
synthesizing the paths by making assumption on the data
generation process.

We assume that images from different domains are gen-
erated with the same function G∗ from a latent code space
Z which is shared across domains, and a continuous do-
main variable θ. In other words, a ground truth pair data
(x, y) ∼ PX ,Y are generated as

x = G∗(z, 0), y = G∗(z, 1),

where z ∈ Z is the shared latent code. Now, we need to find
a shared latent space first and learn the unknown optimal
mapping G∗.

Shared Latent Space. Given any two images x ∼ PX
and y ∼ PY , we employ a shared encoder E to extract the
latent codes:

zx = E(x), zy = E(y).

To encourage the latent codes lie in the same space,
we propose to match their distributions q(zx), q(zy) with
Kullback-Leibler (KL) Divergence

Lkl = KL(q(zx)||p(z)) + KL(q(zy)||p(z)), (1)

where p(z) is the prior distribution and we assume it as
isotropic Gaussian N (0, I).

Reconstruction G(zx, 0). After obtaining the shared la-
tent space, we need to build the paths from first domain to
another domain. To this end, we train the decoder G to re-
construct the input image x

Lrec = Ex∼PX ∥G(zx, 0)− x∥1, (2)

where G(zx, 0) serves as the starting point of the path. The
combination of the reconstruction loss Lrec and the KL di-
vergence loss Lkl can be viewed as a variational autoen-
coder [33], which is famous for its powerful inference abil-
ity of the latent variable zx.

Translation G(zx, 1). We now train the decoder to
find an ending point of the path, i.e., translating the im-
ages x ∈ X to another domain Y . We would like to have
x̃ = G(z, 1) to look like images in domain Y . To match the
distribution between PG(zx,1) and PY , we adopt the gener-
ative adversarial network (GAN) [71]. In detail, we employ
a discriminator D and D is trained to distinguish the gen-
erated images G(z, 1) from the real images y ∈ Y , and the
encoder and decoder E,G are trained to fool D. The loss
of GAN is defined as follows:

Lgan = Ex∼PX ,y∼PY [(D(x̃)− 1)2 +D(y)2]. (3)
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Figure 2. The diagram of our model. We employ a shared encoder E to extract latent code from the shared space . Then we assume that
images in two domains are generated with the same function and we use a shared decoder G to perform reconstruction and translation. We
can generate images along the path via changing the value of domain code θ. However, without any regularization, the path may be very
long and leads to distortion in the translation results. Therefore, we apply our path length regularization to find a proper mapping between
two domains.

3.3. Path Length Regularization

Now we can synthesize the images along the path by
moving θ from 0 to 1 and we obtain a path γx : [0, 1] →
G(zx, θ), where the start G(zx, 0) is the reconstruction of
the input image and the end G(zx, 1) is the translation re-
sult. Without any regularization, the translation G(zx, 1)
can be mapped to any image in domain Y which means
that the semantic information of input x can be distorted
or even discarded. Therefore, we propose to regularize the
path length of γx according to our shortest path assumption.

Given a curve γ : [a, b] → M, the arc length of the curve
γ [20] is defined as L(γ) =

∫ b

a
∥γ′(θ)∥dθ,whereγ′(θ) =

d
dθγ(θ) is the velocity of the curve. In our case, we have the
arc length of

L(γx) =

∫ 1

0

∥Jθ∥dθ,

where Jθ = d
dθG(zx, θ) =

d
dθγx(θ) is the Jacobian matrix

of the decoder G(zx, θ) with respect to θ.
To find the minima of the path length L(γx), we optimize

the energy functional of the curve as follows:

γshortest = argmin
1

2

∫ b

a

∥Jt∥2dθ. (4)

The minima γshortest also has constant speed parameter-
ization [20], which implies that we can obtain a smoothly
changing path by minimizing the energy functional.

However, the cost of computing the Jacobian matrix Jθ
is prohibitively expensive due to the high dimensionality of
the network output G(z, θ). To address this issue, we pro-
pose to use the classical central finite difference method to
approximate the Jacobian vector

Ĵθ =
G(z, θ + h

2 )−G(z, θ − h
2 )

h
, (5)

where h is a hyper-paramter that control the granularity of
the estimated Jacobian matrix. In practice, we randomly
sample h ∼ U(0.1, 0.2).

Multi-layer Feature Path Length Inspired by the multi-
layer patchwise learning in CUT [48], we can also penalize
the path length on multi-layer features. Specifically, we se-
lect L layers of interest and can obtain a set of features of
two domains as Gl(zx, 0), G

l(zx, 1), where l is the l th cho-
sen layer of the decoder G. Then we can compute the Jaco-
bian matrix at layer l as

Ĵ l
θ =

Gl(z, θ + h
2 )−Gl(z, θ − h

2 )

h
.

Given features from L layers, our path length regulariza-
tion loss is defined as

Lpath = Ex∼PXEθ∼U(0,1)
1

L

L∑
l=1

∥Ĵ l
θ∥2. (6)

3.4. Additional Regularization

We additionally introduce the reconstruction (identity)
loss on the domain Y to further regularize the networks,
which is commonly used by previous translation methods
[48, 71]. The identity loss is defined as follows

Lidt = Ey∼PY∥y −G(zy, 1)∥. (7)

3.5. Full Objective

Our full objective is as follows.

Lfull = Lgan + λidtLidt + λrecLrec + λklLkl + λpathLpath,
(8)

where λidt, λrec, λkl, λpath are hyper-parameters that bal-
ances different loss functions.
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Figure 3. Justification of our shortest path assumption. We observe
that there is strong negative correlation between the path length
and the pixel accuracy. Therefore, we need to minimize the path
length to find a proper mapping.

We aim to solve

E∗, G∗ = argmin
E,G

max
D

Lfull. (9)

In the inference stage, given an input image x from domain
X , we can get its translation in domain Y by first encoding
it to the latent space by the encoder E and then using the
generator G with θ = 1 to decode the latent information
into the translated image, i.e., y = G(E(x), 1).

3.6. Discussion

As introduced above, patch mutual information maxi-
mization [21, 48, 58] encourages that the representations of
patches on the same location, from two domains, should be
close. However, patches on the same location in two do-
mains can have totally different meanings and the large do-
main difference may lead to failure [21]. Our method can
also be viewed as encouraging the features of two domains
to be close by penalizing the Jacobian norm. But the ma-
jor difference is that we are encouraging the features of two
close domains to be close. We are not enforcing the fea-
tures of G(z, 0) and translation G(z, 1) to be close brutely.
We are encouraging features of G(z, θ1) and G(z, θ1 + ϵ)
to be close and ϵ is a small value while allowing neces-
sary changes between the features of G(z, 0) and G(z, 1).
Through the lens of intermediate domains, our model is able
to preserve semantic information in the input while allow-
ing necessary changes.

4. Experiments

We test across several datasets. We first present the im-
plementation details, dataset, metrics and baseline meth-
ods. We then provide justification of our assumption on
real dataset. We then compare against the baseline methods
quantitatively and qualitatively. We finally perform ablation
studies and analyze our method.

4.1. Implementation Details

We mostly follow the setting of [48,71]. In detail, we use
LSGAN objective [42] and a 9-resnet-block based Genera-
tor. Since we have to implement the shared generating pro-
cess assumption, we use the first 4 resnet blocks as the en-
coder E and the rest 5 resnet blocks as the decoder G. Our
decoder G needs to generate images in different domains to
generate the path by moving the value of θ. Therefore, we
adopt the AdaIN [26] to introduce the influence of θ. We use
a domain embedding to generate the parameters for AdaIN
with input θ and then we perform classical forward process
to get images along the path. The total number of generator
is 11.428M. As a reference, recent methods [24, 48, 58] use
a generator 11.378M and an additional MLP with 0.560 M.
We use the Adam optimizer with learning rate 2e-4. We set
λrec = 5, λkl = 0.01, λidt = 5. For λpath, we choose from
[0.05, 0.1, 0.2]. We train all tasks with 400 epochs.

4.2. Datasets, Evaluation Metric and Baselines

Datasets We conduct experiments on the benchmark
datasets: label→city [12], cat→dog [11], horse→zebra
[71]. Then we further test the model on winter→summer
dataset. To further testify the effectiveness of our method,
we build a high-resolution aging dataset. We apply super-
resolution model to images in the public UTKFace dataset
[69] and split the dataset to young domain and old domain
according to ages. The dataset contains around 1500 train-
ing and 500 testing images.

Evaluation All tasks are trained at 256×256 resolution.
We have two main goals for image translation tasks: seman-
tic information preservation and high visual quality. Since
label→city have ground truth labels, we can use it measure
the semantic information preservation ability. Following
[48], we use a pretrained DRN segmentation network [64]
to map the generated city photos to segmentations. Then we
compute mAP, PixAcc and clsAcc by comparing with the
input segmentation images. We use the evaluation script *

provided by [30]. It is also worth noting that the evaluation
protocols of MoNCE and QS-Attn are different from [30].
So, we re-evaluate their results with the script. As for other
datasets that don’t have ground truth pairs, we adopt the
commonly used Frechet Inception Distance (FID) to mea-
sure the visual quality of the generated images. FID com-
putes the divergence between the generated images and the
real images in the feature space.

4.3. Justification of Our Assumption

Although our shortest path assumption is quite intu-
itive, it is still necessary to test whether this assumption
holds in real dataset. Therefore, we use the paired dataset
label→city to justify our assumption. We first run our

*https://github.com/jcy132/Hneg SRC/tree/main/Single-modal
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Figure 4. The generated samples on five tasks: cat→dog, horse→zebra, old→young, winter→summer and label→city. Cycle consistency
[71] sometimes can be over-restrictive, e.g., the cat→dog task. Contrastive learning based methods (CUT [48], SRC [30]) sometimes are
less-regularized, e.g., the horse→zebra tasks, which may be caused by the sample selection problem. By contrast, our method considers
the paths connecting the two domains and learn to generate high-quality images while preserving important problems.
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Table 1. Quantitative results on benchmark datasets

Method Label→City Cat → Dog Horse → Zebra Speed
mAP ↑ pAcc ↑ cAcc ↑ FID ↓ FID ↓ FID ↓ Sec/iter ↓

CycleGAN [71] 20.4 55.9 25.4 76.3 85.9 77.2 0.171
CUT [48] 24.7 68.8 30.7 56.4 76.2 45.5 0.138

NEGCUT [58] 27.6 71.4 35.0 48.5 55.9 39.6 0.275
MoNCE [68] 26.4 72.4 32.5 54.7 - 41.9 0.231
QS-Attn [23] 27.8 72.3 34.4 50.2 80.0 42.3 0.182

SRC [30] 29.0 73.5 35.6 46.4 - 34.4 0.139
Ours 31.0 73.6 37.4 46.1 52.1 36.2 0.136

Table 2. Quantitative results on additional datasets.

Method old→young winter→summer
FID ↓ ↓ FID ↓

CycleGAN [71] 43.5 75.1
CUT [48] 44.2 80.3

NEGCUT [58] 45.8 75.8
MoNCE 42.8 78.2

QS-Attn [23] 45.2 77.2
SRC [30] 42.7 71.6

Ours 41.9 70.9

model without enforcing the path length regularization, i.e.,
we set λpath = 0. Then we use this model to generate city
photos from the input segmentation labels. For each gener-
ated city photo, we feed it into the DRN network and com-
pare against the input label. So, we have the pixel accuracy
for each image. We also compute the path length by travers-
ing θ from 0 to 1 with 0.1 interval. The Pearson Correlation
between path length and Accuracy on cityscapes dataset is
-0.53 with p-value 4e-38. The very small p-value indicates
that the correlations between path lengths and the perfor-
mances are statistically significant. We present the scatter
plot in Fig. 3 and we can observe a strong negative correla-
tion between the path length and the pixel accuracy. This re-
sult suggest that we need to minimize the path length to im-
prove the pixel accuracy (or find a proper mapping), which
aligns with our shortest path assumption. Therefore, we ar-
gue that our shortest path assumption holds in real dataset.

4.4. Comparison with Baselines

We present the quantitative results in Table. 1 and 2. We
observe that our method achieves best results in four out
of five tasks. In particular, our method has achieved a very
high mAP 31.0 on the label→city dataset while the previous
best method can only achieve 29.0. The encouraging results
suggest that our method is able to preserve semantic infor-
mation in the input image. As for the cat→dog dataset, our
method achieves best FID and NEGCUT [58] achieves the
second best performance. It is worth noting that our method

Figure 5. Samples of interpolations without (first and third) and
with our proposed regularization (second and fourth). Without our
path length regularization, the model may suddenly change the
output. By contrast, our method generates images smoothly along
the path.

is the fastest one and only needs half of the training time of
NEGCUT.

We provide the generated samples in Fig. 4. For visual-
ization purpose, we only compare with the classical Cycle-
GAN [71], CUT [48] and the best baseline model for each
dataset. On the cat→dog task, we observe that CycleGAN
fails in translating the cat images into dog images, implying
that the cycle consistency may be over restrictive on such
tasks. we can observe that NEGCUT and our methods are
able to generate realistic dog images from the cat images.
However, our shortest path regularization encourages the
model to preserve more information about the input. On the
horse→zebra dataset, SRC [30] model achieves best FID
34.4 and our model achieves the second best FID as 36.2.
We can find that SRC generates more distortion than our
method. For example, it generates unncessary zebra strips
on the sky and the grass.

4.5. Ablation Study

We conducted ablation experiments to verify the effec-
tiveness of each module in our loss function. The quanti-
tative results are provided in Table. 3. We provide qualita-
tive ablation results in the supplementary. We observe that
the baseline method with only Lgan&Lidt has the worst per-
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Table 3. Quantitative results of ablation study. Config D,E,F are based on config C.

Config Settings label→city old→young
Lgan&Lidt Lrec Lkl Lpath mAP ↑ pAcc ↑ cAcc ↑ FID ↓ FID ↓

A ✓ 23.1 61.6 29.2 48.1 46.3
B ✓ ✓ 26.0 67.0 32.7 46.1 44.6
C ✓ ✓ ✓ 28.3 70.9 34.8 47.8 44.0
D ✓ ✓ ✓ ✓ 31.0 73.6 37.4 46.1 41.9
E Euclidean Distance Cross Domain 29.5 71.8 35.6 47.7 44.5
F VGG Distance Cross Domain 22.8 65.5 29.0 49.7 50.0

Table 4. Ablation study on interpolation performance. With the
path length regulariztaion, our method is able to generate images
that along the path, which is proved by the lowest value of FID.

Config Settings old→young
Lgan&Lidt Lrec Lkl Lpath Interpolation FID ↓

A ✓ 86.77
B ✓ ✓ 39.33
C ✓ ✓ ✓ 41.27
D ✓ ✓ ✓ ✓ 28.62

formance. It suggests that we need further regularization
to find a proper mapping between two domains. Adding
Lrec serves a good regularization as the mAP is increased
and FID is decreased. Then we add Lkl to the model and
we can find that it also helps semantic preservation. How-
ever, without our path length regularization, the paths are
not well regulalrized and may suffer label flipping on the
label→city dataset. After we apply our regularization, the
mAP jumps from 28.3 to 31.0 and the pixel Acc also in-
creases from 70.9 to 73.6. The encouraging improvement
highlight the importance to regularize the paths. In addi-
tion, our path length regularization also help matching the
distribution as demonstrated by the FID improvement from
44.0 to 41.9.

An interesting question is that do we really need interme-
diate domains since we are enforcing our path length regu-
larization on multi-layer features. So, we build method E
based on method C. We can notice that it brings small im-
provement over method C on label→city task but it hurts
the FID on the old→young task. The comparison between
method D and E demonstrate that we need to use interme-
diate domains as the domain difference can be quite large.

We also explore the option that using the commonly used
pretrained VGG model to extract meaningful features so
we can directly minimizing the difference across domains.
However, the results of method F are worse than the base
method C on both label→city task and old→young task.
The performance degradation is expected as the VGG is
only trained on ImageNet dataset. However, the images
in label→city and old→young datasets lie out of the do-

main of ImageNet classes. Therefore, using VGG to extract
features may not serve as a good way to preserve semantic
information on these two datasets.

In addition, we further examine the effectiveness of our
regularization on the images along the path for old→young
dataset in Table. 4. Specifically, we apply the super-
resolution model to the faces that are labeled between young
and old. The intermediate domain contains 12405 images.
If we are able to generate the true images along the path, the
FID between our interpolations and the real faces should be
low. For each testing image, we generate five images by
traversing the value of θ in [0.2, 0.4, 0.6, 0.8]. So we gen-
erate 2000 images for each config. We present samples of
interpolation in Fig. 5.

5. Conclusions, Limitation and Future Work

In this paper, we have proposed the shortest path assump-
tion where the path connecting two corresponding points in
the two domains is the shortest one. Then we propose a
generative model to allow generating the images along the
path. Finally, we propose an efficient way to enforce the
shortest path constraint by regularizing the Jacobian of gen-
erators. We have conducted thorough experiments on var-
ious benchmarks and the high quality of generated images
demonstrates the effectiveness of our method.

Nevertheless, one main limitation of our method could
be: our discrete approximation of the path length may cause
some inaccuracies in the estimation and better approxima-
tion methods could be sought in future work. Another in-
teresting direction would be extending our method to multi-
domain image-to-image translation.
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