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Figure 1. Human digitization from a color image. ECON combines the best aspects of free-form implicit representation, and explicit
anthropomorphic regularization to infer high-fidelity 3D humans, even with loose clothing or in challenging poses. It does so in three steps:
(1) It infers detailed 2D normal maps for the front and back side (Sec. 3.1). (2) The normal maps are converted into detailed, yet incomplete,
2.5D front and back surfaces guided by a SMPL-X estimate (Sec. 3.2). (3) It then “inpaints” the missing geometry between two surfaces
(Sec. 3.3). Face or hands can be optionally replaced with the cleaner ones from SMPL-X. See the video on our website for more results.

Abstract
The combination of deep learning, artist-curated scans,

and Implicit Functions (IF), is enabling the creation of de-
tailed, clothed, 3D humans from images. However, existing
methods are far from perfect. IF-based methods recover
free-form geometry, but produce disembodied limbs or de-
generate shapes for novel poses or clothes. To increase
robustness for these cases, existing work uses an explicit
parametric body model to constrain surface reconstruction,
but this limits the recovery of free-form surfaces such as
loose clothing that deviates from the body. What we want is
a method that combines the best properties of implicit repre-
sentation and explicit body regularization. To this end, we
make two key observations: (1) current networks are better
at inferring detailed 2D maps than full-3D surfaces, and (2)
a parametric model can be seen as a “canvas” for stitch-
ing together detailed surface patches. Based on these, our
method, ECON, has three main steps: (1) It infers detailed
2D normal maps for the front and back side of a clothed per-
son. (2) From these, it recovers 2.5D front and back surfaces,
called d-BiNI, that are equally detailed, yet incomplete, and
registers these w.r.t. each other with the help of a SMPL-X

body mesh recovered from the image. (3) It “inpaints” the
missing geometry between d-BiNI surfaces. If the face and
hands are noisy, they can optionally be replaced with the
ones of SMPL-X. As a result, ECON infers high-fidelity 3D
humans even in loose clothes and challenging poses. This
goes beyond previous methods, according to the quantitative
evaluation on the CAPE and Renderpeople datasets. Per-
ceptual studies also show that ECON’s perceived realism is
better by a large margin. Code and models are available for
research purposes at econ.is.tue.mpg.de

1. Introduction
Human avatars will be key for future games and movies,

mixed-reality, tele-presence and the “metaverse”. To build re-
alistic and personalized avatars at scale, we need to faithfully
reconstruct detailed 3D humans from color photos taken in
the wild. This is still an open problem, due to its challenges;
people wear all kinds of different clothing and accessories,
and they pose their bodies in many, often imaginative, ways.
A good reconstruction method must accurately capture these,
while also being robust to novel clothing and poses.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Initial, promising, results have been made possible by
using artist-curated scans as training data, and implicit func-
tions (IF) [56,59] as the 3D representation. Seminal work on
PIFu(HD) [70, 71] uses “pixel-aligned” IF and reconstructs
clothed 3D humans with unconstrained topology. However,
these methods tend to overfit to the poses seen in the training
data, and have no explicit knowledge about the human body’s
structure. Consequently, they produce disembodied limbs or
degenerate shapes for images with novel poses; see the 2nd
row of Fig. 2. Follow-up work [26, 82, 96] accounts for such
artifacts by regularizing the IF using a shape prior provided
by an explicit body model [52, 61], but regularization intro-
duces a topological constraint, restricting generalization to
novel clothing while attenuating shape details; see the 3rd
and 4th rows of Fig. 2. In a nutshell, there are trade-offs
between robustness, generalization and detail.

What we want is the best of both worlds; that is, the
robustness of explicit anthropomorphic body models, and
the flexibility of IF to capture arbitrary clothing topology. To
that end, we make two key observations: (1) While inferring
detailed 2D normal maps from color images is relatively
easy [31, 71, 82], inferring 3D geometry with equally fine
details is still challenging [9]. Thus, we exploit networks
to infer detailed “geometry-aware” 2D maps that we then
lift to 3D. (2) A body model can be seen as a low-frequency
“canvas” that “guides” the stitching of detailed surface parts.

With these in mind, we develop ECON, which stands
for “Explicit Clothed humans Optimized via Normal inte-
gration”. It takes, as input, an RGB image and a SMPL-X
body inferred from the image. Then, it outputs a 3D human
in free-form clothing with a level of detail and robustness
that goes beyond the state of the art (SOTA); see the bottom
of Fig. 2. Specifically, ECON has three steps.

Step 1: Front & back normal reconstruction. We
predict front- and back-side clothed-human normal maps
from the input RGB image, conditioned on the body estimate,
with a standard image-to-image translation network.

Step 2: Front & back surface reconstruction. We take
the previously predicted normal maps, and the correspond-
ing depth maps that are rendered from the SMPL-X mesh,
to produce detailed and coherent front-/back-side 3D sur-
faces, {MF,MB}. To this end, we extend the recent BiNI
method [7], and develop a novel optimization scheme that is
aimed at satisfying three goals for the resulting surfaces: (1)
their high-frequency components agree with clothed-human
normals, (2) their low-frequency components and the dis-
continuities agree with the SMPL-X ones, and (3) the depth
values on their silhouettes are coherent with each other and
consistent with the SMPL-X-based depth maps. The two out-
put surfaces, {MF,MB}, are detailed yet incomplete, i.e.,
there is missing geometry in occluded and “profile” regions.

Step 3: Full 3D shape completion. This module takes
two inputs: (1) the SMPL-X mesh, and (2) the two d-BiNI

Figure 2. Summary of SOTA. PIFuHD [71] recovers clothing
details, but struggles with novel poses. ICON [82] and PaMIR [96]
regularize shape to a body shape, but over-constrain the skirts, or
over-smooth the wrinkles. ECON combines their best aspects.

surfaces, {MF,MB}. The goal is to “inpaint” the missing
geometry. Existing methods struggle with this problem. On
one hand, Poisson reconstruction [38] produces “blobby”
shapes and naively “infills” holes without exploiting a shape
distribution prior. On the other hand, data-driven approaches,
such as IF-Nets [10], struggle with missing parts caused by
(self-)occlusions, and fail to keep the fine details present on
two d-BiNI surfaces, producing degenerate geometries.

We address above the limitations in two steps: (1) We ex-
tend and re-train IF-Nets to be conditioned on the SMPL-X
body, so that SMPL-X regularizes shape “infilling”. We dis-
card the triangles that lie close to {MF,MB}, and keep the
remaining ones as “infilling patches”. (2) We stitch together
the front- and back-side surfaces and infilling patches via
Poisson reconstruction; note that holes between these are
small enough for a general purpose method. The result is a
full 3D shape of a clothed human; see Fig. 2, bottom.

We evaluate ECON both on established benchmarks
(CAPE [55] and Renderpeople [66]) and in-the-wild images.
Quantitative analysis reveals ECON’s superiority. A percep-
tual study echos this, showing that ECON is significantly
preferred over competitors on challenging poses and loose
clothing, and competitive with PIFuHD on fashion images.
Qualitative results show that ECON generalizes better than
the SOTA to a wide variety of poses and clothing, even with
extreme looseness or complex topology; see Fig. 9.

With both pose-robustness and topological flexibility,
ECON recovers 3D clothed humans with a good level of
detail and realistic pose. Code and models are available for
research purposes at econ.is.tue.mpg.de
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2. Related Work
Image-based clothed human reconstruction. Regarding
geometric representation, we group the mainstream clothed
human reconstruction approaches into “implicit” and “ex-
plicit”. Note that with the terms implicit/explicit we mainly
refer to the surface decoder rather than the feature encoder.

1) Explicit-shape-based approaches use either a mesh-
based parametric body model [35, 52, 61, 69, 83], or a non-
parametric depth map [18, 72] or point cloud [90], to re-
construct 3D humans. Many methods [15, 36, 39, 40, 42,
43, 75, 76, 87, 91, 92] estimate or regress minimally-clothed
3D body meshes from RGB pixels and ignore clothing. To
account for clothed human shapes, another line of work
[2–4, 41, 55, 62, 79, 100] adds 3D offsets on top of the body
mesh. This is compatible with current animation pipelines,
as they inherit the hierarchical skeleton and skinning weights
from the underling statistical body model. However, this
“body+offset” approach is not flexible enough to model loose
clothing, which deviates significantly from the body topol-
ogy, such as dresses and skirts. To increase topological flexi-
bility, some methods [5, 33] reconstruct 3D clothed humans
by identifying the type of clothing and using the appropri-
ate model to reconstruct it. Scaling up this “cloth-aware”
approach to many clothing styles is nontrivial, limiting gen-
eralization to in-the-wild outfit variation.

2) Implicit-function-based approaches are topology-
agnostic and, thus, can be used to represent arbitrary 3D
clothed human shapes. SMPLicit [12], ClothWild [57] and
DIG [46] learn a generative clothing model with neural dis-
tance fields [11, 56, 59] from a 3D clothing dataset. Given
an image, the clothed human is reconstructed by estimating
a parametric body and optimizing the latent space of the
clothing model. However, the results usually do not align
well with the image and lack geometric detail.

PIFu [70] introduces pixel-aligned implicit human shape
reconstruction and PIFuHD [71] significantly improves the
geometric details with a multi-level architecture and normal
maps predicted from the RGB image. However, these two
methods do not exploit knowledge of the human body struc-
ture. Therefore, these methods overfit to the body poses in
the training data, e.g. fashion poses. They fail to generalize
to novel poses, producing non-human shapes with broken or
disembodied limbs. To address these issues, several methods
introduce different geometric priors to regularize the deep
implicit representation: GeoPIFu [26] introduces a coarse
shape of volumetric humans, Self-Portraits [49], PINA [14],
and S3 [85] use depth or LIDAR information to regularize
shape and improve robustness to pose variation.

Another direction leverages parametric body models,
which represent human body shape well, model the kine-
matic structure of the body, and can be reliably estimated
from RGB images of clothed people. Such a representation
can be viewed as a base shape upon which to model clothed

humans. Therefore, several methods combine parametric
body models with expressive implicit representations to get
the best of both worlds. PaMIR [96] and DeepMultiCap [95]
condition the pixel-aligned features on a posed and voxelized
SMPL mesh. JIFF Introduces a 3DMM face prior to improve
the realism of the facial region. ARCH [30], ARCH++ [27]
and CAR [50] use SMPL to unpose the pixel-aligned query
points from a posed space to a canonical space. To further
generalize to unseen poses on in-the-wild photos, ICON [82]
regresses shapes from locally-queried features. However, the
above approaches gain robustness to unseen poses at the cost
of generalization ability to various, especially loose, cloth-
ing topologies. We argue that this is because loose clothing
differs greatly from human body and that conditioning on
the SMPL body in 3D makes it harder for networks to make
full use of 2D image features.

Our work is also inspired by “sandwich-like”
monocular reconstruction approaches, represented by
Moduling Humans [18], FACSIMILE [72] and Any-Shot
GIN [80]. Moduling Humans has two networks: a gener-
ator that estimates the visible (front) and invisible (back)
depth maps from RGB images, and a discriminator that
helps regularize the estimation via an adversarial loss.
FACSIMILE further improves the geometric details by
leveraging a normal loss, which is directly computed from
depth estimates via differentiable layers. Recently, Any-Shot
GIN generalizes the sandwich-like scheme to novel classes
of objects. Given RGB images, it predicts front and back
depth maps as well, and then exploits IF-Nets [10] for shape
completion. We follow a similar path and extend it, to
successfully reconstruct clothed human shapes with SOTA
pose generalization, and better details from normal images.

3. Method
Given an RGB image, ECON first estimates front and

back normal maps (Sec. 3.1), then converts them into front
and back partial surfaces (Sec. 3.2), and finally “inpaints”
the missing geometry with the help of IF-Nets+ (Sec. 3.3).
See ECON’s overview in Fig. 3.

3.1. Detailed normal map prediction

Trained on abundant pairs of RGB images and normal
images, a “front” normal map, N̂ c

F , can be accurately esti-
mated from an RGB image using image-to-image translation
networks, as demonstrated in PIFuHD [71] or ICON [82].
Both methods also infer a “back” normal map, N̂ c

B, from the
image. But, the absence of image cues leads to over-smooth
N̂ c

B. To address this, we fine-tune ICON’s backside normal
predictor, GN

B , with an additional MRF loss [77] to enhance
the local details by minimizing the difference between the
predicted N̂ c and ground truth (GT) N c in feature space.

To guide the normal map prediction and make it robust
to various body poses, ICON conditions the normal map
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Figure 3. Overview. ECON takes as input an RGB image, I , and a SMPL-X body, Mb. Conditioned on the rendered front and back body
normal images, N b, ECON first predicts front and back clothing normal maps, N̂

c
. These two maps, along with body depth maps, Zb,

are fed into a d-BiNI optimizer to produce front and back surfaces, {MF,MB}. Based on such partial surfaces, and body estimate Mb,
IF-Nets+ implicitly completes RIF. With optional Face or hands from Mb, screened Poisson combines everything as final watertight R.

prediction module on the body normal maps, N b, rendered
from the estimated body Mb. Thus, it is important to ac-
curately align the estimated body and clothing silhouette.
Apart from the LN diff and LS diff used in ICON [82], we also
apply 2D body landmarks in an additional loss term, LJ diff,
to further optimize the SMPL-X body, Mb, inferred from
PIXIE [15] or PyMAF-X [91]. Specifically, we optimize
SMPL-X’s shape, β, pose, θ, and translation, t, to minimize:

LSMPL-X = LN diff + LS diff + LJ diff,

LJ diff = λJ diff|J b − Ĵ c|,
(1)

where LN diff and LS diff are the normal-map loss and silhou-
ette loss introduced in ICON [82], and LJ diff is the joint loss
(L2) between 2D landmarks Ĵ c, which are estimated by a
2D keypoint estimator from the RGB image I, and the cor-
responding re-projected 2D joints J b from Mb. For more
implementation details, see Sec. A.1 in SupMat.

3.2. Front and back surface reconstruction

We now lift the clothed normal maps to 2.5D surfaces.
We expect these 2.5D surfaces to satisfy three conditions: (1)
high-frequency surface details agree with predicted clothed
normal maps, (2) low-frequency surface variations, including
discontinuities, agree with SMPL-X’s ones, and (3) the depth
of the front and back silhouettes are close to each other.

Unlike PIFuHD [71] or ICON [82], which train a neu-
ral network to regress the implicit surface from normal
maps, we explicitly model the depth-normal relationship
using variational normal integration methods [7,64]. Specifi-

cally, we tailor the recent bilateral normal integration (BiNI)
method [7] to full-body mesh reconstruction by harnessing
the coarse prior, depth maps, and silhouette consistency.

To satisfy the three conditions, we propose a depth-aware
silhouette-consistent bilateral normal integration (d-BiNI)
method to jointly optimize for the front and back clothed
depth maps, Ẑc

F and Ẑc
B:

d-BiNI(N̂ c
F , N̂ c

B,Zb
F ,Zb

B) → Ẑc
F, Ẑc

B. (2)

Here, N̂ c
∗ is the front or back clothed normal map predicted

by GN
F,B from {I,N b}, and Zb

∗ is the front or back coarse
body depth image rendered from the SMPL-X mesh, Mb.

Specifically, our objective function consists of five terms:

min
Ẑc

F,Ẑc
B

Ln(Ẑc
F; N̂ c

F ) + Ln(Ẑc
B; N̂ c

B)+

λdLd(Ẑc
F;Zb

F) + λdLd(Ẑc
B;Zb

B)+

λsLs(Ẑc
F, Ẑc

B),

(3)

where Ln is the BiNI loss term introduced by BiNI [7], Ld is
a depth prior applied to the front and back depth surfaces, and
Ls is a front-back silhouette consistency term. For a more
detailed discussion on these terms, see Sec. A.2 in SupMat.

With Eq. (3), we make two technical contributions beyond
BiNI [7]. First, we use the coarse depth prior rendered from
the SMPL-X body mesh, Zb

i , to regularize BiNI:

Ld(Ẑc
i ;Zb

i ) = |Ẑc
i −Zb

i |Ωn
⋂

Ωz i ∈ {F,B}. (4)
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Figure 4. Four inputs to d-BiNI. Ωn and Ωz are the domains of
clothed and body regions, respectively. ∂Ωn is the silhouette of Ωn.

This addresses the key problem of putting the front and
back surfaces together in a coherent way to form a full body.
Optimizing BiNI terms Ln leaves an arbitrary global off-
set between the front and back surfaces. The depth prior
terms Ld encourage the surfaces with undecided offsets to
be consistent with the SMPL-X body, and is computed in
the domains Ωn

⋂
Ωz (Fig. 4). For further intuitions on Ln

and Ld, see Fig. S.4 and Fig. S.5 in SupMat.
Second, we use a silhouette consistency term to encourage

the front and back depth values to be the same at the silhou-
ette boundary, which is computed in domain ∂Ωn (Fig. 4):

Ls(Ẑc
F, Ẑc

B) = |Ẑc
F − Ẑc

B|∂Ωn . (5)

The silhouette term improves the physical consistency of the
reconstructed front and back clothed depth maps. Without
this term, d-BiNI produces intersections of the front and back
surfaces around the silhouette, causing “blobby” artifacts
and hurting reconstruction quality; see Fig. S.6 in SupMat.

3.3. Human shape completion

For simple body poses without self-occlusions, merging
front and back d-BiNI surfaces in a straightforward way,
as done in FACSIMILE [72] and Moduling Humans [18],
can result in a complete 3D clothed scan. However, often
poses result in self-occlusions, which cause large portions of
the surfaces to be missing. In such cases, Poisson Surface
Reconstruction (PSR) [37] leads to blobby artifacts.

PSR completion with SMPL-X (ECONEX). A naive way
to “infill” the missing surface is to make use of the esti-
mated SMPL-X body. We remove the triangles from Mb

that are visible to front or back cameras. The remaining
triangle “soup” Mcull contains both side-view boundaries
and occluded regions. We apply PSR [37] to the union of
Mcull and d-BiNI surfaces {MF,MB} to obtain a watertight
reconstruction R. This approach is denoted as ECONEX. Al-
though ECONEX avoids missing limbs or sides, it does not
produce a coherent surface for the originally missing cloth-
ing and hair surfaces because of the discrepancy between
SMPL-X and actual clothing or hair; see ECONEX in Fig. 5.

Inpainting with IF-Nets+ (RIF). To improve reconstruction
coherence, we use a learned implicit-function (IF) model to
“inpaint” the missing geometry given front and back d-BiNI

Figure 5. “Inpainting” the missing geometry. We simulate differ-
ent cases of occlusion by masking the normal images and present
the intermediate and final 3D reconstruction of different design
choices. While IF-Nets misses certain body parts, IF-Nets+ pro-
duces a plausible overall shape. ECONIF produces more consistent
clothing surfaces than ECONEX due to a learned shape distribution.

Face Replacement

Failure cases

Hand Replacement

Good
Bad Good Bad

Figure 6. Face and hand details. The face and hands of the raw
reconstruction can be replaced with the ones of the SMPL-X body.

surfaces. Specifically, we tailor a general-purpose shape
completion method, IF-Nets [10], to a SMPL-X-guided one,
denoted as IF-Nets+. IF-Nets [10] completes the 3D shape
from a deficient 3D input, such as an incomplete 3D hu-
man shape or a low-resolution voxel grid. Inspired by
Li et al. [44], we adapt IF-Nets by conditioning it on a vox-
elized SMPL-X body to deal with pose variation; for details
see Sec. A.3 in SupMat. IF-Nets+ is trained on voxelized
front and back ground-truth clothed depth maps, {Zc

F,Zc
B},

and a voxelized (estimated) body mesh, Mb, as input, and
is supervised with ground-truth 3D shapes. During training,
we randomly mask {Zc

F,Zc
B} for robustness to occlusions.

During inference, we feed the estimated Ẑc
F, Ẑc

B and Mb

into IF-Nets+ to obtain an occupancy field, from which we
extract the inpainted mesh, RIF, with Marching cubes [53].

PSR completion with RIF (ECONIF). To obtain our final
mesh, R, we apply PSR to stitch (1) d-BiNI surfaces, (2)
sided and occluded triangle soup Mcull from RIF, and option-
ally, (3) face or hands cropped from the estimated SMPL-X
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Figure 7. Datasets for numerical evaluation. We evaluate ECON
on images with unseen poses (left) and unseen outfits (right) on the
CAPE [55] and Renderpeople [66] datasets, respectively.

body Mb. The necessity of (3) arises from the poorly re-
constructed hands/face in RIF, see difference in Fig. 6. The
approach is denoted as ECONIF.

Notably, although RIF is already a complete human mesh,
due to the lossy voxelization of inputs and limited resolution
of Marching cubes algorithm, it somehow smooths out the
details of Ẑc

{F,B}/M{F,B}, which are optimized via d-BiNI
(see RIF vs ECON{IF,EX} in Fig. 5). While ECON{IF,EX}
preserves d-BiNI details better, only the side-views and oc-
cluded parts of RIF are fused in the Poisson step. In Tabs. 1
and 4, we use ECON{IF,EX} instead of RIF for evaluation.

4. Experiments
4.1. Datasets

Training on THuman2.0. THuman2.0 [88] contains 525
high-quality human textured scans in various poses, which
are captured by a dense DSLR rig, along with their corre-
sponding SMPL-X fits. We use THuman2.0 to train ICON,
ECONIF (IF-Nets+), IF-Nets, PIFu and PaMIR.
Quantitative evaluation on CAPE & Renderpeople. We
primarily evaluate on CAPE [55] and Renderpeople [66].
Specifically, we use the “CAPE-NFP” set (100 scans), which
is used by ICON to analyze robustness to complex hu-
man poses. Moreover, we select another 100 scans from
Renderpeople, containing loose clothing, such as dresses,
skirts, robes, down jackets, costumes, etc. With such cloth-
ing variance, Renderpeople helps numerically evaluate the
flexibility of reconstruction methods w.r.t. shape topology.
Samples of the two datasets are shown in Fig. 7.

4.2. Metrics

Chamfer and P2S distance (cm). To capture large geomet-
ric errors, e.g. occluded parts or wrongly positioned limbs,
we report the commonly used Chamfer (bi-directional point-
to-surface) and P2S distance (1-directional point-to-surface)
between ground-truth and reconstructed meshes.
Normal difference (L2). To measure the fineness of re-
constructed local details, as well as projection consistency
from the input image, we also report the L2 error between
normal images rendered from reconstructed and ground-
truth surfaces, by rotating a virtual camera around these by
{0◦, 90◦, 180◦, 270◦} w.r.t. to a frontal view.

Methods Data-driven OOD poses (CAPE) OOD outfits (Renderpeople)
Chamfer ↓ P2S ↓ Normals ↓ Chamfer ↓ P2S ↓ Normals ↓

w/o SMPL-X body prior
PIFu * ✓ 1.722 1.548 0.0674 1.706 1.642 0.0709

PIFuHD† ✓ 3.767 3.591 0.0994 1.946 1.983 0.0658
w/ GT SMPL-X body prior

PaMIR * ✓ 0.989 0.992 0.0422 1.296 1.430 0.0518
ICON ✓ 0.971 0.909 0.0409 1.373 1.522 0.0566

ECONIF ✓ 0.996 0.967 0.0413 1.401 1.422 0.0516
ECONEX ✗ 0.926 0.917 0.0367 1.342 1.458 0.0478

Table 1. Evaluation against the state of the art. All mod-
els use a resolution of 256 for marching cubes. ∗Methods are
re-implemented in [82] for a fair comparison in terms of net-
work settings and training data. †Official model is trained on
the Renderpeople dataset. ECONEX is optimization-based, thus
requires no training (✗). “OOD” is short for “out-of-distribution”.

ICON [82] PIFuHD [71] PaMIR [96]
Challenging poses 0.283 0.108 0.132

Loose clothing 0.147 0.362 0.232
Fashion images 0.199 0.551 0.290

Table 2. Perceptual study. Numbers denote the chance that partici-
pants prefer the reconstruction of a competing method over ECON
for in-the-wild images. A value of 0.5 indicates equal preference.
A value of < 0.5 favors ECON, while of > 0.5 favors competitors.

4.3. Evaluation

Quantitative evaluation. We compare ECON with body-
agnostic methods, i.e., PIFu [70] and PIFuHD [71], and
body-aware methods, i.e., PaMIR [96] and ICON [82]; see
in Tab. 1. For fair comparison, we use re-implementations
of PIFu and PaMIR from ICON [82], because they have the
same network settings and input data. ECONEX performs on
par with ICON, and outperforms other methods on images
containing out-of-distribution (OOD) poses (CAPE), with
a distance error below 1cm. In terms of out-of-distribution
outfits (Renderpeople), ECONEX/IF performs on par with
PaMIR, and much better than PIFuHD. When it comes
to high-frequency details measured by normals, ECONEX
achieves SOTA performance on both datasets.

Perceptual study. Due to the lack of ground-truth geometry
(clothed scan + underneath SMPL-X), we further conduct a
perceptual study to evaluate ECON on in-the-wild images.
Test images are divided into three categories: “challenging
poses”, “loose clothing”, and “fashion images”. Examples
of challenging poses and loose clothing can be seen in Fig. 9,
and some of fashion images are in SupMat.’s Fig. S.2.

Participants are asked to choose the reconstruction they
perceive as more realistic, between a baseline method and
ECON. We compute the chances that each baseline is pre-
ferred over ECON in Tab. 2. The results of the perceptual
study confirm the quantitative evaluation in Tab. 1. For “chal-
lenging poses” images, ECON is significantly preferred over
PIFuHD and outperforms ICON. On images of people wear-
ing loose clothing, ECON is preferred over ICON by a large
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Methods OOD poses (CAPE [55]) OOD outfits (Renderpeople) [66] Speed
RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ FPS ↑

BiNI [7] 27.64 21.11 20.61 16.07 0.52
d-BiNI 13.43 10.29 14.43 11.26 0.69

Table 3. BiNI vs d-BiNI. Comparison between BiNI and d-BiNI
surfaces w.r.t. reconstruction accuracy and optimization speed.

Methods OOD poses (CAPE) OOD outfits (Renderpeople)
Chamfer ↓ P2S ↓ Normals ↓ Chamfer ↓ P2S ↓ Normals ↓

IF-Nets [10] 2.116 1.233 0.075 1.883 1.622 0.070
IF-Nets+ 1.401 1.353 0.056 1.477 1.564 0.055
ECONIF 0.996 0.967 0.0413 1.401 1.422 0.0516

Table 4. Evaluation for shape completion. Same metrics as Tab. 1,
and ECONIF is added as a reference.

Figure 8. Failure examples of ECON. (A-B) Failures in recov-
ering a SMPL-X body result, e.g., bent legs or wrong limb poses,
cause ECON failures by extension. (C-D) Failures in normal-map
estimation provide erroneous geometry to ECON to work with.

margin and outperforms PIFuHD. The reasons for a slight
preference of PIFuHD over ECON on fashion images are
discussed in Sec. 5. Figure 2 visualizes some comparisons.
More examples are provide in Figs. S.7 to S.9 of the SupMat.

4.4. Ablation study

d-BiNI vs BiNI. We compare d-BiNI with BiNI us-
ing 600 samples (200 scans x 3 views) from CAPE and
Renderpeople where ground-truth normal maps and meshes
are available. Table 3 reports the “root mean squared er-
ror” (RMSE) and “mean absolute error” (MAE) between
the estimated and rendered depth maps. d-BiNI significantly
improves the reconstruction accuracy by about 50% com-
pared to BiNI. This demonstrates the efficacy of using the
coarse body mesh as regularization and taking the consis-
tency of both the front and back surface into consideration.
Additionally, d-BiNI is 33% faster than BiNI.
IF-Nets+ vs IF-Nets. Following the metrics of Sec. 4.2, we
compare IF-Nets [10] with our IF-Nets+ on RIF. We show
the quantitative comparison in Tab. 4. The improvement for
out-of-distribution (“OOD”) poses shows that IF-Nets+ is
more robust to pose variations than IF-Nets, as it is condi-
tioned on the SMPL-X body. Figure 5 compares the geome-
try “inpainting” of both methods in the case of occlusions.

4.5. Multi-person reconstruction

Thanks to the shape completion module, ECON can deal
with occlusions. Unlike other crowd body estimators [73–
75, 86], ECON makes it possible to reconstruct multiple
detailed “clothed” 3D humans from an image with inter-
person occlusions, even though ECON has not been trained
for this. Figure 10 shows three examples. The occluded
parts, colored in red, are successfully recovered.

5. Discussion
Limitations. ECON takes as input an RGB image and an
estimated SMPL-X body. However, recovering SMPL-X
bodies (or similar models) from a single image is still an
open problem, and not fully solved. Any failure in this could
lead to ECON failures, such as in Fig. 8-A and Fig. 8-B. As
the synthetic data [6, 28, 78] is getting sufficiently realistic,
their domain gap with real data is significantly narrowed, it
is predictable that such limitations will be eliminated. The
reconstruction quality of ECON primarily relies on the accu-
racy of the predicted normal maps. Poor normal maps can
result in overly close-by or even intersecting front and back
surfaces, as shown in Fig. 8-C and Fig. 8-D.

Future work. Apart from addressing the above limitations,
several other directions are useful for practical applications.
Currently, ECON reconstructs only 3D geometry. One could
additionally recover an underlying skeleton and skinning
weights [45, 84], to obtain fully-animatable avatars. More-
over, generating back-view texture [8,67,68,94] would result
in fully-textured avatars. Disentangling clothing [1, 63, 99],
hairstyle [89], or accessories [19] from the recovered geome-
try, would enable the simulation [23], synthesis, editing and
transfer of styles [16] for these. ECON’s reconstructions,
together with its underneath SMPL-X body, could be useful
as 3D shape prior to learn neural avatars [13, 24, 32].

In particular, ECON could be used to augment existing
datasets of 2D images with 3D humans. Datasets of real
clothed humans with 3D ground truth [55, 60, 66, 88, 97] are
limited in size. In contrast, datasets of images without 3D
ground truth are widely available in large sizes [17, 21, 51].
We can “augment” such datasets by reconstructing detailed
3D humans from their images. In SupMat., we apply ECON
on SHHQ [17] and recover normal maps and 3D humans; see
Fig. S.2. As ECON-like methods mature, they could produce
pixel-aligned 3D humans from photos at scale, enabling the
training of generative models of 3D clothed avatars with
details [20, 22, 29, 34, 58, 81, 93].

Possible negative impact. As the reconstruction matures,
it opens the potential for low-cost realistic avatar creation.
Although such a technique benefits entertainment, film pro-
duction, tele-presence and future metaverse applications, it
could also facilitate deep-fake avatars. Regulations must be
established to clarify the appropriate use of such technology.
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(a) Humans with challenging poses (ü zoom in to see 3D wrinkle details)

(b) Humans with loose clothing (ü zoom in to see 3D clothing details)

Figure 9. Qualitative results on in-the-wild images. We show 8 examples of reconstructing detailed clothed 3D humans from images with:
(a) challenging poses and (b) loose clothing. For each example we show the input image along with two views (front and rotated) of the
reconstructed 3D humans. Our approach is robust to pose variations, generalizes well to loose clothing, and contains detailed geometry.

Figure 10. Multiple humans with occlusions.. We detect multiple people and apply ECON to each separately. Although ECON is not
trained on multiple people, it is robust to inter-person occlusions. We show three examples, and for each: (top) input image and the predicted
front and back normal maps, (bottom) ECON’s reconstruction. Red areas on the estimated mesh indicate occlusions.

6. Conclusion

We propose ECON to reconstruct detailed clothed 3D
humans from a color image. It combines estimated 2.5D
front and back surfaces with and underlying 3D parametric
body in a highly effective way. On the one hand, it is robust
to novel poses, while on the other hand, it is capable of
recovering loose clothing and geometric details, since the
reconstructed shape is not over-constrained to the topology
of the body. ECON achieves this by using and extending
recent advances in variational normal integration [7] and
shape completion [10]. It effectively extends these to the task
of image-based 3D human reconstruction. We believe ECON
can lead to both real-world applications and useful tools for

the 3D vision community. The code and models are available
at econ.is.tue.mpg.de for research purposes.
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