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Abstract

Mean ensemble (i.e. averaging predictions from multiple
models) is a commonly-used technique in machine learning
that improves the performance of each individual model. We
formalize it as feature alignment for ensemble in open-set
face recognition and generalize it into Bayesian Ensemble
Averaging (BEA) through the lens of probabilistic modeling.
This generalization brings up two practical benefits that ex-
isting methods could not provide: (1) the uncertainty of a
face image can be evaluated and further decomposed into
aleatoric uncertainty and epistemic uncertainty, the latter
of which can be used as a measure for out-of-distribution
detection of faceness; (2) a BEA statistic provably reflects
the aleatoric uncertainty of a face image, acting as a mea-
sure for face image quality to improve recognition perfor-
mance. To inherit the uncertainty estimation capability from
BEA without the loss of inference efficiency, we propose
BEA-KD, a student model to distill knowledge from BEA.
BEA-KD mimics the overall behavior of ensemble members
and consistently outperforms SOTA knowledge distillation
methods on various challenging benchmarks.

1. Introduction
Knowledge Distillation (KD) is an active research area

that has profound benefits for model compression, wherein
competitive recognition performance can be achieved by
smaller models (student models) via a distillation process
from teacher models. As such, smaller models can be de-
ployed into space-constrained environments such as mobile
and embedded devices.

There has been abundant literature in KD for face recog-
nition [22,33,34]. However, all the existing approaches fall
into the “one-teacher-versus-one-student” paradigm. This
learning paradigm has several limitations. Firstly, a single
teacher can be biased, which further results in biased esti-

*Equal contribution.

Figure 1. A conceptual illustration of BEA and BEA-KD. Given
a face image x, we have n = 5 probabilistic ensemble members
{r-vMF(µi, κi)}ni=1 (marked by light blue). Bayesian ensemble
averaging (marked by dark blue) returns a single r-vMF(µ̃x, κ̄

(n)
x )

that accounts for the expected positions and confidence by all the
ensemble members. To emulate the ensemble’s probabilistic be-
havior, we employ a parametrized distribution qϕ,φ(z|x) to ap-
proximate BEA.

mates of face feature embeddings given by a student after
knowledge distillation from the biased teacher. Secondly, it
only yields point estimates of face feature embeddings, un-
able to provide uncertainty measure for face recognition in
a safety-sensitive scenario.

Compared with single-teacher KD, KD from multiple
teachers (a.k.a. ensemble KD) is beneficial and has been
extensively explored in literature [9, 11, 29, 32, 36, 37].
However, these approaches are designed solely for closed-
set classification tasks, distilling logits in a fixed simplex
space via KL divergence (as the label set remains the same
throughout training and test). In contrast, face recognition
is inherently an open-set problem where classes cannot be
known a priori. More specifically, face identities appear-
ing during the inference stage scarcely overlap with those
in the training phase. Consequently, without a fixed sim-
plex space for logit distillation, existing approaches cannot
be readily applied to face recognition. As will be shown
in our empirical studies, existing closed-set KD approaches
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exhibit inferior performance in face recognition tasks with
million-scale label sets.

How we treat teachers highly affects KD performance.
Unlike prior art [20, 26] that takes average of predictions
(termed ‘mean ensemble’ throughout this paper), we treat
teachers as draws in a probabilistic manner. We find that
this treatment leads to a generalization of mean ensemble,
namely Bayesian Ensemble Averaging (BEA), which fur-
ther brings up two practical benefits that existing methods
could not provide: (1) the uncertainty of a face image can
be evaluated and further decomposed into aleatoric uncer-
tainty and epistemic uncertainty [6, 7], the latter of which
can be used as a measure for out-of-distribution detection
of faceness, i.e., distinguishing non-face images from face
images; (2) a BEA statistic provably reflects the aleatoric
uncertainty of a face image, which acts as a measure for
face image quality, thereby improving recognition perfor-
mance.

In addition, as ensemble methods are known to be com-
putation costly during inference, we expect a more effi-
cient model to inherit the uncertainty estimation capabil-
ity from BEA. To this end, we propose BEA-KD, a stu-
dent model that distills from BEA not only its feature em-
beddings but also the BEA statistic (and thus the aleatoric
uncertainty). Consequently, BEA-KD consistently outper-
forms SOTA KD methods on various benchmarks. Our con-
tribution can be summarized as follows:

(1) We recognize the benefit of multiple teachers (ensem-
ble) for face recognition and present Bayesian Ensemble
Averaging (BEA) as a generalization through the lens of
probabilistic modelling.

(2) We verify that the proposed BEA can capture aleatoric
uncertainty and epistemic uncertainty theoretically and em-
pirically.

(3) We propose BEA-KD, a single smaller (hence efficient)
model that inherits the power of uncertainty estimation from
BEA yet reduces the high computational cost of BEA infer-
ence.

(4) We verify the BEA and BEA-KD’s superior perfor-
mance, respectively, as compared with mean ensemble and
SOTA KD methods through extensive experiments.

2. Preliminaries and Background
Notations. Throughout the paper, we let (x, y) ∼ D be
a training pair, where x ∈ X denotes a face image in the
input space X and y ∈ L := {1, ..., C} the corresponding
label defined in the training label space (here, C is the num-
ber of identities seen in the training set). Note that the label
space in the test phase is unavailable due to the nature of
face recognition. The marginal distribution of x is denoted
by DX . We let z denote a latent embedding in the latent

space Z . Due to the hyperspherical treatment, we choose
Z to be the r-radius spherical space, i.e. Z := rSd−1,
where d is the latent dimensionality. We let fθ denote a
deterministic face feature extractor that maps a face image
to its spherical embedding, i.e. fθ : X 7→ rSd−1, where
θ is the learnable parameter. Note that as a common prac-
tice, a deep face recognition classifier is built upon a feature
extractor fθ in the training phase, which maps the spheri-
cal embedding z into the label space L. This mapping is
typically a linear transform followed by a nonlinear activa-
tion. This linear transform can be parameterized by a row-
nomalized matrix W ∈ RC×d. Then, the angular distance
between the face feature and the ith identity’s class center
is ϑi = ⟨Wi, fθ(x)⟩. Training proceeds by minimizing the
margin-based loss over W and θ (cf. Eq. (4) in [5]):

E
(x,y)∼D

[
− log

er(cos(m1ϑy+m2)−m3)

er(cos(m1ϑy+m2)−m3) +
∑C

j=1,j ̸=y e
r cosϑj

]
(1)

r-Radius von Mises Fisher Density. The r-Radius von
Mises Fisher distribution (r-vMF) was first proposed in
SCF [21], which generalizes von Mises Fisher density
(vMF) into a support over a sphere of arbitrary radius
r. Formally, an r-radius vMF is a distribution over a d-
dimensional r-radius sphere rSd−1 whose density is given
by

p(z|µ, κ) = Cd(κ)
rd

exp

(
κ

r
µTz

)
, Cd(κ) =

κd/2−1

(2π)d/2Id/2−1(κ)
(2)

where Id/2−1(κ) is the modified Bessel function of the first
kind of order (d/2−1). The distributional parameters µ and
κ are called the mean direction and concentration parame-
ter, respectively. We refer readers to [21] for more details.

SCF. Li et al. [21] proposed Sphere Confidence Face
(SCF) which represents each face image as an r-vMF dis-
tribution in the latent spherical space, where the mean di-
rection and the concentration parameter are the functions of
the face image. Specifically, the SCF optimization objective
is to approximate a desired spherical Dirac delta u using the
parameterized r-vMF v in the sense of KL divergence be-
tween these two probability distributions, i.e.

min
v

E(x,y)∼D[KL(u(z|y)||v(z|x))] (3)

where u(z|y) = δ(z − WTy) and v(z|x) =
r-vMF(z;µ(x), κ(x)). Here, y is the one-hot encoding of
y. Consequently, it can be shown that the cosine distance to
its corresponding class center (though implicit) is a mono-
tonically increasing function of the optimal concentration
parameter (see Theorem 2 in [21] for details). Empirically,
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the learned concentration parameter κx reflects the quality
of the given face image for recognition. For example, κx

is large if the face image x exhibits more frontal face at-
tributes, better lighting condition or higher resolution; oth-
erwise κx is small.

Uncertainty Decomposition. Uncertainty learning is of
vital importance to safety-critical decision-making scenar-
ios. There are two main forms of uncertainty: epistemic
uncertainty and aleatoric uncertainty. Epistemic uncertainty
refers to the uncertainty of model parameters and can serve
to determine how far a sample deviates from the train-
ing distribution [12, 23]. This type of uncertainty is com-
monly used for out-of-distribution detection. Aleatoric un-
certainty, on the other hand, accounts for the irreducible un-
certainty caused by the inherent noise present in data [19].
Therefore, it can be used for risk-controlled face recogni-
tion wherein ambiguous face images are rejected. Uncer-
tainty decomposition should be of interest in face recog-
nition community, however, we find existing uncertainty-
aware face recognition methods [1, 18, 21, 27, 30] unable to
achieve this. Our work aims to bridge this technical gap.

3. Proposed Method
We first propose feature alignment for face ensem-

ble in open-set recognition and then generalize it into
Bayesian Ensemble Averaging (BEA) through the lens
of probabilistic modelling. BEA enables us to well ex-
plain the statistics of our proposed framework, connecting
them with uncertainty estimation and decomposition theo-
retically, which benefits various face recognition settings,
e.g. risk-controlled face recognition and out-of-distribution
(OOD) detection of faceness.

3.1. Feature Alignment for Face Ensemble

In closed-set classification problems, the training set and
the test set share a common label space. Hence, when av-
eraging the predictive outputs of multiple ensemble mem-
bers (i.e. mean ensemble), no alignment is needed in ad-
vance [20]. In open-set recognition (e.g. face recognition),
however, the feature location of one identity in one ensem-
ble member does not necessarily coincide with that of the
same identity in another member. Therefore, mean ensem-
ble in this case requires alignment before averaging.

A simple recipe for alignment is to train these ensemble
members using a shared W. Since W can be seen as a col-
lection of class centers (each row of W corresponding to a
class center embedding) [1,21], a fixed shared W can auto-
matically enforce the alignment throughout the training of
all ensemble members. Given a data distribution D, this can
be achieved by first training one feature extractor fθ1 along
with its linear transform parameterized by W and subse-
quently training the rest of the feature extractors fθ2 , ..., fθn

Algorithm 1: Feature Alignment for Face Ensemble
Input: The distribution of face images (with labels) D;

The number of ensemble members n; A discrete
distribution P(s) for random seed generation.

Output: The learned ensemble {fθ1 , ..., fθn}.
Draw random seeds s1, ..., sn

iid∼P(s);
Initialize θ using random seed s1;
{θ1, W} ← Train fθ and the linear transform parameters
W over D to minimize the margin-based loss (1);

for i = 2 to n do
Train the rest of the members with the fixed W
Initialize θi using random seed si;
θi← Train fθ with the fixed W over D to minimize

the margin-based loss (1);
end
return {fθ1 , ..., fθn}, W

Algorithm 2: Bayesian Ensemble Averaging
Input: The distribution of face images (with labels) D;

The ensemble {fθ1 , ..., fθn}; The shared W.
for i = 1 to n do

Train an SCF module κ(·) that is built upon fθi by
minimizing Eq. (3) over D with µ(·) fixed as fθi(·);

end
for any x ∼ D do

Evaluate µi and κi for all i in {1, ..., n};
Compute and cache µ̃x and κ̄

(n)
x using Eq. (8);

end

with the same W (fixed throughout the training, critically).
Consequently, this ensures that different ensemble members
yield aligned spherical embeddings of a given face image.
As different members are initialized using different random
seeds before training, the resultant feature embeddings of
a given face image x are complementary to one another,
yielding a more robust feature embedding through averag-
ing (as verified in Table 1):

zavg = r · fθ1(x) + · · ·+ fθn(x)

||fθ1(x) + · · ·+ fθn(x)||2
(4)

The detailed procedure is summarized in Algorithm 1. See
Appendix A for more discussions.

3.2. Bayesian Ensemble Averaging (BEA)

Instead of treating all ensemble members equally as in
Eq. (4) (i.e. mean ensemble), we take a further step to con-
sider a weighted model averaging from a Bayesian perspec-
tive. As shown in Figure 1, our proposed method, termed
as Bayesian Ensemble Averaging (BEA), merges ensem-
ble members more flexibly. Unlike mean ensemble as in
Eq. (4), BEA treats an ensemble in a probabilistic man-
ner. Suppose a random seed s obeys a prescribed multi-
nomial distribution P(s), then via Algorithm 1 the stochas-
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ticity in seeds (randomness in network initialization) in-
duces the stochasticity in θ which therefore follows an im-
plicit distribution p(θ|DX ). That being said, given a face
image distribution DX , the learnable parameters of the fi-
nite ensemble {θ1, ..., θn} pretrained over DX are the draws
from the posterior distribution p(θ|DX ). This probabilis-
tic perspective brings an interesting implication: the corre-
sponding deterministic embeddings obtained from the en-
semble, {z(i) : z(i) = fθi(x), i = 1, ..., n}, can there-
fore be seen as draws from an implicit posterior distribution
p(z|fθ1 , ..., fθn ,x).

However, n is typically too small to estimate p accu-
rately. We remediate this issue by modifying the deter-
ministic embedding z(i) into a stochastic one. Formally,
given an ensemble member fθi and a face image x, the
embedding z is assumed to follow an r-vMF distribution,
i.e., (z|fθi ,x) ∼ r-vMF(z;µi, κi), where µi := fθi(x)
and κi := κfθi

(x). The mean direction µi indicates fea-
ture embeddings given by each feature extractor fθi , and the
concentration parameter κi is dependent on the given face
image x and fθi , capturing the image quality for recogni-
tion in a member-specific manner. This parameter can be
readily available via an SCF uncertainty module [21] that is
built upon each deterministic feature extractor, or using the
MagFace loss [24] in place of Eq (1). In experiments, we
choose SCF since it is a post-processing approach to face
uncertainty learning which does not modify the given en-
semble members (i.e., θ1, ..., θn are unchanged).

Next, we show that the ensemble posterior of inter-
est, p(z|fθ1 , ..., fθn ,x), can be determined analytically via
Bayesian treatment (see Appendix B for the detailed deriva-
tion for Eq. (5)(6)(7)):

p(z|fθ1 , ..., fθn ,x) ∝
p(z|fθn(x))

p(z)
p(z|fθ1 , ..., fθn−1

,x)

(5)
where p(z) is a prior that is not dependent on either the
ensemble or the face image x. By applying the recursive
Eq. (5) for n times, one can show that

p(z|fθ1 , ..., fθn ,x) ∝
n∏

i=1

(
r-vMF(z;µi, κi)

)
(6)

Interestingly, close scrutiny of Eq. (6) suggests that the
ensemble posterior p(z|fθ1 , ..., fθn ,x) is also an r-radius
vMF that ‘averages’ all the individual member distributions.
Formally, it can be shown that

p(z|fθ1 , ..., fθn ,x) = r-vMF(µ̃x, κ̃x) (7)

where

µ̃x =
κ1µ1 + ...+ κnµn

||κ1µ1 + ...+ κnµn||2
, κ̃x = ||κ1µ1 + ...+ κnµn||2

(8)

Here, subscripts denote the dependencies on x. Eq. (8)
depends on the number of members, n. To remove the de-
pendency, alternatively, we consider a modified averaged
term instead: κ̄

(n)
x = ||κ1µ1 + ...+ κnµn||2/n. We term

the entire process as Bayesian ensemble averaging (BEA).
Figure 1 illustrates its conceptual procedure, where BEA
returns a single r-vMF(µ̃x, κ̄

(n)
x ) that accounts for the ex-

pected positions and confidence by all the ensemble mem-
bers, thereby yielding a more robust probabilistic embed-
ding for feature matching. A rigorous treatment is summa-
rized in Algorithm 2.

Note that our probabilistic view of ensemble members
leads to BEA which is a generalization of the mean ensem-
ble as in Eq. (4): when κ1, ..., κn are all identical, Eq. (8)
reduces to Eq. (4). Moreover, this novel probabilistic view
opens up the possibility of decomposing uncertainty into
aleatoric uncertainty and epistemic uncertainty, the latter
of which can be used for detecting out-of-distribution of
faceness. Such decomposition enables our model to iden-
tify uncertainty sources, which boosts the performance of
risk-controlled face recognition and OOD faceness detec-
tion. Relevant details will be presented in the next section.

3.3. Theoretical Analysis

In this section, we answer the following questions the-
oretically: (1) what does the proposed BEA statistic κ̄

(n)
x

represent and what is the principle behind it? (2) how is
uncertainty decomposed via BEA?

3.3.1 BEA Statistic

We first present the r-vMF entropy and its monotonous de-
creasing property that will later be leveraged to show the
main theoretical results regarding the BEA statistic κ̄

(n)
x .

This property can be also of independent interest in the
spherical density family [4].

Lemma 3.1. For any µ ∈ Sd−1 and κ > 0, the dif-
ferential entropy of r-vMF(µ, κ) has an analytic form:
−κ − (d2 − 1) log κ + log Id/2−1(κ) +

d
2 log 2π. And it

is a monotonically decreasing function of κ in (0,+∞).

Proof. The proof can be found in Appendix C.

Relations to Aleatoric Uncertainty. Mathematically,
prior works (e.g. [7]) have shown that aleatoric uncertainty
can be quantified as the expected entropy of the poste-
rior distribution, i.e. Ep(Θ|DX ) [H [p(z|x,Θ)]], where Θ
is the model parameter. In our probabilistic treatment,
Θ := {ϕ∗, φ∗}. Intriguingly, we theoretically find that
our proposed BEA statistic is indicative of aleatoric uncer-
tainty. Specifically, in the limit of infinite ensemble mem-
bers, κ̄(∞)

x monotonically correlates with aleatoric uncer-
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tainty Ep(ϕ∗,φ∗|DX ) [H [p(z|x, ϕ∗, φ∗)]] under mild condi-
tions. The formal treatment can be found in Proposition 3.2.

Proposition 3.2. For any x ∈ X , suppose the first-order
moment of the conditional p(µϕ∗(x)|DX ,x) exists and
that the conditional p(φ∗|ϕ∗,DX ) is a point mass, i.e.,
p(φ∗|ϕ∗,DX ) = δ(φ∗ − φ∗

0) for some φ∗
0. Then, in the

limit of infinite ensemble members, the aleatoric uncer-
tainty of x, A(x) := Ep(ϕ∗,φ∗|DX ) [H [p(z|x, ϕ∗, φ∗)]], is
a monotonically decreasing function of the confidence mea-
sure κ̄

(∞)
x , where

κ̄(∞)
x := lim

n→∞

∥κ1µ1 + ...+ κnµn∥2
n

∝ κφ∗
0
(x) (9)

Proof. The proof can be found in Appendix D.

Remark 1 (Significance of Proposition 3.2). Theorem 2
proposed in [21] suggests that κ estimated by a single SCF
model is indicative of the cosine distance to its implicit un-
known class center and therefore can be interpreted as con-
fidence. However, this heuristic interpretation fails to pro-
vide a rigorous connection with aleatoric uncertainty. In
stark contrast to SCF [21], our proposed theory establishes
a mathematical relation between the proposed BEA statistic
and aleatoric uncertainty, making itself a rigorous measure
for confidence. Empirically, to verify our proposed theory,
we plot the relation between aleatoric uncertainty and the
BEA statistic as shown in Figure 2(a), which suggests that
κ̄
(n)
x indeed reflects confidence (the inverse of aleatoric un-

certainty). Note that the aleatoric uncertainty is estimated
using Monte Carlo method (see Appendix E for details).
Remark 2. In practice, the assumption that the condi-
tional p(φ∗|ϕ∗,DX ) is a point mass may not hold exactly,
but empirically we find that the coefficient of variation*

(std/mean) of κ1, ..., κn are quite small (see Figure 2(b)).
This suggests that p(φ∗|ϕ∗,DX ) is closer to δ(φ∗−φ∗

0) for
some φ∗

0. Despite the non-exactness in practice, as shown
in Figure 2(a), the aleatoric uncertainty of x still monoton-
ically decreases as κ̄(n)

x grows.

3.3.2 Uncertainty Decomposition for Face Recognition

Uncertainty decomposition has been extensively explored
for closed-set classfication problems, where it is shown that
total uncertainty can be decomposed into epistemic uncer-
tainty and aleatoric uncertainty [6, 7]:

H
[
Ep(Θ|DX ) [p (z | x,Θ)]

]︸ ︷︷ ︸
Total Uncertainty T (x)

= I [z,Θ | x,DX ]︸ ︷︷ ︸
Epistemic Uncertainty E(x)

+Ep(Θ|DX ) [H [p (z | x,Θ)]]︸ ︷︷ ︸
Aleatoric Uncertainty A(x)

(10)

*In probability theory and statistics, the coefficient of variation is a
standardized measure of dispersion of a probability distribution [10].
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Empirical Relation

Coefficient of Variation

Figure 2. (a) Aleatoric uncertainty versus the BEA statistic. The
aleatoric uncertainty is estimated using Monte Carlo method. The
detailed estimation procedure is relegated to Appendix E. (b) The
empirical distribution of the coefficient of variation of κ1, ..., κn.

However, directly evaluating the epistemic uncertainty is
intractable. Our probabilistic view of teachers can circum-
vent this difficulty by calculating total uncertainty T (x) and
aleatoric uncertainty A(x) separately and performing sub-
traction to obtain epistemic uncertainty. Specifically, these
two quantities can be approximated by

T (x) ≈ H

[
1

n

n∑
i=1

p(z|x,Θ(i))

]
(11)

A(x) ≈ 1

n

n∑
i=1

H
[
p(z|x,Θ(i))

]
(12)

where n is the number of emsemble members and p is r-
radius vMF distribution. Both of these quantities can be
calculated thanks to our model assumption of r-radius vMF
distribution, and therefore epistemic uncertainty can be ob-
tained via subtraction. Epistemic uncertainty E(x) reflects
the extent to which a given face image is distant from the
data distribution the ensemble has seen so far. Therefore, in
face recognition, we can use it as an indicator of faceness.

3.4. Knowledge Distillation from BEA

Note that calculating BEA is expensive, as it requires n
inference of n ensemble members. This limits its practical
use in space-constrained environments such as mobile and
embedded devices. To accelerate the process, we expect to
learn a parametrized distribution qϕ,φ(z|x) that emulates
the behavior of the ensemble posterior p(z|fθ1 , ..., fθn ,x).
To this end, we propose to minimize the expected value of
a general divergence D that measures some ‘closeness’ be-
tween p and q:

min
ϕ,φ

Ex∼DX

[
D(p(z|fθ1 , ..., fθn ,x)||qϕ,φ(z|x))

]
(13)

where qϕ,φ is a variational r-vMF density with the mean
and the concentration parameter given by the parameterized
functions µϕ(x) and κφ(x), respectively. These functions
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can be instantiated using shallower neural networks as com-
pared with fθi (see Appendix F for the detailed comparison
of model size). Mathematically, however, the learning ob-
jective (13) amounts to the minimization of the divergence
D between two r-vMF distributions, which is generally in-
tractable for optimization [8].

Nevertheless, noting that µ̃x and κ̄
(n)
x are both known for

any x and any ensemble according to Eq. (8), we propose a
tractable alternative to (13):

min
ϕ,φ

Ex∼DX

[
1

2

∥∥µ̃x − µϕ(x)
∥∥2
2
+ |κ̄(n)

x − κφ(x)|
]
(14)

Clearly, when this alternative loss (14) converges to zero
for some minimizers ϕ∗ and φ∗, we have µϕ∗(x) = µ̃x

and κφ∗(x) = κ̄
(n)
x , leading to the global minimum of the

original objective (13).

3.5. Inference

For face verification between a given pair of test face im-
ages xa and xb, we follow SCF [21] and PFE [30] to em-
ploy the mutual likelihood score as the similarity measure:

s(xa,xb) = log
Cd(κa) · Cd(κb)

Cd(κaµa + κbµb)
− d log r (15)

where µa := µϕ∗(xa) and κb := κφ∗(xb).
In the cases where each subject has more than one face

images, it is desirable to obtain a compact representation
aggregated from the multiple ones before face verification.
For example, given two subjects A and B, each with a
set of images {x·

(l)} (where “·” can be either A or B,
and l denotes the image index), our student model predicts
the statistics µ·

(l) and κ·
(l) for each, yielding the following

pooled features by weighted averaging:

zA =

∑
l κ

A
(l)µ

A
(l)∑

l κ
A
(l)

, zB =

∑
l κ

B
(l)µ

B
(l)∑

l κ
B
(l)

(16)

where zA and zB are the aggregated features for A and B,
respectively. Then, face verification proceeds by calculating
the cosine distance, i.e. cos⟨zA, zB⟩.

The advantages of our proposed BEA-KD are two-fold.
Firstly, during inference, one does not have to run all
the ensemble members to obtain features; nor is it neces-
sary to perform BEA, which is computationally expensive
when n is relatively large. Instead, a one-pass evaluation
of qϕ∗,φ∗(z|x) suffices (practically, µϕ∗ and κφ∗). Sec-
ondly, as compared with existing KD methods, the proposed
qϕ∗,φ∗(z|x) inherits the uncertainty estimation power of
BEA, yielding not only the expected feature embedding
µϕ∗(x) for an individual data point x but also the confi-
dence κφ∗(x) for it. Consequently, as we will show later

Table 1. Ensemble performance comparison.

CFPFP CPLFW
IJB-B IJB-C

1e-5 1e-4 1e-5 1e-4
Single 98.4 93.4 86.0 92.6 91.0 94.8
Mean

Ensemble 98.8 93.7 88.3 93.9 92.7 95.7
BEA 99.0 94.3 89.7 94.8 93.5 96.4

through experiments, the confidence provides uncertainty
measure for the feature embedding, which benefits safety-
sensitive settings such as face recognition.

4. Experiments
In this section, we answer the following research ques-

tions (RQs) via empirical studies:

RQ1: (Performance) How is the performance of the pro-
posed BEA and BEA-KD compared to the ensemble and
SOTA KD methods?

RQ2: (Uncertainty Estimation) Can our proposed frame-
work capture aleatoric uncertainty and epistemic uncer-
tainty, for risk-controlled face recoginition and faceness de-
tection, respectively?

RQ3: (Ablation Study) How is the effectiveness of each
component of our approach?

4.1. Implementation Details

We consider two experimental settings to demon-
strate the effectiveness of our proposed framework: (1)
ResNet12 [15] is employed as the student to distill knowl-
edge from ResNet34; (2) MobileFaceNet [2] is employed as
the student to distill knowledge from ResNet34. Through-
out the experiments, we use the following notation for short-
hand: [S]-KD-[n][T], where [S] is the placeholder for the
student network, [T] is the placeholder for the teacher and
n is the number of the teachers being used. This notation
specifies that model [S] is employed to distill knowledge
from an ensemble of n teachers [T]’s. Note that [T] can be
either a deterministic model or a stochastic model (modified
from a deterministic one by training SCF or MagFace).

Before being fed into the models, normalized face crops
are generated using five detected facial points, which yields
(112 × 112) face images. Deterministic embeddings are
pretrained using Residual Networks [15] as backbones and
ArcFace [5] as the loss functions. The embedding network
µϕ(·) maps face images into a 512-dimensional hyperspher-
ical space (d = 512). Following [5], we set the hypersphere
radius r to 64 and choose the angular margin 0.5. The mod-
ule κφ(·) is instantiated using a fully convolutional network:
[CONV-ReLU-BN](×3)-AvgPool-[FC-ReLU](×2)
-FC-exp, where CONV denotes convolutional layers, BN
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Table 2. State-of-The-Art Comparison and Ablation Study. Following the [S]-KD-[n][T] notation, we use n = 5 teachers for distillation.

IJB-B IJB-CSettings Model LFW CFP-FP CPLFW 1e-5 1e-4 1e-5 1e-4
TAKD [25] 99.58 93.49 89.45 76.49 87.19 82.22 89.77
DGKD [31] 99.43 95.71 90.80 77.96 88.48 84.07 91.13
MEAL [29] 99.45 92.24 88.57 72.59 84.33 78.34 87.12
AE-KD [9] 99.58 95.34 90.26 77.91 88.20 83.38 90.98
Hydra [32] 99.53 95.47 90.98 77.58 88.58 84.51 91.01

CA-MKD [37] 99.56 95.17 90.50 76.83 88.11 83.31 90.57
Eff-KD [11] 99.50 91.10 88.30 71.92 84.34 78.04 86.90

[S
]:

R
es

N
et

12
;[
T
]:

R
es

N
et

34

BEA-KD (Ours) 99.71 96.17 91.48 81.64 90.28 87.02 92.73
ResNet12-KD-1ResNet34 99.54 95.38 91.29 77.91 88.49 84.58 90.98

ResNet12-KD-1ResNet34 + SCF 99.71 95.77 91.04 80.55 89.23 85.43 91.39
ResNet12-KD-nResNet34 99.50 95.60 90.96 78.92 88.74 84.42 91.32

ResNet12-KD-nResNet34 + SCF 99.69 95.95 91.20 81.01 89.36 84.93 91.71
ResNet12-KD-1SCF(ResNet34) 99.60 95.85 91.28 80.93 89.32 84.73 91.55

TAKD [25] 99.56 97.10 91.67 80.29 89.44 86.24 91.85
DGKD [31] 99.65 96.71 92.31 80.59 88.83 86.65 92.10
MEAL [29] 99.65 96.84 91.60 80.46 89.43 86.25 91.93
AE-KD [9] 99.58 97.08 91.68 80.22 89.16 86.24 92.05
Hydra [32] 99.50 96.86 91.97 80.64 89.60 86.39 91.96

CA-MKD [37] 99.60 96.95 91.10 81.85 89.74 87.19 92.01
Eff-KD [11] 99.48 96.95 91.55 80.71 89.57 86.96 92.13

[S
]:

M
ob

ile
Fa

ce
N

et
;[
T
]:

R
es

N
et

34

BEA-KD (Ours) 99.70 97.23 92.93 83.45 91.27 89.23 93.40
MobileFaceNet-KD-1ResNet34 99.50 96.85 92.02 80.86 89.72 86.82 92.16

MobileFaceNet-KD-1ResNet34 + SCF 99.59 96.99 92.36 82.21 90.19 87.62 92.41
MobileFaceNet-KD-nResNet34 99.62 97.08 92.08 80.77 90.09 87.02 92.37

MobileFaceNet-KD-nResNet34 + SCF 99.68 97.09 92.77 82.72 91.05 88.54 93.13
MobileFaceNet-KD-1SCF(ResNet34) 99.65 96.93 92.05 82.94 90.60 88.25 93.10

refers to batch normalization layers, and exp the exponent
nonlinearity to force the positiveness of concentration
values. The total training epoch is set to 26. The batch size
is set to 2048. Experiments are carried out using 8 Tesla
V100 32GB GPUs.

4.2. Training Set and Benchmarks

All models are trained using WebFace260M [5]. Web-
Face260M training data is a new million-scale face dataset
that contains 2 million identities (C = 2×106) with 42 mil-
lion face images. Models are evaluated on standard bench-
marks, including LFW [16], CFP-FP [28], CPLFW [38],
IJB benchmarks [35].

4.3. Comparison with Mean Ensemble (RQ1)

This section empirically verifies the effectiveness of
BEA as a flexible generalization of mean ensemble. As
shown in Table 1, BEA clearly outperforms mean ensemble,
which suggests that BEA acts as a better ensemble model
from which knowledge can be distilled.

4.4. Risk-controlled Face Recognition (RQ2)
Risk-controlled face recognition (RC-FR) is a bench-

mark where we expect a face recognition system to be able
to reject face images with low confidence or high uncer-
tainty for safety reasons. In experiments, we take all im-
ages from a given dataset and sort them by confidence in
descending order or by uncertainty in ascending order [30].
Then, we filter out a proportion of images with low confi-
dence or high uncertainty, and use the rest of the images
for face verification. According to Proposition 3.2, our
Bayesian treatment naturally allows for the quantification
of aleatoric uncertainty along with each predictive feature
embedding, which can be used as confidence for sorting in
RC-FR. As shown in Figure 3, our proposed method sur-
passes all the other methods in RC-FR.

4.5. Comparison with State-of-The-Art (RQ1)
To demonstrate the effectiveness of our proposed ap-

proach BEA-KD, we compare its performance with the
state-of-the-art KD methods: TAKD [25], DGKD [31],
MEAL [29], AE-KD [9], Hydra [32], CA-MKD [37] and
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Figure 3. Risk-controlled face recognition on IJB benchmarks.

Eff-KD [11]. By clear margins, our proposed approach
surpasses these models across all benchmarks under dif-
ferent settings (see Table 2). Noticeably, these KD meth-
ods are designed for the closed-set classification problem
and aim to distill logits in ∆C−1 by minimizing LKD =
Ex∼DX

[
KL

(
pT (y|x)||pS(y|x)

)]
, where pT (y|x) denotes

the probability vector given by the teacher models and
pS(y|x) the probability vector by the student. The inferior
performance of these KD methods can be attributed to the
following reasons. First, through LKD, one can see the fail-
ure of these models when applied in large-scale face recog-
nition where C is as large as millions. Since these models
are designed for closed-set classification KD, such a large
scale in face identities results in sparse probabilities in both
pS(y|x) and pT (y|x), which makes it hard for amenable
optimization. Second, the teacher classifier’s predictive out-
puts may exhibit overconfidence as shown in [3, 13, 17]:
the predictive softmax outputs tend to be large for wrong
classes when the inputs are unseen, which makes the KD
process unreliable. Third, the feature embeddings given by
these models are deterministic, which cannot address the
Feature Ambiguity Dilemma [30]. In contrast, our proposed
approach operates in the feature space whose dimensional-
ity is typically smaller than C (the dimensionality of the
label space) in million-scale face recognition. Moreover,
our proposed approach is designed for open-set recognition
KD and can provide confidence measure that provably re-
lates to aleartoric uncertainty, leading to the superiority of
our method.

4.6. Ablation Study (RQ3)
This section demonstrates the effectiveness of each

contributing components of our BEA-KD approach
via ablation study. Specifically, we compare BEA-
KD with its all ablated variants under each of the
two settings described in Section 4.1. Under the first
setting, we consider the following variants: Single
ResNet12, ResNet12-KD-1ResNet34, ResNet12-KD-
1ResNet34+SCF, ResNet12-KD-5ResNet34, ResNet12-
KD-5ResNet34+SCF, ResNet12-KD-1SCF(ResNet34).
The other setting is the same as the first except for the
change of the student network (from ResNet12 to Mo-
bileFaceNet). Detailed descriptions of these models are
summarized in Appendix G. The empirical results (Table 2)

Figure 4. Out-of-distribution detection of faceness.

show that BEA-KD outperforms all its variants. We also
investigate the compression rate of BEA-KD. Detailed
analysis on this issue is relegated to Appendix F.

4.7. Faceness Detection (RQ2)
As a further qualitative exploration, this section inves-

tigates the effect of epistemic uncertainty on faceness de-
tection. Our probabilistic perspective makes it possible to
evaluate the epistemic uncertainty of a face image (using
Eq. (10)), which can be interpreted as faceness of a given
image. In this experimental setting (face versus non-face
images), we consider three types of out-of-distribution im-
ages: random, negative and cartoon. Face images
are in-distribution data denoted by positive; random
refers to as images of white Gaussian noise; negative
refers to image patches from LAION-400M* that are con-
sidered as false positive by SOTA face detectors [14];
cartoon refers to cartoon face images collected from
iCartoonFace†. As shown in Figure 4, the epistemic un-
certainty of face images is clearly below that of other OOD
(i.e. non-face) images.

5. Conclusions
In this paper, we have presented Bayesian Ensemble

Averaging (BEA) as a generalization of mean ensemble
through the lens of probabilistic modelling. The proposed
BEA can capture aleatoric uncertainty and epistemic un-
certainty theoretically and empirically. We have also pro-
posed BEA-KD, a single smaller (hence efficient) model
that inherits the power of uncertainty estimation from BEA
yet reduces the high computational cost of BEA inference.
Consequently, BEA-KD outperforms SOTA KD methods
through extensive experiments. We believe BEA-KD could
serve as a strong baseline and inspire further advances in
open-set KD research.
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