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Abstract

This paper introduces the Masked Voxel Jigsaw and

Reconstruction (MV-JAR) method for LiDAR-based self-

supervised pre-training and a carefully designed data-

efficient 3D object detection benchmark on the Waymo

dataset. Inspired by the scene-voxel-point hierarchy in

downstream 3D object detectors, we design masking and re-

construction strategies accounting for voxel distributions in

the scene and local point distributions within the voxel. We

employ a Reversed-Furthest-Voxel-Sampling strategy to ad-

dress the uneven distribution of LiDAR points and propose

MV-JAR, which combines two techniques for modeling the

aforementioned distributions, resulting in superior perfor-

mance. Our experiments reveal limitations in previous data-

efficient experiments, which uniformly sample fine-tuning

splits with varying data proportions from each LiDAR se-

quence, leading to similar data diversity across splits. To

address this, we propose a new benchmark that samples

scene sequences for diverse fine-tuning splits, ensuring ad-

equate model convergence and providing a more accu-

rate evaluation of pre-training methods. Experiments on

our Waymo benchmark and the KITTI dataset demonstrate

that MV-JAR consistently and significantly improves 3D

detection performance across various data scales, achiev-

ing up to a 6.3% increase in mAPH compared to training

from scratch. Codes and the benchmark are available at

https://github.com/SmartBot-PJLab/MV-JAR.

1. Introduction

Self-supervised pre-training has gained considerable at-

tention, owing to its exceptional performance in visual rep-

resentation learning. Recent advancements in contrastive
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Figure 1. 3D object detection results on the Waymo dataset. Our

MV-JAR pre-training accelerates model convergence and greatly

improves the performance with limited fine-tuning data.

learning [4, 6, 8, 16, 45] and masked autoencoders [1, 7, 15,

36, 47] for images have sparked interest among researchers

and facilitated progress in modalities such as point clouds.

However, LiDAR point clouds differ from images and

dense point clouds obtained by reconstruction as they are

naturally sparse, unorganized, and irregularly distributed.

Developing effective self-supervised proxy tasks for these

unique properties remains an open challenge. Construct-

ing matching pairs for contrastive learning in geometry-

dominant scenes is more difficult [20, 40], as points or re-

gions with similar geometry may be assigned as negative

samples, leading to ambiguity during training. To address

this, our study explores masked voxel modeling paradigms

for effective LiDAR-based self-supervised pre-training.

Downstream LiDAR-based 3D object detectors [12, 19,

33, 38, 41, 50] typically quantize the 3D space into vox-

els and encode point features within them. Unlike pix-

els, which are represented by RGB values, the 3D space

presents a scene-voxel-point hierarchy, introducing new

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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challenges for masked modeling. Inspired by this, we de-

sign masking and reconstruction strategies that consider

voxel distributions in the scene and local point distributions

in the voxel. Our proposed method, Masked Voxel Jigsaw

And Reconstruction (MV-JAR), harnesses the strengths of

both voxel and point distributions to improve performance.

To account for the uneven distribution of LiDAR points,

we first employ a Reversed-Furthest-Voxel-Sampling (R-

FVS) strategy that samples voxels to mask based on their

sparseness. This approach prevents masking the furthest

distributed voxels, thereby avoiding information loss in re-

gions with sparse points. To model voxel distributions,

we propose Masked Voxel Jigsaw (MVJ), which masks

the voxel coordinates while preserving the local shape of

each voxel, enabling scene reconstruction akin to solving

a jigsaw puzzle. For modeling local point distributions,

we introduce Masked Voxel Reconstruction (MVR), which

masks all coordinates of points within the voxel but retains

one point as a hint for reconstruction. Combining these two

methods enhances masked voxel modeling.

Our experiments indicate that existing data-efficient ex-

periments [20, 40] inadequately evaluate the effectiveness

of various pre-training methods. The current benchmarks,

which uniformly sample frames from each data sequence

to create diverse fine-tuning splits, exhibit similar data di-

versity due to the proximity of neighboring frames in a

sequence [3, 14, 30]. Moreover, these experiments train

models for the same number of epochs across different

fine-tuning splits, potentially leading to incomplete conver-

gence. As a result, the benefits of pre-trained representa-

tions become indistinguishable across splits once the ob-

ject detector is sufficiently trained on the fine-tuning data.

To address these shortcomings, we propose sampling scene

sequences to form diverse fine-tuning splits and establish

a new data-efficient 3D object detection benchmark on the

Waymo [30] dataset, ensuring sufficient model convergence

for a more accurate evaluation.

We employ the Transformer-based SST [12] as our de-

tector and pre-train its backbone for downstream detec-

tion tasks. Comprehensive experiments on the Waymo

and KITTI [14] datasets demonstrate that our pre-training

method significantly enhances the model’s performance and

convergence speed in downstream tasks. Notably, it im-

proves detection performance by 6.3% mAPH when using

only 5% of scenes for fine-tuning and reduces training time

by half when utilizing the entire dataset (Fig. 1). With the

representation pre-trained by MV-JAR, the 3D object de-

tectors pre-trained on Waymo also exhibit generalizability

when transferred to KITTI.

2. Related Work

Self-supervised learning for point clouds. Annotating

point clouds demands significant effort, necessitating self-

supervised pre-training methods. Prior approaches primar-

ily focus on object CAD models [21, 26, 29, 39, 42, 44]

and indoor scenes [17, 35, 46]. Point-BERT [42] applies

BERT-like paradigms for point cloud recognition, while

Point-MAE [26] reconstructs point patches without the to-

kenizer. To acquire scene-level representation, PointCon-

trast [35] introduces a contrastive learning approach that

compares points in two static partial views of a recon-

structed indoor scene. Its successor, SceneContrast [17], in-

corporates spatial information into the contrastive learning

framework. However, LiDAR point clouds are irregular and

dynamic, with mainstream LiDAR perception models of-

ten exhibiting distinct architectures, which obstructs the di-

rect adaptation of object-level and indoor scene pre-training

methods. STRL [18] employs contrastive learning with

two temporally-correlated frames for spatiotemporal repre-

sentation. GCC-3D [20] presents a framework that com-

bines geometry-aware contrast and pseudo-instance cluster-

ing harmonization. ProposalContrast [40] targets region-

level contrastive learning to improve 3D detection. CO3 [5]

leverages infrastructure-vehicle-cooperation point clouds to

construct effective contrastive views. In contrast, our work

explores masked voxel modeling, diverging from the pre-

vailing contrastive learning paradigm.

Masked autoencoders for self-supervised pre-training.

Masked language modeling plays a pivotal role in self-

supervised pre-training for Transformer-based networks in

natural language processing [2, 10, 28]. This approach typ-

ically masks portions of the input and pre-trains networks

to predict the original information. With the successful

integration of Transformers into computer vision [11], re-

searchers have increasingly focused on masked image mod-

eling [1, 7, 15, 36, 43, 47] to mitigate the data-intensive is-

sue of ViT [11]. BEiT [1] employs a tokenizer to gener-

ate discrete tokens for image patches and utilizes a BERT-

like framework to pre-train ViT. MAE [15] introduces an

asymmetric autoencoder for reconstructing RGB pixels of

original images, eliminating the need for an extra tokenizer.

SimMiM [36] encodes masked raw images with Transform-

ers and employs a lightweight prediction head for recovery.

Demonstrating considerable potential in image recognition,

masked autoencoders have been applied in video under-

standing [13, 32], medical image analysis [48], and audio

processing [37]. In this work, we investigate the applica-

tion of this powerful pre-training technique to LiDAR point

clouds using voxel representation.

Transformer-based 3D object detection. The recent

success of Vision Transformers [11] has inspired extensive

research into the application of Transformer-based architec-

tures for 3D object detection [12, 23–25, 31]. 3DETR [24]

presents an end-to-end object detection framework with

modified Transformer blocks for 3D point clouds. Point-

former [25] employs hierarchical Transformer blocks to
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Figure 2. Overview of Masked Voxel Jigsaw and Reconstruction (MV-JAR). Our R-FVS sampling method selects a specific ratio of non-

empty voxels to mask. For position-masked voxels, we mask the absolute coordinates of all points within the voxel while maintaining the

relative coordinates. For shape-masked voxels, we mask both absolute and relative coordinates of all points, preserving only one point.

Features are extracted from all non-empty voxels, and masked features are decoded by a dedicated head to recover corresponding targets.

extract point features for 3D detection. Voxel Trans-

former [23] develops a Transformer-based 3D backbone

to establish long-range relationships between voxels. Re-

cently, SST [12] introduced a single-stride sparse Trans-

former as a replacement for the PointPillars [19] back-

bone, abandoning the multi-resolution strategy to enhance

the detection of small objects. Emulating the Swin-

Transformer [22], SST partitions the space into windows

and calculates attention only within each window for effi-

ciency. This approach demonstrates impressive detection

results, and we adopt it for our experiments.

3. Methodology

In this section, we first present an overview of a gen-

eral masked voxel modeling framework for LiDAR point

clouds and our Reversed-Furthest-Voxel-Sampling strategy

to tackle the uneven distribution of LiDAR points (Sec. 3.1).

Masked Voxel Jigsaw (MVJ) (Sec. 3.2) and Masked Voxel

Reconstruction (MVR) (Sec. 3.3) are both instantiations of

the general framework that learns the voxel distributions

and local point distributions, respectively. Masked Voxel

Jigsaw and Reconstruction (MV-JAR) consist of these two

tasks to synergically learn the data distributions at two lev-

els (Sec. 3.4).

3.1. Masked Voxel Modeling and Sampling

As illustrated in Fig. 2, a general masked voxel mod-

eling framework converts LiDAR point clouds into voxels

and samples a proportion of non-empty voxels using a spe-

cific sampling strategy and masking ratio. Various features

within the voxel can be masked for a particular learning tar-

get in this general framework to instantiate different self-

supervised learning tasks. Specifically, task-specific fea-

tures of the points in the sampled voxels are replaced with

a learnable vector. Subsequently, all non-empty voxels are

encoded by a voxel encoder, processed by a backbone net-

work to extract features, and followed by a lightweight de-

coder that reconstructs task-specific targets from each voxel

feature. Each stage is described in the following sections. In

this paper, we employ SST [12], which demonstrates supe-

rior performance in 3D detection. The pre-trained weights

of the voxel encoder and the SST backbone are utilized as

initialization for the downstream 3D detection task.

Voxelization. Let p denote a point with coordinates

x, y, z. Given a point cloud P = {pi = [xi, yi, zi]
T ∈

R
3}i=1...n containing n points and range W,H,D, we par-

tition the space into a 3D grid using voxel sizes vW , vH , vD
along the three axes, grouping points in the same voxel to-

gether. As a common technique [12, 19, 49], we decorate

each point with xc, yc, zc, xv, yv, zv , where the superscript

c denotes distance to the clustering center of all points in

each voxel and the superscript v denotes distance to the

voxel center. Considering the sparse and irregular nature of

LiDAR point clouds, we focus only on non-empty voxels.

Assuming non-empty voxels contain at most T points and

a total of N non-empty voxels, we obtain the voxel-based

point cloud representation as M = {Vi}i=1...N , where Vi =
{pj = [xj , yj , zj , x

c
j , y

c
j , z

c
j , x

v
j , y

v
j , z

v
j ]

T ∈ R
9}j=1...ti and

ti ≤ T . We assume each non-empty voxel contains T

points for simplicity. We also maintain each voxel’s coordi-

nate in the 3D grid with Ci ∈ R
3.

Masked voxel sampling. A key component of masked

autoencoders is the mask sampling strategy. Unlike 2D

pixels that uniformly distribute on the image plane, voxels

are unevenly distributed due to the sparse and irregular na-

ture of LiDAR point clouds. Random sampling may result

in information loss in regions with sparse points. Inspired

by furthest point sampling [27] (FPS), which samples an

evenly distributed point set while maintaining the key struc-
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ture of the data, we propose a Reversed-Furthest-Voxel-

Sampling (R-FVS) scheme. Given a masking ratio r, we

apply FPS to select ⌊N(1− r)⌋ voxels from all non-empty

voxels according to each voxel’s coordinate Ci. These sam-

pled voxels are kept to preserve points in sparse regions and

maintain key geometric structures in the data, while the re-

maining unsampled voxels are masked during training.

Masking voxels. We directly mask the raw inputs of vox-

els, providing a unified formulation for the masked voxel

modeling framework. For each of the remaining unsampled

⌈Nr⌉ voxels to be masked, we replace some of the original

features of each point in the voxel with a shared learnable

vector, denoted as a mask token m. The dimensions of m

and the replaced point features vary for different tasks.

Voxel encoding and decoding. All the non-empty vox-

els are then encoded by a voxel encoder (VE) and the SST

backbone. As the features of masked voxels are also ex-

tracted by the backbone, we only need a lightweight task-

specific MLP head to decode and predict their original in-

formation [36]. The loss is computed only on masked vox-

els, following previous practices [15, 36].

3.2. Masked Voxel Jigsaw (MVJ)

Object detection in LiDAR point clouds necessitates a

representation capable of capturing contextual information,

such as the distribution and relationships among voxels. We

propose a jigsaw puzzle that obscures position information,

compelling the model to learn these relationships.

Masking position information. Given a position-masked

voxel, we replace the absolute coordinates xj , yj , zj of

each point with a mask token mv ∈ R
3, while pre-

serving the local shape by retaining the decorated coor-

dinates of each point within the voxel (Fig. 2). The

masked voxel is then represented as Vmasked = {pj =
[mv, x

c
j , y

c
j , z

c
j , x

v
j , y

v
j , z

v
j ]

T ∈ R
9}j=1...T . All voxels are

subsequently input to the voxel encoder and the SST back-

bone. Notably, positional embeddings are not added to the

voxels before being fed to the backbone, as the model is

tasked with predicting position information.

Prediction target and loss function. Instead of directly

predicting the absolute position of the masked voxels, we

formulate a classification task to facilitate optimization.

Owing to the extensive range of LiDAR point clouds, the

SST backbone partitions the 3D voxelized grid into win-

dows, akin to the Swin-transformer [22], to enable efficient

attention calculation within windows. We employ the same

window partitioning method, requiring the model to pre-

dict only the relative index of the masked voxel within its

corresponding window. Assuming a 3D window contains

Nx, Ny, Nz voxels along the x, y, z axes and the voxel co-

ordinates of a masked voxel are X,Y, Z, the relative co-

ordinates Ix, Iy, Iz of the masked voxel with respect to

its window are calculated as Ix = X mod Nx, Iy = Y

mod Ny, Iz = Z mod Nz . The relative index is then

given by I = Ix + IyNx + IzNxNy . The prediction head

outputs a classification vector v̂ ∈ R
NxNyNz representing

the probabilities of the masked voxel occupying each posi-

tion. The prediction loss for all masked voxel is calculated

using the Cross-Entropy loss as follows:

LMV J =
1

Rp

Rp
∑

i=1

CrossEntropy(v̂i, Ii), (1)

where Rp denotes the number of position-masked voxels.

3.3. Masked Voxel Reconstruction (MVR)

To incorporate local shape information within each

voxel, we introduce masked voxel reconstruction (MVR).

MVR masks the absolute and relative coordinates of all

points in shape-masked voxels to learn point distributions,

preserving only one point to provide the voxel position.

Masking voxel shapes. In a given voxel, both the orig-

inal and decorated coordinates of points represent the lo-

cal shape of the voxel (Fig. 2). We employ a shared learn-

able token mp ∈ R
9 to replace all point features in every

shape-masked voxel, except for one point. This particu-

lar point conveys the voxel’s positional information with-

out revealing the voxel shape, which would render the re-

construction task trivial. Consequently, the masked voxel

becomes Vmasked = {[x1, y1, z1, x
c
1
, yc

1
, zc

1
, xv

1
, yv

1
, zv

1
]} ∪

{pj = mp}j=2...T .

Reconstruction target and loss function. We recon-

struct each masked voxel and use the L2 Chamfer Distance

loss to measure the discrepancy between the reconstructed

and target point distributions. This loss function is insensi-

tive to point density [34], which is crucial since each voxel

may contain varying numbers of points. Assuming each re-

constructed voxel contains n points, the reconstruction head

outputs a vector containing the coordinates of each point in

the masked voxel, v̂ ∈ R
3n. To pre-train the model more

stably, we normalize the target point distribution using each

point’s distance to the voxel center as ground truth and scale

the distance between 0 and 1. Supposing each reconstructed

masked voxel is V̂ = {p̂j = [x̂j , ŷj , ẑj ]}j=1...n and the

ground truth is V = {pj = [xv
j , y

v
j , z

v
j ]}j=1...ti , the total

loss across all masked voxels is given by:

LMVR =
1

Rs

Rs
∑

i=1

LCD(V̂i, Vi), (2)

where Rs represents the number of shape-masked voxels

and LCD is the L2 Chamfer Distance loss calculated as:

LCD =
1

∣

∣

∣
V̂i

∣

∣

∣

∑

p̂∈V̂i

min
p∈Vi

∥p̂− p∥2
2

+
1

|Vi|

∑

p∈Vi

min
p̂∈V̂i

∥p− p̂∥2
2
.

(3)
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3.4. Joint Pre­Training

We jointly pre-train the model using both MVJ and MVR

tasks to enable the model to learn both point and voxel dis-

tributions. We use R-FVS to sample Rs voxels for MVR

and Rp voxels for MVJ. As illustrated in Fig. 2, the voxel

encoder and the backbone extract features from both types

of masked voxels and unmasked voxels. Masked features

are decoded to recover their corresponding targets, and

Cross-Entropy loss and Chamfer Distance loss are utilized

for supervision. The total loss for joint pre-training is ex-

pressed as follows:

L = αLMV J + βLMVR (4)

where α and β are balancing coefficients.

4. Data-Efficient Benchmark on Waymo

To evaluate the pre-trained representation, we transfer

the weights of the voxel encoder and the backbone for ob-

ject detection. Previous benchmarks fail to effectively re-

veal the effectiveness of pre-training strategies due to data

diversity issues. We propose a new data-efficient bench-

mark to address these limitations.

Observation: Incomplete model convergence. Prior

works [20, 40] fine-tune the model on different splits with

the same epochs, causing reduced iteration numbers when

dataset sizes decrease. As illustrated in Fig. 3a, by train-

ing for more epochs (but the same iterations), the perfor-

mance of SST significantly improves, suggesting that the

models may not fully converge on smaller splits when train-

ing epochs remain constant. This entangled factor prevents

accurate evaluation of pre-training strategies.

Issue: Fine-Tuning splits with similar data diversities.

With the same training iterations, models trained on differ-

ent splits display comparable performance, despite signif-

icant differences in data amounts (Fig. 3a). We find that

scene diversity is a crucial factor. Previous works [20, 40]

uniformly sample the entire Waymo training set to create

different fine-tuning splits, for instance, sampling one frame

from every two consecutive frames for a 50% split. How-

ever, neighboring frames in self-driving datasets are similar

due to the short time difference between consecutive frames

(e.g., only 0.1s in Waymo [30]). This results in similar

scene diversity across splits, leading to comparable detec-

tion performance using the same training iterations.

We argue that such an experimental setting does not

accurately represent a typical application scenario of self-

supervised pre-training, where annotated fine-tuning data

is less abundant and diverse compared to pre-training data.

Furthermore, it fails to evaluate how pre-training benefits

downstream tasks when varying amounts and diversities of

labeled data are available. We provide an additional ex-

ample in the supplementary material to further illustrate
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Figure 3. Comparison of data-efficient benchmarks. Previous

uniformly sampled splits exhibit similar diversity, as evidenced

by similar performance with the same training iterations. Our

benchmark features varying data amounts and diversities, ensuring

model convergence. Dashed lines show baseline performances.

these issues with previous benchmarks. Our proposed data-

efficient benchmark addresses these issues, offering a more

precise evaluation of pre-training strategies.

Solution: Sequence-Based data sampling. We sample

fine-tuning data using different scene sequences rather than

uniformly sampling varying numbers of frames from identi-

cal sequences. The Waymo training split comprises 798 dis-

tinct scene sequences, each lasting 20s with approximately

200 frames [30]. We randomly sample 5%, 10%, 20%, 50%

of the scene sequences, respectively, using all frames within

the sampled sequences for fine-tuning. Consequently, data

diversities and amounts vary across each split. Each larger

split also encompasses the smaller ones, enabling measure-

ment of performance changes with additional fine-tuning

data. Furthermore, we randomly sample three 5% and 10%

splits and report average results to reduce variance on these

smaller sets (see our supplementary material).

For different fine-tuning splits, we train the model until

performance saturates (i.e., overfitting) and determine the

number of epochs used for experiments accordingly. For

example, for 5% data, we try {48, 60, 66, 72, 78, 84}
epochs and ultimately select 72. The baseline performances

across various training iterations are shown in Fig. 3b. With

our new benchmark, baseline performance and convergence

speed vary as anticipated for different splits.

5. Experiments

5.1. Experimental Settings

Datasets. The Waymo dataset [30] consists of 1150 self-

driving scenes with 798 scenes as the training split, 202

scenes as the validation split, and 150 scenes as the test-

ing split. We pre-train on the training split, which con-

tains 158,240 annotated frames. For the downstream data-

efficient 3D object detection task, we fine-tune the model

using our sampled splits (as described in Sec. 4) and eval-

uate performance on the standard Waymo validation split

with 3 classes (cars, pedestrians, and cyclists) and two diffi-

culty levels (L1 and L2). We adopt L2 mean average preci-
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Table 1. Data-efficient 3D object detection results of SST on the Waymo validation set. SST is pre-trained using various self-supervised

methods on Waymo training split, with weights applied for the downstream detection task. “Random initialization” denotes training from

scratch. The model performances are shown using different amounts and diversities of fine-tuning data.

Data amount Initialization
Overall Car Pedestrian Cyclist

L2 mAP L2 mAPH L2 mAP L2 mAPH L2 mAP L2 mAPH L2 mAP L2 mAPH

5%

Random 44.41 40.34 51.01 50.49 52.74 42.26 29.49 28.27

PointContrast [35] 45.32 41.30 52.12 51.61 53.68 43.22 30.16 29.09

ProposalContrast [40] 46.62 42.58 52.67 52.19 54.31 43.82 32.87 31.72

MV-JAR (Ours) 50.52+6.11 46.68+6.34 56.47 56.01 57.65 47.69 37.44 36.33

10%

Random 54.31 50.46 54.84 54.37 60.55 50.71 47.55 46.29

PointContrast [35] 53.69 49.94 54.76 54.30 59.75 50.12 46.57 45.39

ProposalContrast [40] 53.89 50.13 55.18 54.71 60.01 50.39 46.48 45.28

MV-JAR (Ours) 57.44+3.13 54.06+3.60 58.43 58.00 63.28 54.66 50.63 49.52

20%

Random 60.16 56.78 58.79 58.35 65.63 57.04 56.07 54.94

PointContrast [35] 59.35 55.78 58.64 58.18 64.39 55.43 55.02 53.73

ProposalContrast [40] 59.52 55.91 58.69 58.22 64.53 55.45 55.36 54.07

MV-JAR (Ours) 62.28+2.11 59.15+2.37 61.88 61.45 66.98 59.02 57.98 57.00

50%

Random 66.43 63.36 63.81 63.38 70.78 63.05 64.71 63.66

PointContrast [35] 65.51 62.21 62.66 62.23 69.82 61.53 64.04 62.86

ProposalContrast [40] 65.76 62.49 62.93 62.50 70.09 61.86 64.26 63.11

MV-JAR (Ours) 66.70+0.27 63.69+0.33 64.30 63.89 71.14 63.57 64.65 63.63

100%

Random 68.50 65.54 64.96 64.56 72.38 64.89 68.17 67.17

PointContrast [35] 68.06 64.84 64.24 63.82 71.92 63.81 68.03 66.89

ProposalContrast [40] 68.17 65.01 64.42 64.00 71.94 63.94 68.16 67.10

MV-JAR (Ours) 69.16+0.66 66.20+0.66 65.52 65.12 72.77 65.28 69.19 68.20

sion (L2 mAP) and L2 mean average precision with heading

(L2 mAPH) as main evaluation metrics. We also evaluate

the model on the KITTI dataset [14] for the detection task.

It contains 7481 training samples and 7518 test samples.

Implementation details. We employ the official imple-

mentation and training settings of SST [12] for pre-training

and fine-tuning unless specified otherwise. The Waymo

dataset’s point cloud range is W × H × D = 149.76m ×
149.76m × 6m, and the voxel size is vW × vH × vD =
0.32m× 0.32m× 6m. For MVR, we predict 15 points per

voxel with a masking ratio of 0.05. For MVJ, the window

size is Nx × Ny × Nz = 12 × 12 × 1 and the masking

ratio is 0.1. We set the loss weight α = β = 1, pre-train

for 6 epochs with an initial learning rate of 5e − 6. When

fine-tuning, we initialize the voxel encoder and SST back-

bone with pre-trained weights, and other training hyper-

parameters remain unchanged. We set KITTI’s point cloud

range to 69.12m × 79.36m × 4m, voxel size to 0.32m ×
0.32m×4m, and train for 160 epochs. We use the AdamW

optimizer with a batch size of 8 and a cyclic learning rate

scheduler with cosine annealing for all training.

5.2. Main Results on Waymo

Baselines. We fine-tune the model using data splits de-

scribed in Sec. 4. For {5%, 10%, 20%, 50%, 100%} data,

the model is trained for {72, 60, 42, 36, 24} epochs. We

use the randomly initialized model’s performances as our

baselines. We also include experiments with models using

convolutional backbones in the supplementary material.

Results with different initialization. Tab. 1 presents the

SST model’s performances with various initializations on

our proposed data-efficient benchmark. Our pre-training

method consistently improves SST baselines across all fine-

tuning data amounts, especially when data is scarce. Our

method achieves up to 15.7% relative improvement, from

40.34% L2 mAPH to 46.68% L2 mAPH, when using only

5% fine-tuning data. The performance gain exists across

object categories, indicating effective general representa-

tion learning. As more fine-tuning data is introduced, the

performance gain persists, and when fine-tuning with the

entire Waymo training set, our pre-training enhances detec-

tion performance from 65.54% mAPH to 66.20% mAPH.

We note that with 50% and 100% fine-tuning data, the

improvements from our pre-training are not as significant

as with less data. We observe that the baseline result on

50% data (63.36% mAPH) is comparable to that on 100%

data (65.54% mAPH), suggesting that training data is no

longer the bottleneck. The original SST, with only 2.1M

parameters, is a lightweight network. We scale up SST to

8.3M parameters by using larger hidden layer channels and

observe larger benefits from pre-training on the 50% fine-

tuning split, from 63.13% L2 mAPH to 64.24% L2 mAPH.

Therefore, we argue that the SST model’s capacity, rather

than the fine-tuning data amount, becomes the bottleneck

for detection performance.

Comparisons with contrastive learning methods. We
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Table 2. Transferring results on the KITTI validation split. We

pre-train SST with the Waymo training split and fine-tune with the

KITTI training split.

Initialization
Overall

Easy Mod. Hard

Random 74.71 63.43 60.00

PointContrast [35] 73.35 62.53 59.01

ProposalContrast [40] 73.63 63.34 59.40

MV-JAR (Ours) 75.22 63.80 60.35

utilize the official implementation of the recently proposed

ProposalContrast [40] and reimplement PointContrast [35]

for comparison. As demonstrated in Tab. 1, both contrastive

learning methods offer benefits only with 5% fine-tuning

data, and their improvements diminish with higher baseline

performances. This may be due to the difficulty in smoothly

learning representations. A key challenge in LiDAR-based

contrastive learning is constructing matched pairs. The

point pairs used by PointContrast face the issue of spatially

adjacent points with similar features being assigned as neg-

ative samples. We observe difficulty in convergence when

sampling excessive pairs. ProposalContrast alleviates the

issue by contrasting regions but does not entirely resolve

it. Alternatively, our method offers a new avenue for de-

veloping self-supervised pre-training through masked voxel

modeling on LiDAR point clouds.

5.3. Pre­training Accelerates Convergence

To investigate how MV-JAR pre-training accelerates

convergence, we fine-tune the SST model on the entire

Waymo training split. We train the SST model for differ-

ent epochs and report the performance of both fine-tuning

and training from scratch. As illustrated in Fig. 1, MV-JAR

pre-training significantly enhances the convergence speed

of SST. By fine-tuning for only 3 epochs, the SST model

achieves 62.48% L2 mAPH. Remarkably, fine-tuning for

just 12 epochs results in a performance comparable to train-

ing from scratch for 24 epochs, effectively halving the con-

vergence time. As the number of fine-tuning epochs in-

creases, the performance gain provided by MV-JAR does

not wane. Pre-training can still improve the model’s con-

verged performance by 0.74% L2 mAPH, highlighting the

superiority of the pre-trained representation.

5.4. Transferring Results on KITTI

To evaluate the transferability of the learned representa-

tion, we fine-tune various pre-trained SST models on the

KITTI dataset. The original SST paper [12] did not conduct

experiments on the KITTI dataset; thus, we follow the train-

ing schedule and setup of SST and PointPillars [19] within

the MMDetection3D framework [9]. As demonstrated in

Tab. 2, the performance gain from our MV-JAR pre-training

persists when the representation is transferred to a different

domain, indicating that the model learns a generic repre-

sentation through pre-training. While the KITTI training

samples account for approximately 5% of the entire Waymo

training split, the relative improvement is much smaller

than transferring to the 5% Waymo split. We hypothesize

that this may be attributed to the domain gap between the

Waymo and KITTI datasets.

5.5. Ablation Studies

In this section, we conduct ablation studies to investigate

the effectiveness of our proposed Reversed-Furthest-Voxel-

Sampling (R-FVS) strategy. Additionally, we explore the

optimal masking ratio and the impact of MVR and MVJ

pre-training. All pre-training experiments utilize the entire

Waymo training split, and we fine-tune the model on one of

our 5% data splits.

Mask sampling strategy. Our R-FVS mask sampling

strategy masks voxels that are not sampled by FPS, aiming

to avoid masking voxels located in sparse regions. We also

examine random sampling and an opposing sampling strat-

egy called FVS, which masks voxels sampled by FPS. With

FVS sampling, regions with sparse points are more likely to

be masked, leading to greater information loss compared to

random sampling and R-FVS sampling. Tab. 3 presents the

fine-tuning results of pre-training with the three sampling

strategies. R-FVS sampling performs the best, while FVS

performs the worst. These findings confirm that minimiz-

ing information loss benefits pre-training and validate the

effectiveness of our R-FVS strategy.

Masking ratio. Tab. 4 illustrates the impact of different

masking ratio combinations. Specifically, MVR with a 0.1

masking ratio and MVJ with a 0.05 masking ratio yield the

best results. With this combination, the overall masking ra-

tio is 0.15, which is significantly lower than the masking ra-

tios in the image [15, 36] or video domain [13, 32]. A high

masking ratio in masked autoencoders typically indicates

information redundancy [13, 15, 32, 36]. We postulate that

two factors contribute to our low masking ratio: 1) LiDAR

point clouds represent a vast space where each meaningful

object occupies only a small fraction. The information on

each object is not highly redundant, especially when the ob-

jects are distant from the sensor. This contrasts with images

in datasets like ImageNet, where objects often encompass

a significant portion of the image. 2) The SST model cal-

culates attention only within a partitioned window, which

restricts the information used. We leave this question for

future exploration.

Pre-training effects of MVR and MVJ. We investigate

the individual pre-training effects of MVR and MVJ by op-

timizing the masking ratio for each task and reporting the

fine-tuning performances in Tab. 5. Both MVR and MVJ

pre-training enhance performance compared to random ini-
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Masked MVJ Ground Truth Masked MVR Ground Truth

Figure 4. Visualization of the reconstruction results of MV-JAR on the Waymo validation set, compared with ground truths.

Table 3. Ablation study on mask sam-

pling strategies.

Mask sampling
Overall

L2 mAP L2 mAPH

FVS 49.73 45.88

Random 49.86 46.06

R-FVS 50.52 46.68

Table 4. Ablation study on masking ratios.

Masking ratio Overall

MVJ MVR L2 mAP L2 mAPH

0.3 0.1 49.74 46.05

0.05 0.1 49.67 45.92

0.1 0.1 49.85 45.97

0.1 0.05 50.52 46.68

0.1 0.3 50.25 46.35

Table 5. Ablation study on pre-training

effects of MVR and MVJ.

Task
Overall

L2 mAP L2 mAPH

MVR 46.57 42.73

MVJ 49.96 46.10

MV-JAR 50.52 46.68

tialization, with MVJ outperforming MVR. This finding

suggests that capturing voxel distributions plays a more sig-

nificant role in representation learning, which is consistent

with the fact that LiDAR detectors process points by down-

sampling them into voxels. Our integrated MV-JAR method

demonstrates further improvement over MVR and MVJ,

validating the effectiveness of jointly capturing point and

voxel distributions. Additionally, we offer an analysis of

improvements across various distances in our supplemen-

tary material.

5.6. Visualization

Figure 4 displays the MV-JAR reconstruction results on

the Waymo validation set, including MVJ and MVR out-

comes. In our pre-training, MVJ achieves approximately

89% classification accuracy of masked voxels on the vali-

dation set, accurately reconstructing masked voxels in the

correct positions most of the time. MVR can capture

the point distributions within voxels, evidenced by recon-

structed ground points aligning with ground circles. How-

ever, MVR struggles to capture detailed distributions, likely

due to the discrete sampling of LiDAR points from continu-

ous surfaces, resulting in considerable variability in the data

and increased difficulty in capturing finer details.

6. Conclusions

In this paper, we introduce the Masked Voxel Jigsaw and

Reconstruction (MV-JAR) pre-training method for LiDAR

detectors. MV-JAR captures both point and voxel distri-

butions of LiDAR point clouds, enabling models to learn

effective and generic representations. We also develop a

Reversed-Furthest-Voxel-Sampling strategy to address the

uneven distribution of LiDAR points. Comprehensive ex-

periments on the Waymo and KITTI datasets show that our

method consistently and significantly enhances the detec-

tor’s performance across different data scale regimes. MV-

JAR offers a promising alternative for LiDAR-based self-

supervised pre-training through Masked Voxel Modeling.

Additionally, we establish a new data-efficient benchmark

on the Waymo dataset, incorporating fine-tuning splits with

diverse data variations. This benchmark effectively assesses

the impact of pre-training on downstream tasks with vary-

ing amounts and diversities of labeled data.
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