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Abstract

Detecting arbitrarily oriented tiny objects poses intense
challenges to existing detectors, especially for label assign-
ment. Despite the exploration of adaptive label assignment
in recent oriented object detectors, the extreme geometry
shape and limited feature of oriented tiny objects still in-
duce severe mismatch and imbalance issues. Specifically,
the position prior, positive sample feature, and instance are
mismatched, and the learning of extreme-shaped objects is
biased and unbalanced due to little proper feature supervi-
sion. To tackle these issues, we propose a dynamic prior
along with the coarse-to-fine assigner, dubbed DCFL. For
one thing, we model the prior, label assignment, and ob-
ject representation all in a dynamic manner to alleviate the
mismatch issue. For another, we leverage the coarse prior
matching and finer posterior constraint to dynamically as-
sign labels, providing appropriate and relatively balanced
supervision for diverse instances. Extensive experiments on
six datasets show substantial improvements to the baseline.
Notably, we obtain the state-of-the-art performance for one-
stage detectors on the DOTA-v1.5, DOTA-v2.0, and DIOR-
R datasets under single-scale training and testing. Codes
are available at https://github.com/Chasel-
Tsui/mmrotate-dcfl.

1. Introduction

The oriented bounding box is a finer representation for
object detection since the object’s background region is
greatly eradicated by introducing the rotation angle [55].
This advantage is pronounced in aerial images, where ob-
jects are in arbitrary orientations, resulting in the prosper-
ity of corresponding object detection datasets [7, 11, 35, 55]
and customized oriented object detectors [10,17,18,60,62].
Nevertheless, one unignorable fact is that there exist numer-
ous tiny objects in aerial images. When oriented objects
are tiny-sized, the challenges posed to existing object detec-
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Figure 1. Comparisons of different learning paradigms for ori-
ented object detection. M* means the matching function. Each box
in the 2nd row denotes a prior location. The 3rd row are predic-
tions of the RetinaNet and DCFL, where green, blue, and red boxes
denote true positive, false positive, and false negative predictions.
(a) RetinaNet, FCOS, and Rotated RPN statically assign labels be-
tween fixed priors and fixed gts. (b) Our proposed DCFL dynami-
cally updates priors and gts, and dynamically assigns labels.

tors are quite remarkable. Especially, the extreme geometry
characteristics of oriented tiny objects hamper the accurate
label assignment.

Label assignment is a fundamental and crucial process
in object detection [68], in which priors (box for anchor-
based [30] and point for anchor-free detectors [50]) need
to be assigned with appropriate labels to supervise the net-
work training. In fact, there have been some works that lay
a foundation for the effective label assignment of oriented
objects, as shown in Fig. 1. Early works additionally preset
anchors of different angles (e.g. Rotated RPN [36]) or re-
fine high-quality anchors (e.g. S2A-Net [17]) based on the
generic object detector, then a static rule (e.g. MaxIoU strat-
egy [44]) is used to separate positive and negative (pos/neg)
training samples. The derived prior boxes can thus cover
more ground truth (gt) boxes and a considerable accuracy
improvement can be expected. However, the static assign-
ment cannot adaptively divide pos/neg samples according
to the gt’s shape and filter out low-quality samples, usually
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Figure 2. The mismatch and imbalance issues. Each point in the
left image denotes a prior location. The number in the pie-shaped
bar chart denotes the mean number of positive samples assigned
to each instance in a specific angle range.

leading to sub-optimal performance.
Recently, the exploration of adaptive label assign-

ment [68] brings new insight to the community. For ori-
ented object detection, DAL [38] defines a prediction-
aware matching degree and utilizes it to reweight anchors,
achieving dynamic sample learning. Besides, several stud-
ies [21,23,26] incorporate the shape information into detec-
tors and propose shape-aware sampling and measurement.

Despite the progress, the arbitrary orientation and ex-
treme size of oriented tiny objects still pose a dilemma to
the detector. As shown in Fig. 2, the mismatch and im-
balance issues are particularly pronounced. For one thing,
there is a mutual mismatch issue between the position prior,
feature, and instance. Although some adaptive label assign-
ment schemes may explore a better pos/neg division of the
prior boxes or points, the sampled feature location behind
the prior is still fixed and the derived prior is still static and
uniformly located, most priors deviate from the tiny object’s
main body. The prior and feature themselves cannot well-
match the extreme shapes of oriented tiny objects, no matter
how we divide pos/neg samples. For another, the existing
detectors tend to introduce bias and imbalance for oriented
and tiny objects. More precisely, for anchor-based detec-
tors, gt with shapes different from anchor boxes will yield
low IoU [38,59], leading to the lack of positive samples. In
Fig. 2, we calculate the mean number of positive samples
assigned to different gts with the RetinaNet and observe that
there is an extreme lack of positive samples for gts with an-
gles and scales far from predefined anchors. For anchor-free
detectors, the static prior and its fixed stride limit the upper
number of high-quality positive samples. Tiny objects only
cover a limited number of feature points, and most of these
points are away from the object’s main body.

This motivates us to design a more dynamic and bal-
anced learning pipeline for oriented tiny object detection.
As shown in Fig. 1, we alleviate the mismatch issue by
reformulating the prior, label assignment, and gt represen-
tation all in a dynamic manner, which can be updated by

the Deep Neural Network (DNN). Simultaneously, we dy-
namically and progressively assign labels in a coarse-to-fine
manner to seek balanced supervision for various instances.

Specifically, we introduce a dynamic Prior Capturing
Block (PCB) to learn the prior, which adaptively adjusts
the prior location while retaining the physical meaning of
prior [54]. The PCB is inspired by the paradigm of learnable
proposals in the DETR [4] and Sparse R-CNN [48] which
naturally avoids the mismatch issue between the predefined
prior and feature. Compared to this paradigm, we intro-
duce its flexibility for prior updates while keeping the fast-
convergence ability of dense detectors [32, 54]. Based on
the dynamic prior, we then select Cross-FPN-layer Coarse
Positive Sample (CPS) candidates for further label assign-
ment, and the CPS is realized by the Generalized Jensen-
Shannon Divergence [39] (GJSD) between the gt and the
dynamic prior. The GJSD is able to enlarge the CPS to
the object’s nearby spatial locations and adjacent FPN lay-
ers, ensuring more candidates for extreme-shaped objects.
After obtaining the CPS, we re-rank these candidates with
predictions (posterior) and represent the gt with a finer Dy-
namic Gaussian Mixture Model (DGMM), filtering out low-
quality samples. All designs are incorporated into an end-
to-end one-stage detector without additional branches.

In short, our contributions are listed as follows: (1) We
identify that there exist severe mismatch and imbalance is-
sues in the current learning pipeline for oriented tiny ob-
ject detection. (2) We design a Dynamic Coarse-to-Fine
Learning (DCFL) scheme for oriented tiny object detection,
which is the first to model the prior, label assignment, and
gt representation all in a dynamic manner. In the DCFL,
we propose to use the GJSD to construct Coarse Positive
Samples (CPS) and represent objects with a finer Dynamic
Gaussian Mixture Model (DGMM), obtaining coarse-to-
fine label assignment. (3) Extensive experiments on six
datasets show promising results.

2. Related Work

2.1. Oriented Object Detection

Prior for Oriented Objects. Anchor, as a classic design
in generic object detectors (e.g. Faster R-CNN [44], Reti-
naNet [30]), has facilitated object detection for a long time.
Similarly, oriented object detection also benefits from the
anchor design. Initially, rotated RPN [36] extends the RPN
to the field of oriented object detection by tiling 54 anchors
each location with preset angles and scales. Indeed, enu-
merating potential gt shapes can notably improve the re-
call, apart from the sacks of additional computational cost.
RoI Transformer [10] utilizes horizontal anchors and trans-
forms the RPN-generated horizontal proposals to oriented
proposals, reducing the number of rotated anchors. To save
computation, the Oriented R-CNN [56] introduces an ori-
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ented RPN that directly predicts oriented proposals based
on horizontal anchors. Recently, one-stage oriented ob-
ject detectors gradually emerged, including anchor-based
detectors [17, 60] with box prior and anchor-free detec-
tors [26, 28] with point prior. Most of them retain the fixed
prior design, except for the S2A-Net [17] which proposes to
generate high-quality anchors.

Label Assignment. ATSS [68] reveals that label as-
signment plays a pivotal role in the detectors’ perfor-
mance [14, 24, 37]. In the field of oriented object detection,
DAL [38] observes inconsistency between the input prior
IoU and the output predicted IoU, then defines a match-
ing degree as the soft label that dynamically reweights an-
chors. Recently, SASM [21] introduces a shape-adaptive
sample selection and measurement strategy to improve de-
tection performance. Similarly, GGHL [23] proposes to fit
the main body of the instance by a single 2-D Gaussian
heatmap, then it divides and reweights samples in a dynamic
manner. In addition, Oriented Reppoints [26] improves the
RepPoints [65] by assessing the quality of points for more
effective label assignment.

2.2. Tiny Object Detection

Multi-scale Learning. Basically, one can use a multi-
resolution image pyramid to obtain multi-scale learning.
However, the vanilla image pyramid will bring much com-
putation cost. Thus, some works [29, 33, 34, 42, 49, 69] re-
duce computation with the efficient Feature Pyramid Net-
work (FPN). Unlike the FPN, TridentNet [27] introduces
multi-branch detection heads of various receptive fields for
multi-scale prediction. Moreover, one can normalize the
scale of objects for scale-invariant object detection, for ex-
ample, SNIP [46] and SNIPER [47] resize images and train
objects within a certain scale range.

Label Assignment. Tiny objects usually have low IoU
with anchors or cover a limited number of feature points,
thus suffering from the lack of positive samples. ATSS [68]
slightly reconciles the number of positive samples for ob-
jects of different scales. NWD [57] designs a new metric
to replace IoU, which can sample more positive samples for
tiny objects. Recently, the RFLA [58] utilizes outliers to
detect tiny objects for scale-balanced learning.

Context Information. Tiny object lacks discriminative
features, but objects are closely related to the surrounding
context. Therefore, we can leverage the context informa-
tion to enhance small object detection. Muti-Region CNN
(MRCNN) [15] and Inside-Outside Network (ION) [3] are
two representative works that exploit local and global con-
text information. Recently, the Relation Network [22] and
transformer-based detectors [4, 54, 72] reason about the as-
sociation between instances via the attention mechanism.

Feature Enhancement. The feature representation of
small objects can be enhanced by super-resolution or GAN.

PGAN [25] first applies GAN to small object detection. Be-
sides, Bai et al. [1] introduce the MT-GAN which trains an
image-level super-resolution model to improve the RoI fea-
tures of small objects. In addition, there are some other
methods based on super-resolution including [2, 8, 40, 43].

By contrast, our method simultaneously handles the
prior mismatch and unbalanced learning via dynamically
modeling the prior, label assignment, and gt representation.
Meanwhile, unlike the two-stage RoI-Transformer [10] or
one-stage S2A-Net [17], we embed the dynamic prior in-
side the end-to-end one-stage detector without introducing
any auxiliary branch.

3. Method
Overview. Given a set of dense prior P ∈ RW×H×C

(W ×H is the feature map size, C is the shape information
number, each feature point has one prior for simplicity), ob-
ject detectors remap the set P into final detection results
D through the Deep Neural Network (DNN), which can be
simplified as:

D = DNNh(P ), (1)

where DNNh denotes the detection head. Detection re-
sults D contain two parts: classification scores Dcls ∈
RW×H×A (A is the class number) and box locations
Dreg ∈ RW×H×B (B is the box parameter number).

To train the DNNh, we need to find a proper match-
ing between the prior set P and the gt set GT , and assign
pos/neg labels to P to supervise the network learning. For
static assigners (e.g. RetinaNet [30]), the set of pos labels G
can be obtained via hand-crafted matching function Ms:

G = Ms(P,GT ). (2)

For dynamic assigners [14, 24, 38], they tend to simul-
taneously leverage the prior information P and posterior
information (predictions) D, and then apply a prediction-
aware mapping Md to get the set G:

G = Md(P,D,GT ). (3)

After the pos/neg label separation, the loss function can
be summarized into two parts:

L =

Npos∑
i=1

Lpos(Di, Gi) +

Nneg∑
j=1

Lneg(Dj , yj), (4)

where Npos, Nneg are the number of positive and negative
samples respectively, yj denotes the negative label.

While in this work, we model the prior, label assignment,
and gt representation all in a dynamic manner to alleviate
the mismatch issue. To begin with, the dynamic prior is
reformulated to (˜denotes the dynamic item):

D̃ = DNNh( DNNp(P )︸ ︷︷ ︸
Dynamic Prior P̃

), (5)
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DNNp is a learnable block incorporated within the detec-
tion head to update the prior. Then, the matching function
is reformulated to a coarse-to-fine paradigm:

G̃ = Md(Ms(P̃ , GT ), G̃T ), (6)

the G̃T is a finer representation of an object with the Dy-
namic Gaussian Mixture Model (DGMM). In a nutshell, our
final loss is modeled as:

L =

Ñpos∑
i=1

Lpos(D̃i, G̃i) +

Ñneg∑
j=1

Lneg(D̃j , yj). (7)

3.1. Dynamic Prior

Inspired by the purely learnable paradigm of proposal
updation in the DETR [4] and Sparse R-CNN [48], we pro-
pose to introduce more flexibility into the prior to mitigate
the mismatch issue. Moreover, we retain the physical mean-
ing of prior where each individual prior stands for a feature
point, inheriting the fast convergence ability of dense detec-
tors. The structure of the proposed Prior Capturing Block
(PCB) is shown in Fig. 3, in which a dilated convolution is
deployed to take the surrounding information into account,
and then the Deformable Convolution Network (DCN) [9]
is leveraged to capture the dynamic prior. Besides, we uti-
lize the learned offsets from the regression branch to guide
the feature extraction of the classification branch, leading to
better alignment between the two tasks.

The dynamic prior capturing process is as follows. First
of all, we initialize each prior location p(x, y) by each fea-
ture point’s spatial location s (which is remapped to the im-
age). In each iteration, we forward the network to capture
the offset sets of each prior location ∆o. Hence, the prior
spatial location can be updated by:

s̃ = s+ st
n∑

i=1

∆oi/2n, (8)

where st is the feature map’s stride, n is the number of
offsets. Finally, we utilize the 2-D Gaussian distribution
Np(µp,Σp) which is demonstrated conducive to small ob-
jects [58,61] and oriented objects [61,63] to fit the prior spa-
tial location. Concretely, the dynamic s̃ serves as the Gaus-
sian’s mean vector µp. We preset one prior which is square-
shaped (w, h, θ) as that in RetinaNet [30] on each feature
point, then compute the co-variance matrix Σp by [64]:

Σp =

[
cos θ − sin θ
sin θ cos θ

] [
w2

4
0

0 h2

4

] [
cos θ sin θ
− sin θ cos θ

]
. (9)

3.2. Coarse Prior Matching

Given a set of prior, one basic assignment rule is to spec-
ify a range of candidate true prediction samples for a spe-
cific gt. Some adaptive strategies restrict the candidates of
a given gt inside a single FPN layer [14,23,68], while some

works release all layers as candidates [67, 71]. However,
for oriented tiny objects, the former strict heuristic rule may
lead to a sub-optimal layer selection and the latter loose one
will induce the slow convergence issue [32].

Hence, we propose Cross-FPN-layer Coarse Positive
Sample (CPS) candidates, which narrows down the sample
range compared to the all-FPN-layer manner while discard-
ing the single-layer heuristic. In the CPS, we slightly ex-
pand the range of candidates to the gt’s nearby spatial loca-
tion and adjacent FPN layers, which warrants relatively di-
verse and sufficient candidates compared to the single-layer
heuristic and alleviates the quantity imbalance issue.

Specifically, the similarity measurement in constructing
the CPS is realized with the Jensen-Shannon Divergence
(JSD) [13], which inherits the scale invariance property
of the Kullback–Leibler Divergence (KLD) [63] and can
measure the gt’s similarity with nearby non-overlapping
priors [58, 63]. Moreover, it conquers KLD’s drawback
of asymmetry. However, the closed-form solution of the
JSD between Gaussian distributions is unavailable [39],
thus, we utilize the Generalized Jensen-Shannon Diver-
gence (GJSD) [39] which yields a closed-form solution, as
the substitute.

For example, the GJSD between two Gaussian distribu-
tions Np(µp,Σp) and Ng(µg,Σg) is defined by:

GJSD(Np,Ng) = (1− α)KL(Nα,Np) + αKL(Nα,Ng),
(10)

where KL denotes the KLD, and Nα(µα,Σα) is given by:

Σα = (ΣpΣg)
Σ
α =

(
(1− α)Σ−1

p + αΣ−1
g

)−1
, (11)

and
µα =

(
µpµg

)µ
α

= Σα

(
(1− α)Σ−1

p µp + αΣ−1
g µg

)
.

(12)

Note that α is a parameter that controls the weight of two
distributions [39] in similarity measurement. In our work,
the Np and Ng contribute equally, thus α is set to 0.5.

Ultimately, for each gt, we select K priors which hold
the top K GJSD score with this gt as the Coarse Positive
Samples (CPS) and regard the remaining priors as negative
samples, this coarse matching serves as the Ms in Eq. 6.
The ranking manner works together with the GJSD mea-
surement to construct the Cross-FPN-layer CPS, eliminat-
ing the imbalance issue raised by the MaxIoU matching for
outlier angles and scales, which will be analyzed in Sec. 5.

3.3. Finer Dynamic Posterior Matching

Based on Coarse Positive Sample (CPS) candidates, we
design a dynamic posterior (prediction) matching rule Md

to filter out low-quality samples. The Md consists of two
key components, namely a posterior re-ranking strategy and
a Dynamic Gaussian Mixture Model (DGMM) constraint.
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Figure 3. The process of feature extraction and dynamic coarse-to-fine learning. PCB denotes the prior capturing block.

We re-rank the sample candidates in the CPS according
to their predicted scores. In other words, we further refine
the positive samples by their Possibility of becoming True
predictions (PT ) [14], which is a linear combination of the
predicted classification score and the location score with the
gt. We define the PT of the ith sample Di as:

PTi =
1

2
Cls(Di) +

1

2
IoU(Di, gti), (13)

where Cls is the predicted classification confidence and
IoU is the rotated IoU between the predicted location and
its corresponding gt location. We select candidates with Q
highest PT as Medium Positive Sample (MPS) candidates.

Following this, we filter out those samples too far away
from the gts with a finer instance representation, getting
the Finer Positive Samples (FPS). Different from previous
works which utilize the center probability map [53] or the
single-Gaussian [23,64] for instance representation, we rep-
resent the instance by a finer DGMM. It consists of two
components: one is centered on the geometry center and
the other is centered on the semantic center of the object.
Concretely, for a specific instance gti, the geometry center
(cxi, cyi) serves as the mean vector µi,1 of the first Gaus-
sian, and the semantic center (sxi, syi), which is deduced
by averaging the location of the samples in the MPS, serves
as the µi,2. That is to say, we parameterize the instance as:

DGMM i(s|x, y) =
2∑

m=1

wi,m

√
2π|Σi,m|Ni,m(µi,m,Σi,m),

(14)
where wi,m is the weight of each Gaussian with a summa-
tion of 1, Σi,m equals to the gt’s Σg . Each sample in MPS
has a DGMM score DGMM (s|MPS), we set negative
masks to samples which have DGMM (s|MPS) < e−g

with any gt, the g is adjustable.

4. Experiments
4.1. Datasets

Experiments are done on six datasets, i.e., DOTA-
v1.0 [55]/v1.5/v2.0 [11], DIOR-R [7], VisDrone [12], and

MS COCO [31]. In ablation studies and analyses, we
choose the large-scale DOTA-v2.0 train set for train-
ing and val set for evaluation, which contains a large
number of tiny objects. To compare with other meth-
ods, we use trainval sets of DOTA-v1.0, DOTA-
v1.5, DOTA-v2.0, and DIOR-R for training and their test
sets for testing, we choose the VisDrone2019, MS COCO
train set, val set for training and testing.

4.2. Implementation Details

We conduct all the experiments on the computer with a
single NVIDIA RTX 3090 GPU, and the batch size is set to
4. Models are built based on MMDetection [6] and MMRo-
tate [70] with PyTorch [41]. The ImageNet [45] pre-trained
models are used as the backbone. The Stochastic Gradient
Descent (SGD) optimizer is used for training with a learn-
ing rate of 0.005, a momentum of 0.9, and a weight decay
of 0.0001. The ResNet-50 [20] with FPN [29] is the de-
fault backbone if not specified. We use Focal loss [30] for
classification and IoU loss [66] for regression. We only use
random flipping as data augmentation for all experiments.

For experiments on the DOTA-v1.0 and DOTA-v2.0,
we follow the official settings of the DOTA-v2.0 bench-
mark [11], i.e., we crop images into patches of 1024× 1024
with overlaps of 200 and train the model for 12 epochs. For
DOTA-v2.0, we reproduce one-stage state-of-the-art meth-
ods [17, 21, 26, 38, 50, 60, 63, 68] with the same settings.

For experiments on other datasets, we set the input size
to 1024× 1024 (overlap 200), 800× 800, 1333× 800, and
1333×800 for DOTA-v1.5, DIOR-R, VisDrone, and COCO
respectively. We train the models for 40, 40, 12, and 12
epochs on the DOTA-v1.5, DIOR-R, COCO, and VisDrone
as previous works do [16, 26]. The above settings are fixed
unless otherwise specified.

4.3. Main Results

Results on DOTA series. As shown in Tab. 1, our
proposed method achieves the state-of-the-art performance
of 57.66% mAP on the DOTA-v2.0 OBB benchmark un-
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Method Backbone Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC CC Air Heli mAP

multi-stage:
FR OBB [44] R50 71.61 47.20 39.28 58.70 35.55 48.88 51.51 78.97 58.36 58.55 36.11 51.73 43.57 55.33 57.07 3.51 52.94 2.79 47.31
FR OBB + Dp R50 71.55 49.74 40.34 60.40 40.74 50.67 56.58 79.03 58.22 58.24 34.73 51.95 44.33 55.10 53.14 7.21 59.53 6.38 48.77
MR [19] R50 76.20 49.91 41.61 60.00 41.08 50.77 56.24 78.01 55.85 57.48 36.62 51.67 47.39 55.79 59.06 3.64 60.26 8.95 49.47
HTC* [5] R50 77.69 47.25 41.15 60.71 41.77 52.79 58.87 78.74 55.22 58.49 38.57 52.48 49.58 56.18 54.09 4.20 66.38 11.92 50.34
RT [10] R50 71.81 48.39 45.88 64.02 42.09 54.39 59.92 82.70 63.29 58.71 41.04 52.82 53.32 56.18 57.94 25.71 63.72 8.70 52.81
Oriented R-CNN [56] R50 77.95 50.29 46.73 65.24 42.61 54.56 60.02 79.08 61.69 59.42 42.26 56.89 51.11 56.16 59.33 25.81 60.67 9.17 53.28

one-stage:
DAL [38] R50 71.23 38.36 38.60 45.24 35.42 43.75 56.04 70.84 50.87 56.63 20.28 46.53 33.49 47.29 12.15 0.81 25.77 0.00 38.52
SASM [21] R50 70.30 40.62 37.01 59.03 40.21 45.46 44.60 78.58 49.34 60.73 29.89 46.57 42.95 48.31 28.13 1.82 76.37 0.74 44.53
RetinaNet-O [30] R50 70.63 47.26 39.12 55.02 38.10 40.52 47.16 77.74 56.86 52.12 37.22 51.75 44.15 53.19 51.06 6.58 64.28 7.45 46.68
R3Det w/ KLD [63] R50 75.44 50.95 41.16 61.61 41.11 45.76 49.65 78.52 54.97 60.79 42.07 53.20 43.08 49.55 34.09 36.26 68.65 0.06 47.26
FCOS-O [51] R50 74.84 47.53 40.83 57.41 43.89 47.72 55.66 78.61 57.86 63.00 38.02 52.38 41.91 53.24 40.22 7.15 65.51 7.42 48.51
Oriented Rep [26] R50 73.02 46.68 42.37 63.05 47.06 50.28 58.64 78.84 57.12 66.77 35.21 50.76 48.77 51.62 34.23 6.17 64.66 5.87 48.95
ATSS-O [68] R50 77.46 49.55 42.12 62.61 45.15 48.40 51.70 78.43 59.33 62.65 39.18 52.43 42.92 53.98 42.70 5.91 67.09 10.68 49.57
S2A-Net [17] R50 77.84 51.31 43.72 62.59 47.51 50.58 57.86 80.73 59.11 65.32 36.43 52.60 45.36 52.46 40.12 0.00 62.81 11.11 49.86

one-stage:
DCFL R50 75.71 49.40 44.69 63.23 46.48 51.55 55.50 79.30 59.96 65.39 41.86 54.42 47.03 55.72 50.49 11.75 69.01 7.75 51.57
S2A-Net w/ DCFL R50 74.79 53.25 45.81 65.46 46.49 53.23 58.10 81.51 60.13 66.42 43.24 55.09 50.52 55.58 54.53 5.23 68.73 13.06 52.84
DCFL† R50 78.30 53.03 44.24 60.17 48.56 55.42 58.66 78.29 60.89 65.93 43.54 55.82 53.33 60.00 54.76 30.90 74.01 15.60 55.08
DCFL† ReR101 79.49 55.97 50.15 61.59 49.00 55.33 59.31 81.18 66.52 60.06 52.87 56.71 57.83 58.13 60.35 35.66 78.65 13.03 57.66

Table 1. Main results on the DOTA-v2.0 OBB Task. We follow the official class abbreviations as the DOTA-v2.0 benchmark [11].
† denotes training for 40 epochs. Note that this paper [63] reports 50.90% mAP for R3Det w/ KLD under 20 epochs, the ReR101
backbone is proposed by the ReDet [18]. The results in red and blue denote the best and second-best performance of each column.

Method CFA [16] RetinaNet-O [30] R3Det [60] Oriented Rep [26] ATSS-O [68]
mAP 69.63 69.79 70.18 71.94 72.29

Method KLD [63] S2A-Net [17] GGHL [23](3x) DCFL DCFL(3x)
mAP 72.76 73.91 73.98 74.26 75.35

Table 2. Comparison with one-stage detectors on the DOTA-v1.0
OBB Task. All results are based on the MMRotate [70] with 12
epochs except for GGHL [23]. 3x means training for 36 epochs.

Method Backbone SV Ship ST mAP

RetinaNet-O [30] R50 44.53 73.31 59.96 59.16
FR OBB [19] R50 51.28 79.37 67.50 62.00
CMR [19] R50 51.64 79.99 67.58 63.41
RT [10] R50 52.05 80.72 68.26 65.03
ReDet [18] ReR50 52.38 80.92 68.64 66.86

DCFL R50 56.72 (+12.19) 80.87 (+7.56) 75.65 (+15.69) 67.37 (+8.21)
DCFL ReR101 57.31 (+12.78) 86.60 (+13.29) 76.55 (+16.59) 70.24 (+11.08)

Table 3. Main results on the DOTA-v1.5 OBB Task.

Method RetinaNet-O [30] FR-OBB [44] RT [10] AOPG [7]
mAP 57.55 59.54 63.87 64.41

Method GGHL [23] Oriented Rep [26] DCFL DCFL (ReR101)
mAP 66.48 66.71 66.80 71.03

Table 4. Performance comparisons on the DIOR-R dataset.

Method Backbone VE BR WM

RetinaNet-O [30] R50 38.0 24.0 60.2
Oriented Rep [26] R50 50.4 38.8 64.7
DCFL R50 50.9 (+12.9) 42.1 (+18.1) 70.9 (+10.7)

Table 5. Detection results of typical tiny objects on the DIOR-R
dataset. VE, BR, and WM denote vehicle, bridge, and wind-mill.

der single-scale training and testing. Besides, our model
achieves 51.57% mAP without bells and whistles, surpass-
ing all one-stage object detectors tested. The results on the
DOTA-v1.0 [55] and DOTA-v1.5 are listed in Tab. 2, Tab. 3.

Dataset VisDrone MS COCO DOTA-v2.0 HBB

Method RetinaNet [30] DCFL RetinaNet DCFL FCOS [58] DCFL

AP0.5 29.2 32.1 55.4 57.3 55.4 57.4

Table 6. Results of one-stage object detectors on HBB datasets.

Figure 4. Different ways of constructing the CPS. Yellow and or-
ange denote the possible regions of CPS and MPS respectively.

Results also indicate that our DCFL is very effective for de-
tecting tiny oriented objects on the tested datasets, such as
small vehicles, ships, and storage tanks, where a boost of
about 10 points can be expected compared to the baseline.

Results on DIOR-R. DIOR-R contains some tiny ori-
ented objects, such as the vehicle, bridge, and windmill.
The mAP and class-wise AP of tiny objects are in Tab. 4
and Tab. 5, we also achieve the state-of-the-art performance
of 71.03% mAP and notable improvements on tiny objects.

Results on HBB Datasets. Moreover, we discard the an-
gle to verify the versatility of the DCFL on the generic small
object detection datasets VisDrone [12], MS COCO [31],
and DOTA-v2.0 HBB [11]. In Tab. 6, our method gets a
notable AP0.5 boost compared to the baseline.

4.4. Ablation Study

Effects of Individual Strategy. We check the effective-
ness of each proposed strategy in the proposed method. In
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Method CPS MPS DGMM mAP

baseline [30] 51.70

✓ ✓ 53.41
DCFL ✓ ✓ 57.20

✓ ✓ ✓ 59.15

(a) Individual effectiveness. CPS, MPS, and
DGMM denote Coarse, Medium Sample Candi-
dates and Dynamic Gaussian Mixture Model.

Strategy Measurement mAP

All-FPN-layer Gaussian 50.12
Single-FPN-layer Gaussian 56.72
Cross-FPN-layer KLD [63] 57.82
Cross-FPN-layer GWD [61] 58.55
Cross-FPN-layer GJSD 59.15

(b) Comparsions of different CPS. The FPN
layer number varies for different strategies of
getting the CPS.

DCN Dilated Conv DP mAP

58.07
✓ 58.41
✓ ✓ 58.65

Separate ✓ ✓ 58.71
Guiding ✓ ✓ 59.15

(c) Effects of detailed designs in the
PCB. DP denotes the dynamic prior.
Guiding denotes reg guides cls.

K 24 20

Q 20 16 12 8 16 12 10 8
mAP 58.31 58.11 58.95 59.06 58.66 58.71 58.92 58.28

K 16 12

Q 12 10 8 6 10 8 6 4

mAP 59.15 58.57 58.97 57.84 58.79 58.25 57.01 57.37

(d) Effects of parameters K and Q.

g 1.2 1.0

mAP 57.91 58.20

g 0.8 0.4

mAP 59.15 58.95

(e) Effects of parameter g.

Table 7. Ablations. We train on DOTA-v2.0 train set, test on val set, and report mAP under IoU threshold 0.5.

all ablation experiments, we employ one prior for each fea-
ture point for fair comparisons. As seen in Tab. 7a, the
baseline detector RetinaNet-OBB yields a result of 51.70%
mAP. When we gradually apply the posterior re-ranked
MPS and DGMM into the detector based on the CPS, the
mAP improves progressively, verifying each design’s effec-
tiveness. Note that the CPS cannot be independently used
since the samples in it are too coarse to serve as the final
positive samples. Nevertheless, we compare some different
ways of constructing the CPS to verify its superiority.

Comparisons of Different CPS. The design of the CPS
matters in the training pipeline. We show several paradigms
of designing the CPS as shown in Fig. 7b, including lim-
iting the CPS for a specific gt within a single layer like
FCOS [50], releasing all FPN layers as the CPS, like Ob-
jectbox [67]. We compare their performance in Tab. 7b. For
fair comparisons, the number of samples in CPS is fixed at
16, and all other components are kept the same. For the
Single-FPN-layer way, we group gt onto different layers
according to the scale division strategy in FCOS, then as-
sign labels within each layer. For the All-FPN-layer way,
we do not group gt onto different layers, instead, we dis-
card the prior scale information and directly measure the
distance between Gaussian gt and prior points. The re-
sults are shown in Tab. 7b, we can observe that neither of
the above two ways will yield the best performance. By
contrast, the distribution distances (KLD, GWD, GJSD) are
able to construct the Cross-FPN-layer CPS, where the can-
didates are extended to adjacent layers besides the main
layer. We can also see the GJSD gets the best performance
of 59.15% mAP, mainly resulting from its property of scale-
invariance [39, 63], symmetry [39], and ability to measure
non-overlapping boxes [39] compared to other counterparts.

Fixed Prior and Dynamic Prior. We conduct a finer
group of ablation studies to verify the necessity of introduc-
ing the dynamic prior. As shown in Tab. 7c, if we disable the

dynamic prior by fixing the location of samples, a slight per-
formance drop will be introduced. Hence, the prior should
be adjusted accordingly when leveraging the dynamic sam-
pling strategy to better capture the shape of objects.

Detailed Design in PCB. For the PCB, it is made up of
a dilated convolution and a guiding DCN, we slightly en-
large the receptive field with a dilation rate of 3. After that,
we take advantage of the DCN to generate dynamic priors
in a guiding manner. As shown in Tab. 7c, we can observe
that the DCN can bring an improvement of 0.34 mAP points
and the dilated convolution can slightly enhance the mAP.
We find that the application of the DCN [9] to the single re-
gression branch will slightly deteriorate the accuracy (noted
by Separate in Tab. 7c), which may cause mismatch issues
between the two branches. Thus we utilize the offsets from
the regression head to guide the offsets classification head
for better alignment (noted by Guiding).

Effects of Parameters. The introduced three parame-
ters are robust in a certain range. From Tab. 7d, we can see
that a combination of K = 16 and Q = 12 gets the best
performance. In Tab. 7e, we verify the threshold e−g in
the DGMM, we empirically set wi,1 to 0.7, then a threshold
of g = 0.8 yields the highest mAP. Although making the
CPS/MPS/FPS coarser and stricter will weaken the perfor-
mance, the mAP only waves marginally. In other words, the
coarse-to-fine assignment manner somewhat warrants the
parameter selection’s robustness since multiple parameters
can attenuate the effects of an under-tuned one.

5. Analysis

For a clearer dissection of why the proposed scheme
works, we perform more meticulous analyses as follows.

Reconciliation of imbalance problems. To delve into
the imbalance issue, we calculate the mean predicted IoU
and the mean positive sample number of gt holding differ-
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Figure 5. Visualization analysis of the predicted results. The first row is the result of the RetinaNet-OBB while the second row is the result
of the DCFL. TP, FN, and FP predictions are marked in green, red, and blue respectively.
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Figure 6. Statistical analysis of imbalance issues. The first and
second columns show quality and quantity imbalance respectively.

Figure 7. Visualization of sampled dynamic priors.

ent angles and different scales (absolute size). Results are
shown in Fig. 6, which are from the models’ last training
epoch. Here we summarize two kinds of imbalance issues
(quantity and quality imbalance) for RetinaNet: (1) The
positive sample number assigned to each instance changes
periodically w.r.t. its angle and scale, whereas objects with
shapes (scale, angle) different from predefined priors will
hold much fewer positive samples. (2) The predicted IoU
changes periodically w.r.t. gt’s scale while remaining invari-
ant w.r.t. gt’s angle. By contrast, DCFL remarkably recon-
ciles the imbalance: (1) more positive samples are compen-
sated to previously outlier angles and scales. (2) the sam-
ples’ quality (predicted IoU) can also be improved and bal-
anced across all angles and scales. The above results are the
desired behavior of dynamic coarse-to-fine learning.

Visualization. We visualize the predicted results and

Method R3Det [60] S2A-Net [17] GA-RetinaNet [52] RetinaNet [30] DCFL

Params, GFLOPs 42.0M, 337.3 38.6M, 197.9 37.4M, 206.9 36.5M, 217.3 36.1M, 157.8

Table 8. Comparison of params, GFLOPs with 1024×1024 input.

positive samples in Fig. 5 and Fig. 7. We can see that the
DCFL remarkably eliminates the False Negative and False
Positive predictions, especially for the extreme-shaped ori-
ented tiny objects. Fig. 7 shows that the proposed strategy
is able to dynamically generate and sample priors that better
fit the instance’s main body, verifying the claims of dynamic
modeling and mismatch alleviation in this work.

Speed. We test the inference speed on DOTA-v2.0 val
set with a single RTX3090 GPU, the FPS of the R3Det,
S2A-Net, RetinaNet, and DCFL is 16.2, 18.9, 20.8, and
20.9. It indicates that our method is of high efficiency.
Moreover, we provide the parameters and GLOPs in Tab. 8,
where we can see that the DCFL is lighter.

6. Conclusion
In this paper, we propose a novel DCFL scheme for

detecting oriented tiny objects. We identify that the mis-
matched feature prior and unbalanced positive samples are
two obstacles hampering the label assignment for oriented
tiny objects. To address these, we propose a dynamic prior
to alleviate the mismatch issue and a coarse-to-fine assigner
to mitigate the imbalance issue, where the prior, label as-
signment, and gt representation are all reformulated in a
dynamic manner. Extensive experiments and analyses show
the convincing improvements brought by the DCFL.
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