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Figure 1. Our proposed visual-tactile learning framework VTacO and its extended version VTacOH can reconstruct both the rigid and
non-rigid in-hand objects. It also supports refining the mesh in an incremental manner.

Abstract

Tactile sensing is one of the modalities humans rely on
heavily to perceive the world. Working with vision, this
modality refines local geometry structure, measures defor-
mation at the contact area, and indicates the hand-object
contact state. With the availability of open-source tactile
sensors such as DIGIT, research on visual-tactile learning
is becoming more accessible and reproducible. Leverag-
ing this tactile sensor, we propose a novel visual-tactile
in-hand object reconstruction framework VTacO, and ex-
tend it to VTacOH for hand-object reconstruction. Since
our method can support both rigid and deformable ob-
ject reconstruction, no existing benchmarks are proper for
the goal. We propose a simulation environment, VT-Sim,
which supports generating hand-object interaction for both
rigid and deformable objects. With VT-Sim, we gener-
ate a large-scale training dataset and evaluate our method
on it. Extensive experiments demonstrate that our pro-
posed method can outperform the previous baseline meth-
ods qualitatively and quantitatively. Finally, we directly ap-
ply our model trained in simulation to various real-world

test cases, which display qualitative results. Codes, mod-
els, simulation environment, and datasets are available at
https://sites.google.com/view/vtaco/.

1. Introduction

Human beings have a sense of object geometry by seeing
and touching, especially when the object is in manipulation
and undergoes a large portion of occlusion, where visual
information is not enough for the details of object geom-
etry. In such cases, vision-based tactile sensing is a good
supplement as a way of proximal perception. In the past,
few vision-based tactile sensors were commercially avail-
able or open-source, so the visual-tactile sensing techniques
could not be widely studied. Previous works [27, 34] on
in-hand object reconstruction either studied rigid objects or
were limited to simple objects with simple deformation.
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Vision-based tactile sensors [6, 15, 30, 33] can produce
colorful tactile images indicating local geometry and defor-
mation in the contact areas. In this work, we mainly work
with DIGIT [15] as it is open-source for manufacture and is
easier to reproduce sensing modality. With tactile images,
we propose a novel Visual-Tactile in-hand Object recon-
struction framework named VTacO. VTacO reconstructs
the object geometry with the input of a partial point cloud
observation and several tactile images. The tactile and ob-
ject features are extracted by neural networks and fused
in the Winding Number Field (WNF) [13], and the object
shape is extracted by Marching Cubes algorithm [17]. WNF
can represent the object shape with open and thin structures.
The poses of tactile sensors can be determined either by
markers attached or by hand kinematics. By default, VTacO
assumes the tactile sensor poses can be obtained indepen-
dently, but we also discuss how to obtain the tactile sensor
poses alongside the object with hand pose estimation. The
corresponding method is named VTacOH.

With tactile information, we can enhance pure visual in-
formation from three aspects: (1) Local geometry refine-
ment. We use tactile sensing as proximal perception to
complement details of local geometry. (2) Deformation at
contact area. Objects, even those we consider rigid, can
undergo considerable deformation given external forces ex-
erted by hand. (3) Hand-object contact state. Tactile sen-
sors indicate whether the hand is in contact with the object’s
surface. To demonstrate such merits, we conduct the object
reconstruction tasks in both rigid and non-rigid settings.

Since obtaining the ground truth of object deformation
in the real world is hard, we first synthesize the training
data from a simulator. DIGIT has an official simulation im-
plementation, TACTO [29]. However, it is based on py-
bullet [5], which has limited ability to simulate deformable
objects. Thus, we implement a tactile simulation environ-
ment VT-Sim in Unity. In VT-Sim, we generate hand poses
with GraspIt! [18], and simulate the deformation around
the contact area with an XPBD-based method. In the sim-
ulation, we can easily obtain depth image, tactile image,
DIGIT pose, and object WNF as training samples for both
rigid and non-rigid objects.

To evaluate the method, we compare the proposed
visual-tactile models with its visual-only setting, and the
previous baseline 3D Shape Reconstruction from Vision
and Touch (3DVT) [23]. Extensive experiments show that
our method can achieve both quantitative and qualitative
improvements on baseline methods. Besides, since we
make the tactile features fused with winding number predic-
tion, we can procedurally gain finer geometry reconstruc-
tion results by incrementally contacting different areas of
objects. It can be useful for robotics applications [8, 22].
Then, we directly apply the model trained with synthesis
data to the real world. It shows great generalization ability.

We summarize our contributions as follows:

• A visual-tactile learning framework to reconstruct an
object when it is being manipulated. We provide the
object-only version VTacO, and the hand-object ver-
sion VTacOH.

• A simulation environment, VT-Sim, which can gener-
ate training samples. We also validate the generaliza-
tion ability of the models trained on the simulated data
to the real-world data.

2. Related Works
Vision-based Tactile Sensors Tactile sensors have been
studied by robotics and material communities for decades.
As a result, different approaches to mimic human tactile
sensing are developed. Among them, the most relevant ap-
proaches are the vision-based tactile sensors [6, 15, 30, 33].
These methods typically use a gel to contact the object,
and a camera sensor to observe the deformation through
the layer. If the gel is calibrated, the deformation cor-
responds with a force so that we can obtain the contact
force by observing the tactile images. Among these sen-
sors, DIGIT [15] is the one with the structure most suitable
for the human hand. The fact that it is attached to fingers
rather than wrapping around makes it aligned with human
fingertip structures.

Vision-based tactile sensors, by nature, have the merits
of high-density, multi-DOF force sensing and a data format
of image, which is suitable for neural network processing.
These features make them beneficial for the computer vi-
sion community. However, it could be hard to re-implement
most tactile sensors without open-source circuit design and
drive programs. These essential components are necessary
for the development of visual-tactile research. As an open-
source hardware platform, DIGIT [15] takes the first step
toward addressing this bottleneck problem.

Visual-Tactile Sensing for Object Reconstruction Vi-
sual information usually provides global and coarse shape
information in object reconstruction with visual-tactile
sensing, while tactile information refines local geometry.
[23, 25, 31].

Among these works, [23] is most relevant to our method.
It jointly processes visual and tactile images to estimate
global and local shapes. However, it is limited to watertight
objects due to its SDF-based shape modeling approach. Be-
sides this limitation, previous works [8,25,31] are also lim-
ited to static object settings. To our knowledge, none of the
previous works considers hand-object interaction and thus
ignores the deformation during manipulation.

In-hand Object Reconstruction Earlier works usually
consider interacting with rigid [19] or articulated objects
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[28]. Most of them require prior knowledge about the ob-
jects. [27] studied jointly tracking a deformable object and
hand during interaction, with required knowledge about ob-
ject model and texture.

With the development of deep learning recently, the
learning algorithms [4, 10, 11, 26] now have the potential to
generalize to unseen objects. Among them, InteractionFu-
sion [34] which also studies the deformation during manip-
ulation is the most relevant one to our method. However, it
adds a requirement for tracking the object from its rest state
to model contact deformation.

3. Method
3.1. Overview

We consider the problem of 3D reconstruction of in-hand
objects from a visual-tactile perspective, with which we
propose VTacO, a novel deep learning-based visual-tactile
learning framework.

In this setting, we assume the visual input is a 3D point
cloud P of an in-hand object converted from a depth image.
The tactile input T = {Ti}Ni=1 contains N tuples of tactile
readings obtained from the sensors, where Ti = {(Ii,pi)},
Ii is the RGB tactile image, and pi is the 6DOF sensor pose.

The object shape is modeled by the winding number field
(WNF), a variant of the signed distance field (SDF). Thus,
we can also learn the object representation similar to the
SDF-based pipelines [20]. The point cloud P ∈ RNp×3 is
converted to a global feature Fp ∈ Rdp through a feature ex-
tractor fp(·), where Np is point number and dp is the feature
dimension. The tactile image Ii is forwarded to another fea-
ture extractor ft(·) to obtain local feature Ft ∈ Rdt , where
dt is the feature dimension. Then, we sample M positions
X = {Xj = (xj , yj , zj)}Mj=1 in the 3D space, and fuse Fp

to each position, Ft to the near positions according to the
sensor pose p. The final feature will be passed to a point-
wise decoder to predict the winding number value, which
will be used for extracting the shape by Marching Cubes
algorithm. The details will be discussed in Sec. 3.2

Considering the DIGIT sensor does not provide the sen-
sor pose p, we provide two different options to obtain p
in the real world, namely by attaching markers or inferring
from hand kinematics. For the latter option, we propose a
pipeline VTacOH to jointly estimate the object shape, hand,
and sensor pose. It will be discussed in Sec. 3.3.2.

An overview of our approach is illustrated in Fig 3.

3.2. Visual-Tactile Object Reconstruction, VTacO

Winding Number Field, WNF We use WNF to model
the object, it is proposed by [13] which can implicitly repre-
sent a certain surface of an object. Unlike how SDF models
space occupancy, WNF tracks the solid angles of the sur-
face. Generally, given a Lipschitz surface S and a reference

(a) Winding Number Field

(b) Signed Distance Field

Figure 2. Object in WNF and SDF representation. For an object,
the on-body surface is near 1, the off-body area is near 0 and the
opening region is around 0.5. While SDF considers only the inside
(< 0) and outside (> 0).

point p ∈ R3, if p is inside S, the winding number equals 1,
and 0 if p outside. The winding number can also be used to
model open, non-manifold surfaces and thus can model fine
local geometry like thin structures, holes etc. More details
of WNF can be referred to [13]. The difference between
WNF and SDF is illustrated in Fig. 2. However, the explicit
surface can also be extracted by Marching Cubes algorithm
from WNF.

Visual Feature Encoder. Given the input point cloud P ,
we adopt a 3D UNet-based volume encoder as the feature
extractor fp(·). After six fully connected layers, the point
cloud features go through a 3D-UNet [3] with four layers
of both downsampling and upsampling, and we acquire the
global feature Fp ∈ Rdp for every position in the space. We
discuss different visual feature encoder choices in Sec. 5.5.

Tactile Feature Encoder. We extract the feature Fti ∈
Rdt from the tactile images Ii with ft(·). Though we can
use different backbones for ft(·), in practice, we adopt
ResNet-18 [12].

Position Sampling & Feature Fusion. Then, we sam-
ple M positions in 3D space to query the WNF state later
through the decoder. We first try to find the positions rele-
vant to tactile observations.

For each sensor i, we assume its sensor pose pi is known
individually. As we are aware that the tactile sensor like
DIGIT itself cannot measure its pose in the real world, we
will discuss the solution later (Sec. 3.3). Then, we esti-
mate the depth of every pixel in each sensor’s observation
Ii using a simple 2D UNet UI(·) with 3-layer CNN as an
encoder. The relationship between the tactile pixel and the
depth is associated with the gel deformation, which can be
considered as a simple linear mapping. The physics behind
it will be discussed in supplementary materials. Thus, the
estimated depth represents contact geometry. We transform
it from tactile sensor space to visual sensor space. In this
way, we have M1 points in 3D space which are relevant to
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Figure 3. VTacO and VTacOH. The input is a set of point clouds and tactile images obtained by tactile sensors. We first compute the
global point cloud information with a volume encoder and generate a local feature with a tactile feature encoder. For the position sampling,
in VTacO, we predict the local point cloud with a U-Net from the tactile signals and project them to the visual camera space. And in
VTacOH we reconstruct the hand by encoding MANO parameters and query positions around the local point clouds generated from the
sensors on hand tips. For M sampled positions we first fuse the global and local features, then we estimate the winding number with the
WNF decoder of several MLPs. For object reconstruction, we conduct marching cubes algorithm.

tactile images.
Then, we uniformly sample M2 points in the 3D space,

together with the M1 positions, giving us M = M1 + M2

positions to query.
For each position in M1, we fuse the location Xj with

visual feature Fp, and tactile feature Ft. And in M2, we
substitute the tactile feature with all-0 vectors. We discuss
different fusion strategies in Sec. 5.5. After fusing, we have
position-wise feature F ∈ Rd, where d is the dimension of
the fused features.

WNF Decoder. Finally, we use a 5-layer MLP fwnf (·)
as a decoder to predict the winding number w for each
query, with w = fwnf (F).

Loss Function We train the whole pipeline in two parts.
First, we train UI with pixel-wise L1 loss. We can obtain

the ground truth of the depth images for tactile sensors in
simulation, but cannot obtain them in the real world. Thus,
when dealing with real-world images, we directly apply the
model learned in the simulation.

Then, we jointly train fp, ft, fwnf with L1 loss to su-
pervise the winding number.

Lw = |w − w∗|. (1)

3.3. Sensor Pose Estimation

As aforementioned, the DIGIT sensor cannot measure
its pose in the real world. To address this, we provide two
options: attaching markers and inferring from hand kine-
matics.

3.3.1 Estimating Sensor Pose By Markers

Following the practice in pose estimation, we print ArUco
tags [9] and attach them to fingertips. Then, we estimate
the fingertip poses by estimating the pose of tags. We adopt
OpenCV [1] to implement the pose estimation. It is a com-
mon practice, thus we leave the details in the supplementary
materials.

Figure 4. Estimating the fingertips’ pose from the attached ArUco
markers.

3.3.2 Estimating Sensor Pose With Hand Kinematics

Since the input P contains a view of the in-hand object, it
allows us to reconstruct the hand alongside the object. We
can infer the poses of tactile sensors based on the prior that
they are attached to the fingertips. We can infer the poses
with hand kinematics. To jointly learn visual-tactile hand-
object reconstruction, we introduce VTacOH.

Hand-Sensor Pose Estimation. To reconstruct the hand,
we adopt the parametric MANO model [21] which repre-
sents the hand shape with β ∈ R10, and the pose with
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θ ∈ R51, which contains the 6DOF wrist joint position
and rotation and axis-angle rotation for 15 joints. Based
on the MANO model, we regard a tactile sensor as a fixed
extension adhered to the tip. The relative pose between the
sensors and tips should remain constant. By recording the
local transformation between the sensors and the tip posi-
tions, we can easily obtain the sensor pose after having the
positions of the tips Ĵ tip

h ∈ R5×3 through a differentiable
MANO layer with θ and β.

Suppose the hand tips positions Ĵ tip
h are predicted, then

we have the translation th ∈ R5×3 from the hand tips to
the DIGIT sensor, giving us predicted DIGIT positions p̂ =
Ĵ tip
h + th

Tactile Position Sampling with Hand Prediction. It
is known that hand pose prediction can be inaccurate due
to the error in neural network regression, which also influ-
ences the accuracy of the tactile sensor poses. Therefore,
the tactile position sampling mentioned in Sec. 3.2 cannot
be directly applied. Here, we present an easy but effec-
tive way to handle such circumstances. For every inferred
DIGIT position p̂i, we simply query the sphere centered
in the local point clouds generated from the tactile sensors
with a radius r = 0.1. The feature fusion remains the same.

Loss Function In VTacOH, we will add additional su-
pervision for hand reconstruction. It follows the common
practice of MANO hand estimation by constraining the pre-
diction of axis-angle of the hand joints with L2 loss and we
obtain:

Lhand = ||θ − θ∗||22 (2)

4. VT-Sim

We adopt a sim-to-real transfer paradigm to learn the
visual-tactile learning task since obtaining information
about object deformation in the real world is hard. And
recently, many simulation environments have proved to be
effective on softbody object simulation with Unity [7, 32].

We present VT-Sim, a simulation environment based on
Unity to produce training samples of hand-object interac-
tion with ground truths of WNF, visual depth images, tactile
signals, and sensor poses effectively.

The dataset synthesis process is divided into two parts:
Hand-pose Acquisition and Interaction Simulation.

Hand-pose Acquisition We use GraspIt! [18] and a 20-
DOF hand model from GraspIt! assets to generate the grasp
poses for the selected object models, and save the configura-
tion of hand and objects after the grasp search is over. Since
the MANO hand is slightly different from the hand we used
to obtain the poses, we use a simple retargeting approach:
We calculate the tip positions from the saved configuration
of the 20-DOF hand model by forward kinematics. Then
we align the tips between the 20-DOF hand and the tips of

Figure 5. VT-sim example. The DIGIT sensors are attached to
the finger tips. When grasping the object, the sensor gel applies
forces and collides with the surface mesh, and the sensor camera
captures images. The above demonstrates the RGB-D images from
a certain view and the difference between tactile images with or
without the light in the sensor.

the MANO hand with sensors and apply inverse kinematics
to obtain the poses.

Interaction Simulation After obtaining the poses of
MANO hands, sensors, and objects, we replay the configu-
rations in Unity with collision. For the rigid object, we add
the Rigidbody property and a mesh collider to it. For the
soft body object, we model them with Obi [24], an XPBD-
based physics engine. When we move the MANO hand
with sensors to the retargeted pose, the hand sensor will
collide with the object and forms the grasp. If the object
is soft around the contact area, the contact region will be
deformed.

Recording Setup We transplant the implementation of
the DIGIT camera from TACTO [29] to obtain tactile im-
ages. Besides, we set visual cameras on 8 different view-
points to generate RGB-D images. The point clouds can be
converted from the RGB-D images with camera poses. We
utilize the library igl [14] to generate the winding number
field from the object meshes.

Finally, through one VT-Sim step, we obtain a full data
point for training, which includes input point cloud P , tac-
tile signals T = {Ti}Ni=1 for every tactile sensor, hand poses
θ∗ and winding number w(x) for every x ∈ R3.

5. Experiments
5.1. Implementation

We set Np = 3000 as the input point cloud P converted
from the depth image, and randomly sample 100,000 posi-
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tions in the space with 20,000 on the surface of the object,
and subsample to M = 2048 for the WNF prediction. An
RGB tactile image and depth obtained in VT-Sim have the
size of 300 × 200. During the training, we set the dimen-
sion of global and local features dp = dt = 32. We set the
resolution of voxelization from the visual feature encoder
D = 64.

We first train the depth and DIGIT pose prediction part
with batch size 12 and LR = 1e − 4 with Adam opti-
mizer for 100 epochs and use the pre-trained parameters for
VTacO training. For the training of VTacO, we set the batch
size as 6 and LR = 2e− 4 with Adam optimizer to train on
the whole simulated dataset for 100 epochs, and finetune on
every type of object with batch size 4 and LR = 1e− 4 for
50 to 100 epochs according to different types. For the VTa-
cOH model, we train the hand reconstruction in 100 epochs
with batch size 16 and LR = 1e− 4 with Adam optimizer,
then apply the model parameters on feature embedding and
train the whole VTacOH with the same hyperparameters
and process as VTacO. The overall time for training VTacO
and VTacOH on RTX TITAN XP are around 24 hours.

5.2. Datasets

We use two object model benchmarks which provide full
model meshes and texture for our reconstruction task. YCB
Objects Models YCB benchmark [2] contains 77 object
models, with 600 RGBD images from different angles of
cameras and their calibration information. For each exam-
ple model, it includes textured meshes generated with both
Poisson reconstruction and volumetric range image integra-
tion, a point cloud of the object generated by all the view-
points. For our experiments, we select 6 object models in
the class Box for generating a simulated dataset.

AKB-48 Objects Models AKB-48 benchmark [16] is a
large-scale articulated object knowledge base that consists
of 2,037 real-world 3D articulated object models of 48 cat-
egories. For every object, it provides textured models in
both whole and part meshes, and a full point cloud from all
viewpoints. In both simulated and real experiments, we se-
lect 5 to 10 objects in the following 4 categories: Bottle,
Foldingrack, Lock, Scissor.

Simulated Dataset With VT-Sim, we can generate ade-
quate datasets based on two object model benchmarks. We
consider the categories Bottle and Box as deformable ob-
jects with stiffness 0.2 and 0.3, and others as rigid. For
every object, we first generate 100 hand poses from Hand-
pose Acquisition in VT-Sim, and select 10 to 40 poses that
can generate at least one successful touch from five finger-
tips’ Digits. With 8 different views from the RGB-D camera
in Unity, we generate 8 point cloud sets from the depth im-
age for every successful grasp. The overall dataset contains
more than 10000 data points from 5 categories of object
models, with every category, varying from 1000 to 3000.

We split the dataset into 7500 for training, 1500 for testing,
and 1000 for validation and visualization.

5.3. Metrics

We adopt several metrics to evaluate our method
quantitatively: (1) Intersection over Union (IoU) over ob-
ject volumes. (2) Chamfer Distance (CD), and (3)
Earth Mover’s Distance (EMD) between predicted vertices
of mesh and the ground truth;

5.4. Results

We conduct plenty of experiments to show the capabil-
ity of VTacO. With the above metrics, we compare our re-
sults with the visual-tactile baseline 3D Shape Reconstruc-
tion from Vision and Touch (denoted “3DVT”) [23]. Mean-
while, since “3DVT” didn’t study the reconstruction of de-
formable objects, we only compare the 3 non-deformable
categories: Foldingrack, Lock, Scissor. We also report the
object reconstruction result for VTacOH setting. Due to the
accurate hand pose estimation, the results of VTacOH are
only slightly worse than the VTacO where the sensor poses
are the ground truth. The results are shown in Tab. 1. We
can see that our method outperforms others in most cate-
gories in the metrics. Qualitative results are demonstrated
in Fig. 6. As illustrated in both quantitative and qualitative
results, VTacO has better reconstruction results. We spec-
ulate that our outperformance is first due to the point-wise
approach we conducted, and WNF being a continuous func-
tion concerning positions in the space. More importantly,
the Feature fusion method can better demonstrate the con-
tact area and the subtle texture of the surfaces. In Sec. 5.5
we will elaborate more to demonstrate the significant ef-
fects after we introduce the tactile sensing, and to prove the
effectiveness of our choice of encoder and feature fusion
strategy.

5.5. Ablation Study

We conduct an ablation study on the next four aspects.
We first compare the results between pure vision and the fu-
sion of vision and tactile signals. By grasping the same ob-
ject several times, we can procedurally obtain more refined
structures without retraining. Finally, we study the influ-
ence brought by different choices of visual feature encoder
and the feature fusion module. Pure vision v.s. Visual-
tactile. We can see results in Fig. 6 and Tab. 1 that, with
the introduction of tactile images, the overall performance
of reconstruction is better. Particularly, for the deformable
objects bottles and boxes, the local feature can complete the
information occluded by the hand, and better demonstrate
the deformation of the objects. For rigid objects, touches
can collect features of subtle texture from the surface of
small, thin objects. For instance, the category Foldingrack
has been reconstructed much better since the hollow struc-
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Metrics Method bottle box foldingrack lock scissor mean

IoU

3D Vision and Touch * * 0.746 0.468 0.691 0.622
Ours (Vision only) 0.884 0.934 0.837 0.877 0.763 0.857

Ours (VTacO) 0.887 0.950 0.782 0.916 0.777 0.860
Ours (VTacOH) 0.886 0.947 0.765 0.911 0.772 0.855

CD

3D Vision and Touch * * 0.242 2.631 3.206 1.268
Ours (Vision only) 1.109 0.459 1.579 1.140 7.549 1.472

Ours (VTacO) 0.936 0.305 1.360 0.932 0.894 0.798
Ours (VTacOH) 0.948 0.312 1.432 0.955 0.945 0.916

EMD

3D Vision and Touch * * 0.052 0.175 0.081 0.090
Ours (Vision only) 0.054 0.028 0.026 0.083 0.110 0.051

Ours (VTacO) 0.059 0.018 0.028 0.012 0.052 0.028
Ours (VTacOH) 0.056 0.024 0.027 0.035 0.068 0.042

Table 1. Quantitative results on YCB and AKB Objects. This table illustrates a numerical comparison among 3DVT, pure vision methods,
and our approach VTacO. We measure IoU (The larger the better), Chamfer Distance (×100, the smaller the better), and Earth Mover’s
Distance (The smaller the better). CD and EMD are measured at 2048 points. * indicates that 3DVT has no clear settings for deformable
objects: Bottle and Box.

ture has been discovered through DIGIT sensors, and the
category Lock also has better performances in the upper
area, after we touch and detect its upper mesh.

Procedural Tactile Embedding. Our method allows us
to procedurally gather the tactile embeddings and predict
better reconstruction results without retraining the network.
As shown in Fig. 1, after gradually touching the object sev-
eral times, the reconstruction result becomes better and bet-
ter. For the rigid objects, the textures and structures be-
come clearer when conducting more grasp, such as the gap
structure of the folding rack. For deformable objects such
as Bottles, the object geometry will be changed due to the
deformation caused by the contact. Thanks to the contact
geometry prediction, we can first recover the deformed ge-
ometry to its original shape and then reasons the structures
to be completed. To demonstrate the deformable regions are
indeed reconstructed, we also illustrate the unrecovered re-
sults in supplementary materials. Such property can also be
used for reconstructing plastic object with sustainable de-
formation.

Visual Feature Encoder Choices. We mainly compare
two types of Visual Feature Encoder: Multi-Plane En-
coder and Volume Encoder. Multi-Plane Encoder mainly
project the input point cloud onto three orthogonal planes
(i.e., plane xy, xz, or yz), and by using 2D UNet to encode
the plane features and adding three features together, we
obtain the multi-plane feature Fplane

p ∈ Rdp as our global
feature for sample positions.

The quantitative result in Tab. 2 shows that the Volume
Encoder outperforms in all metrics of all categories. This
is mainly because the global feature is considered 3D in-
formation and fused with the local feature point-wisely, and
the voxelization process fits the prediction of WNF, which

indicates the position of each voxel relative to the surface of
the object.

Metrics Encoder bottle box foldingrack

IoU Multi-Plane 0.851 0.945 0.767
Volume 0.887 0.950 0.782

CD Multi-Plane 1.296 0.732 0.940
Volume 0.936 0.305 1.360

EMD Multi-Plane 0.052 0.030 0.029
Volume 0.059 0.018 0.028

Table 2. Measured metrics with Multi-plane and Volume en-
coder. The Volume encoder performs better in most categories.

Fusion Strategies. We conduct experiments on two sim-
ple kinds of global and local feature fusion strategies: con-
catenation and addition. With concatenation, the final
fused feature dimension d = 3 + 64, while d = 3 + 32
for the addition operation. Results in Tab. 3 show that the
method addition has a much better performance compared
to the others. We speculate that since we mark all-0 local
feature vectors for the sample positions that are not near the
sensor, the addition can correctly combine the two kinds
of feature, while the fusion feature after the concatenation
process would contain too many zeros, making it hard to
predict the WNF for the decoders.

5.6. Real-world Experiment

We validate the performance of learned VTacO in the
real-world data. We select 3 unseen Box, and 3 unseen
Bottle to demonstrate the deformable object reconstruction.
We also select 3 unseen Lock categories to demonstrate the
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3DVT Visual Only VTacO GT 3DVT Visual Only VTacO GT

VTacO VTacOH Deformed (GT) Origin VTacO Deformed (GT) OriginVTacOH

Rigid

Deformable

Figure 6. Qualitative example on 3DVT, Pure vision method, VTacO and VTacOH. The upper demonstration shows our good perfor-
mance on deformable objects. The results lower compare the visualization with different methods. We can clearly see that our method has
a better qualitative reconstruction effect. In comparison with pure vision-based approaches and VTacO, we prove that the introduction of
tactile signals improves the results significantly.

Metrics Fusion bottle

IoU Addition 0.9518
Concat 0.9339

CD Addition 0.305
Concat 0.114

EMD Addition 0.018
Concat 0.028

Table 3. Quantitative results with different fusion strategies.

procedural rigid reconstruction on real-world data. To note,
the selected objects are not used in training from simula-
tion. We adopt an Intel realsense L515 camera mounted on
a fixed tripod to capture the depth observation. In the real
world, we attach two DIGIT sensors to the hand and detect
the sensor poses according to markers attached to the tips.
Since we observe noise and shadows in real sensor read-
ings, we augment the tactile images in simulation to match
real RGB distribution by adding noise and adjusting con-
trast. We filter out the point cloud around the in-hand object
manually and use it as input. In Fig. 7, we illustrate exam-
ples for Box and Bottle category, as for the Lock category,
we demonstrate them in supplementary materials.

6. Conclusion and Future Works

In this work, we propose a novel visual-tactile in-hand
object reconstruction framework, VTacO, and its extended

Input Vision Only Vision & Tactile

Figure 7. Real world examples. The deformation of the box and
bottle has been better reconstructed with the introduction of tactile
sensors in comparison with the pure-vision strategy.

version, VTacOH. Our proposed frameworks can recon-
struct both rigid and non-rigid objects. The visual-tactile
fusion strategy allows the framework to reconstruct the ob-
ject geometry details incrementally. In the future, we are
interested to leverage such features in robotics experiments
to better estimate the object geometry in manipulation.
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