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Abstract

Visual localization is a fundamental task for various
applications including autonomous driving and robotics.
Prior methods focus on extracting large amounts of often
redundant locally reliable features, resulting in limited ef-
ficiency and accuracy, especially in large-scale environ-
ments under challenging conditions. Instead, we propose
to extract globally reliable features by implicitly embedding
high-level semantics into both the detection and descrip-
tion processes. Specifically, our semantic-aware detector is
able to detect keypoints from reliable regions (e.g. build-
ing, traffic lane) and suppress unreliable areas (e.g. sky,
car) implicitly instead of relying on explicit semantic labels.
This boosts the accuracy of keypoint matching by reducing
the number of features sensitive to appearance changes and
avoiding the need of additional segmentation networks at
test time. Moreover, our descriptors are augmented with
semantics and have stronger discriminative ability, pro-
viding more inliers at test time. Particularly, experiments
on long-term large-scale visual localization Aachen Day-
Night and RobotCar-Seasons datasets demonstrate that our
model outperforms previous local features and gives com-
petitive accuracy to advanced matchers but is about 2 and
3 times faster when using 2k and 4k keypoints, respectively.
Code is available at https://github.com/feixue94/sfd2.

1. Introduction
Visual localization is key to various applications includ-

ing autonomous driving and robotics. Structure-based al-
gorithms [54, 57, 64, 69, 73, 79] involving mapping and lo-
calization processes still dominate in large-scale localiza-
tion. Traditionally, handcrafted features (e.g. SIFT [3, 35],
ORB [53]) are widely used. However, these features are
mainly based on statistics of gradients of local patches and
thus are prone to appearance changes such as illumina-
tion and season variations in the long-term visual localiza-
tion task. With the success of CNNs, learning-based fea-
tures [14, 16, 37, 45, 51, 76, 81] are introduced to replace
handcrafted ones and have achieved excellent performance.
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Figure 1. Overview of our framework. Our model implicitly in-
corporates semantics into the detection and description processes
with guidance of an off-the-shelf segmentation network during
the training process. Semantic- and feature-aware guidance are
adopted to enhance its ability of embedding semantic information.

With massive data for training, these methods should be
able to automatically extract keypoints from more reliable
regions (e.g. building, traffic lane) by focusing on discrim-
inative features [64]. Nevertheless, due to the lack of ex-
plicit semantic signals for training, their ability of selecting
globally reliable keypoints is limited, as shown in Fig. 2
(detailed analysis is provided in Sec. B.1 in the supplemen-
tary material). Therefore, they prefer to extract locally re-
liable features from objects including those which are not
useful for long-term localization (e.g. sky, tree, car), lead-
ing to limited accuracy, as demonstrated in Table 2.

Recently, advanced matchers based on sparse key-
points [8, 55, 65] or dense pixels [9, 18, 19, 33, 40, 47, 67,
74] are proposed to enhance keypoint/pixel-wise matching
and have obtained remarkable accuracy. Yet, they have
quadratic time complexity due to the attention and corre-
lation volume computation. Moreover, advanced matchers
rely on spatial connections of keypoints and perform image-
wise matching as opposed to fast point-wise matching, so
they take much longer time than nearest neighbor matching
(NN) in both mapping and localization processes because of
a large number of image pairs (much larger than the num-
ber of images) [8]. Alternatively, some works leverage se-
mantics [64, 73, 79] to filter unstable features to eliminate
wrong correspondences and report close even better accu-
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racy than advanced matchers [79]. However, they require
additional segmentation networks to provide semantic la-
bels at test time and are fragile to segmentation errors.

Instead, we implicitly incorporate semantics into a local
feature model, allowing it to extract robust features auto-
matically from a single network in an end-to-end fashion. In
the training process, as shown in Fig. 1, we provide explicit
semantics as supervision to guide the detection and descrip-
tion behaviors. Specifically, in the detection process, un-
like most previous methods [14, 16, 32, 37, 51] adopting ex-
haustive detection, we employ a semantic-aware detection
loss to encourage our detector to favor features from reli-
able objects (e.g. building, traffic lane) and suppress those
from unreliable objects (e.g. sky). In the description pro-
cess, rather than utilizing triplet loss widely used for de-
scriptor learning [16, 41], we employ a semantic-aware de-
scription loss consisting of two terms: inter- and intra-class
losses. The inter-class loss embeds semantics into descrip-
tors by enforcing features with the same label to be close
and those with different labels to be far. The intra-class
loss, which is a soft-ranking loss [23], operates on features
in each class independently and differentiates these features
from objects of the same label. Such use of soft-ranking
loss avoids the conflict with inter-class loss and retains the
diversity of features in each class (e.g. features from build-
ings usually have larger diversity than those from traffic
lights). With semantic-aware descriptor loss, our model is
capable of producing descriptors with stronger discrimina-
tive ability. Benefiting from implicit semantic embedding,
our method avoids using additional segmentation networks
at test time and is less fragile to segmentation errors.

As the local feature network is much simpler than typi-
cal segmentation networks e.g. UperNet [10], we also adopt
an additional feature-consistency loss on the encoder to
enhance its ability of learning semantic information. To
avoid using costly to obtain ground-truth labels, we train
our model with outputs of an off-the-shelf segmentation net-
work [11, 34], which has achieved SOTA performance on
the scene parsing task [83], but other semantic segmenta-
tion networks (e.g. [10]) can also be used.

An overview of our system is shown in Fig. 1. We em-
bed semantics implicitly into the feature detection and de-
scription network via the feature-aware and semantic-aware
guidance in the training process. At test time, our model
produces semantic-aware features from a single network di-
rectly. We summarize contributions as follows:

• We propose a novel feature network which implicitly
incorporates semantics into detection and description
processes at training time, enabling the model to pro-
duce semantic-aware features end-to-end at test time.

• We adopt a combination of semantic-aware and
feature-aware guidance strategy to make the model

SPP

SPP

D2Net

D2Net

R2D2

R2D2

ASLFeat

ASLFeat

sky

pedestrian

tree

car

SPP

SPP

sky

D2Net

D2Net

pedestrian

R2D2

R2D2

tree

ASLFeat

ASLFeat

car

Figure 2. Locally reliable features. We show top 1k key-
points (reliability high→low: 1-250 , 251-500 , 501-750 ,
751-1000 ) of prior local features including SPP [14],

D2Net [16], R2D2 [51], and ASLFeat [37]. They indiscrimina-
tively give high reliability to patches with rich textures even from
objects e.g. sky, tree, pedestrian and car, which are reliable for
long-term localization (best view in color).

embed semantic information more effectively.

• Our method outperforms previous local features on the
long-term localization task and gives competitive ac-
curacy to advanced matchers but has higher efficiency.

Experiments show our method achieves a better trade-
off between accuracy and efficiency than advanced match-
ers [8, 55, 65] especially on devices with limited computing
resources. We organize the rest of this paper as follows. In
Sec. 2, we introduce related works. In Sec. 3, we describe
our method in detail. We discuss experiments and limita-
tions in Sec. 4 and Sec. 5 and conclude the paper in Sec. 6.

2. Related Work
In this section, we discuss related work on visual lo-

calization, feature extraction and matching, and knowledge
distillation.

Visual localization. Visual localization methods can
be roughly categorized as image-based and structure-based.
Image-based systems recover camera poses by finding the
most similar one in the database with global features, e.g.
NetVLAD [2], CRN [27]. Due to the limited number of
images in the database, they can only give approximate
poses. To obtain more precise poses, structure-based meth-
ods build a sparse 3D map via SfM and estimate the pose
via PnP from 2D-3D correspondences [12,54,57,58,69,79].
Some other works have tried to predict the camera pose di-
rectly from images, e.g. PoseNet [28] and its variations [80],
or regress scene coordinates [5–7,26]. However, the former
have been proved to perform similar to image retrieval [61]
and latter are hard to scale to large-scale scenes [31].

Local features. Handcrafted features [3, 35, 53] have
been investigated for decades and we refer readers a sur-
vey [38] for more details and focus on learned features.
With the success of CNNs, learned features are proposed to
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replace handcrafted descriptors [15,17,36,41–43,49,71,72],
detectors [13,68,70], or both [14,16,32,37,51,76,81]. Hard-
Net [41] focuses on metric learning by maximizing the dis-
tance between the closest positive and negative examples.
Instead of using pixel-wise correspondences for training,
CAPS [77], PoSFeat [32] and PUMP [50] utilize camera
pose and local consistency of matches for supervision. Su-
perPoint (SPP) [14] takes keypoint detection as a supervised
task, training detector from synthetic geometric shapes. D2-
Net [16] uses local maxima across the channels as score
map. R2D2 [51] considers both the repeatability and re-
liability and adopts the average precision loss [23] for de-
scriptor training. ASLFeat [37] employs deformable CNNs
to learn shape-aware dense features. As they focus mainly
on local reliability of features, regardless of their superior
accuracy to handcrafted features, their performance is lim-
ited in the long-term large-scale localization task. To further
improve the accuracy, some works [22,46,75] learn to filter
unstable keypoints with extra matching score, repeatability
or semantic labels. Essentially different with these meth-
ods, our model detects and extracts semantic-aware features
automatically in an end-to-end fashion. As a result, our fea-
tures are able to produce more accurate localization results.

Advanced matcher. As NN matching is unable to in-
corporate spatial connections of keypoints for matching, ad-
vanced matchers are proposed to enhance the accuracy by
leveraging the spatial context of a set of keyppoints [8, 55,
65] or an image patch [9, 18, 33, 52, 67, 84]. SuperGlue
(SPG) [55] utilizes graph neural networks with attention
mechanism to propagate information among keypoints. It
produces impressive accuracy, whereas its time complex-
ity is quadratic to the number of keypoints. This problem is
partially mitigated by using seeded matching [8] and cluster
matching [65], but the time is still thousands of times slower
than NN matching. Dense matchers [9, 33, 52, 67] com-
pute pixel-wise correspondence from correlation volumes,
so they undergo the high time and memory cost as sparse
matchers [8, 55, 65]. Moreover, advanced matchers oper-
ates on image pairs as opposed to keypoints, so considering
the number of image pairs, systems with advanced match-
ers could be much slower in real applications, as analyzed in
[8]. In this paper, we embed high-level semantic informa-
tion into local features implicitly to enhance both feature de-
tection and description, enabling our model with simple NN
matching to yield comparable results to advanced matchers.
Our work provides a good trade-off of time and accuracy
especially on devices with limited computing resources.

Visual semantic localization. Compared to local fea-
tures, high-level semantics are more robust to appearance
changes and have been widely used in visual localiza-
tion [7, 25, 26, 30, 31, 44, 62–64, 66, 73, 78]. LLN [78] and
SVL [63] use the discriminative landmarks for place recog-
nition. ToDayGAN [1] transfers night images to day im-

ages with GAN [20]. MFC [30], SMC [73], SSM [64],
and DASGIL [25] incorporate segmentation networks into
a standard localization pipeline to reject semantically-
inconsistent matches. More recently, LBR [79] learns to
recognize global instances for both coarse and fine local-
ization. In fine localization, it filters unstable features and
conducts instance-wise matching, achieving close accuracy
to advanced matchers [55]. Unlike these methods, which
require additional models to provide explicit semantic la-
bels at test time, we embed the semantic information into
the network and produce semantic-aware features directly
from a single network.

Knowledge distillation. Knowledge distillation tech-
niques have been widely used for tasks including model
compression [54] and knowledge transfer [82]. Our usage
of pseudo ground-truth local reliability and semantic labels
predicted by off-the-shelf networks is more like a knowl-
edge transfer task. In this paper, we focus mainly on how to
effectively leverage the high-level semantics for low-level
feature extraction.

3. Method
As shown in Fig. 1, our model consists of an encoder

Fenc and two decoders Fdet and Fdesc. Fenc extracts high-
level features X from image I ∈ R3×H×W . Fdet predicts
the reliability map S ∈ RH×W andFdesc produces descrip-
tors Xdesc ∈ R128×H

4 ×W
4 . H and W are the height and

width of the image. In this section, we give details about
how to implicitly incorporate semantic information into our
feature detection and description processes.

3.1. Semantic-guided Feature Detection

The detector predicts the reliability map as S =
Fdet(X). Previously, the reliability map S is defined by
the richness of textures in patches (e.g. response to cor-
ners [14] or blobs [35]). Recently, learned local fea-
tures [16, 32, 37, 51] define the reliability on the discrimi-
native ability of descriptors. As shown in Fig. 2, these two
definitions, however, only reveal the reliability of pixels at a
local level but lack the stability at a global level. Instead, we
redefine the reliability of features by taking both the local
reliability Srel and global stability Ssta into consideration.

Local reliability. Local reliability shows the robustness
of a keypoint to appearance changes and viewpoint vari-
ations. Previous learning-based features adopt two strate-
gies for reliable feature learning: learning from groundtruth
corners [14] and learning from the discriminative ability of
descriptors [16, 32, 37, 51]. We find that corners [14] are
more robust compared to purely learned detectors, as shown
in [50,79], where SPP detector achieves better results when
replacing other detectors. Therefore, following [54], we use
the detection score Srel of SPP [14] as pseudo groundtruth,
which is one of the best corner detectors. At the same time,
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Figure 3. Semantic-guided feature detection. From left to right: semantic segmentation mask predicted by [11, 34], stability map
Ssta generated according to Table 1, local reliability map Srel produced by SuperPoint [14], and the final global reliability map S. Local
reliability map gives very high score to clouds (red), trees (green), and pedestrians (pink) in addition to buildings, while the global reliability
map removes unstable regions (sky, pedestrians), suppresses short-term objects (trees), and retains stable areas (buildings).

local reliability is slightly adjusted by the discriminative
ability of descriptors in the training process (see Sec. 3.2).

Global stability. The global stability of a pixel is as-
signed based on the semantic label which it belongs to.
Specifically, we group all 120 semantic labels in ADE20k
dataset [83], according to how they change over time, into
four categories, denoted as Volatile, Dynamic, Short-term,
and Long-term in Table 1. Volatile objects (e.g. sky, wa-
ter) are constantly changing and are redundant for local-
ization. Dynamic objects (e.g. car, pedestrian) are moving
everyday and could cause localization error by introducing
wrong matches. Short-term objects (e.g. tree) can be used
for short-term localization tasks (e.g. VO/SLAM), yet they
are sensitive to changes of illumination (low albedo) and
season conditions. Long-term objects (e.g. building, traffic
light) are resistant to aforementioned changes and are ideal
for long-term localization.

Instead of directly filtering unstable features [64,73,79],
we rerank features with stability values assigned empiri-
cally according to the extent of desired suppression. In de-
tail, Long-term objects are robust for both short and long-
term localization, so their stability value is set to 1.0. Short-
term objects are useful for short-term localization, so we set
their stability to 0.5. The stability value of Volatile and Dy-
namic categories is set to 0.1 as they are not useful for both
short/long-term localization. Note that we set it to 0.1 rather
than 0. Our reranking strategy encourages the model to use
stable features preferentially and uses keypoints from other
objects as compensation when insufficient stable keypoints
can be found, increasing the robustness of our model to var-
ious tasks (e.g. feature matching, short-term localization).
Fig. 3 shows stability map Ssta transformed from Table 1.
Our current global stability is assigned based on predefined
semantic labels, but a learned one might provide better per-
formance and deserves further exploration.

Semantic-guided detection. The global reliability map
Sgt is generated by multiplying the local reliability map
Srel and global stability map, as Sgt = Srel � Ssta (�
is element-wise multiplication). Fig. 3 shows that local re-

Category Volatile Dynamic Short-term Long-term Stability

sky, water 3 0.1
vehicle, pedestrian 3 0.1
plant, grass 3 0.5
building, traffic light 3 1.0

Table 1. Stability map. Semantic labels are categorized into four
groups denoted as Volatile, Dynamic, Short-term, and Long-term.
Four categories are empirically assigned with different stability
values according to their robustness to appearance changes.

liability map gives high score for all pixels with rich tex-
tures even those from the sky, pedestrians, and trees, which
are useless for localization. However, the global reliability
map considering both local reliability and global stability
discards these sensitive features and suppresses short-term
keypoints effectively. The detection loss is defined as:

Ldet = BCE(S,Sgt), (1)

where BCE denotes the binary cross-entropy loss.

3.2. Semantic-guided Feature Description

We also enhance the discriminative ability of descriptors
by embedding semantics into them directly. Unlike previ-
ous descriptors [14, 37, 41, 50, 51, 77], which only differ-
entiate keypoints based on local patch information, our de-
scriptors enforce similarities of features in the same class
while retain dissimilarities for intra-class matching. How-
ever, the two forces conflict with each other during the train-
ing process, because class-level discriminative ability needs
to squeeze the space of descriptors in the same class and
intra-class discriminative ability has to increase the space.
A simple solution could be to set a hard margin for all
classes (Fig. 4 left), but it would lead to the loss of objects’
inner diversity (e.g., almost all traffic lights are similar but
different buildings vary dramatically), which is indispens-
able for intra-class matching. To solve this problem, we
design the inter-class and intra-class losses based on two
different metrics (Fig. 4 right).
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Figure 4. Semantic-guided feature description. Simply optimiz-
ing inter- and intra-class losses with hard margins may cause ac-
curacy loss due to two conflicting forces (push forces of inter- and
intra-class) (left). Instead, we optimize the intra-class force with a
hard margin, but apply a soft ranking loss for inter-class force to
avoid conflicts and retain the inner diversity of each object (right).

Inter-class loss. We first enforce the semantic consis-
tency of features by maximizing the Euclidean distance be-
tween descriptors with different labels. This allows fea-
tures to find correspondences from candidates with the same
labels, reducing the search space and thus improving the
matching accuracy. We define the inter-class loss based on
triplet loss with a hard margin to separate all possible posi-
tive and negative keypoints with different labels in a batch:

Linter =
1

N

∑
(||xc1

i − xc1
j ||2 − ||x

c1
i − xc2

k ||2 +m), (2)

where xc1
i ,x

c1
j , and xc2

k are vectorized descriptors with la-
bels of c1, c1, and c2 (c1 6= c2). m is the margin and set to
1.0. This loss is conducted on features in the whole batch
and N is the total number of features in a batch.

Intra-class loss. To make sure that the intra-class loss
doesn’t conflict with the inter-class loss, we relax the limi-
tation of distances between descriptors with the same label.
Instead of using triplet loss with hard margins, we adopt
a soft ranking loss [23] by optimizing the rank of positive
and negative samples rather than their distances. We use
the same strategy as [51] to generate positive and negative
samples for each feature xc

i from self and the other images
respectively, but enforce both positive and negative samples
to share the same class label c as xc

i . By optimizing ranks
of all samples rather than forcing a hard boundary between
positive and negative pairs as the triplet loss with a hard
margin does, the soft ranking loss also retains the diversity
of features on objects in the same class, as shown in Fig. 4
(right). The ranking loss is based on the averaging precision
(AP) loss [23, 51]:

Lintra =
1

C

C∑
c=1

1

Nc

Nc∑
i=1

(1−AP (xc
i ,S

xc
i )), (3)

where xc
i and Sxc

i are the query descriptor with label c and
corresponding predicted local reliability. C and Nc are the
total number of classes and features in class c. Note that
the AP loss for sample xc

i is weighted by its reliability Sxc
i .
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Figure 5. Architecture of our network. Features are 4× down-
sampling to save time and memory cost. Resblocks [24] are
adopted to enhance the model’s capacity. We enforce the consis-
tency between outputs of the middle two layers of our encoder and
features of the segmentation network to enhance the ability of our
model to embed semantic information during the training process.

Our final descriptor loss Ldesc is the combination of Linter

and Lintra, balanced by winter and wintra:

Ldesc = winterLinter + wintraLintra. (4)

3.3. Implicit Feature Guidance

With semantic-aware detection and description losses,
our model is able to learn semantic-aware features. How-
ever, compared with feature learning, semantic prediction is
a more complicated task, requiring powerful encoders and
aggregation layers [4, 34] for semantic-aware feature em-
bedding. To further improve the ability of our model to em-
bed semantic information, we take inspiration from current
knowledge distillation tasks [21] and introduce a feature
consistency loss on intermediate outputs of the first three
layers of the encoder.

Fig. 5 shows the architecture of our network. We take in-
termediate outputs of the encoder of ConvNeXt [34] as su-
pervision signal and enforce l1 loss on features of the mid-
dle 2 layers of our model:

Lfeat =
1

2

2∑
i=1

|Xi −XConvNeXt
i |, (5)

where Xi and XConvNeXt
i are features of the ith layer in

our model and ConvNeXt [34], respectively. The total loss
Ltotal is the combination of detection loss Ldet, description
loss Ldesc, and feature consistency loss Lfeat with weights
of wdet, wdesc, and wfeat:

Ltotal = wdetLdet + wdescLdesc + wfeatLfeat. (6)

4. Experiments
We first give implementation details. Then, we test our

method on visual localization tasks in Sec. 4.1 and analyze
the running time in Sec. 4.2. Finally, we perform an ablation

5210



Group Method Day Night
(2◦, 0.25m)/(5◦, 0.5m)/(10◦, 5m)

C
AS v1.1 [57] 85.3 / 92.2 / 97.9 39.8 / 49.0 / 64.3
CSL [69] 52.3 / 80.0 / 94.3 29.6 / 40.8 / 56.1
CPF [12] 76.7 / 88.6 / 95.8 33.7 / 48.0 / 62.2
Ours 88.2 / 96.0 / 98.7 87.8 / 94.9 / 100.0

S

SSM [64] 71.8 / 91.5 / 96.8 58.2 / 76.5 / 90.8
VLM [78] 62.4 / 71.8 / 79.9 35.7 / 44.9 / 54.1
SMC [73] 52.3 / 80.0 / 94.3 29.6 / 40.8 / 56.1
LBR [79] 88.3 / 95.6 / 98.8 84.7 / 93.9 / 100.0
Ours 88.2 / 96.0 / 98.7 87.8 / 94.9 / 100.0

L

SIFT [35] 82.8 / 88.1 / 93.1 30.6 / 43.9 / 58.2
SPP [14] 80.5 / 87.4 / 94.2 42.9 / 62.2 / 76.5
D2Net [16] 84.8 / 92.6 / 97.5 84.7 / 90.8 / 96.9
R2D2 [51] 76.5 / 90.8 / 100.0
SIFT+CAPS [35, 77] 77.6 / 86.7 / 99.0
SPP+CAPS [14, 77] 82.7 / 87.8 / 100.0
SPP+LISRD [14, 49] 78.6 / 86.7 / 98.0
SPP+PUMP [14, 50] 74.4 / 88.0 / 98.4
R2D2+PUMP [14, 50] 73.3 / 86.9 / 98.4
R2D2+LLF [14, 68] 72.4 / 90.8 / 99.0
SOSNet+D2D [70, 72] 73.5 / 83.7 / 96.9
PoSFeat [32] 81.6 / 90.8 / 100.0
ASLFeat [37] 81.6 / 87.8 / 100.0
Ours 88.2 / 96.0 / 98.7 87.8 / 94.9 / 100.0

M

ENCNet [52] 76.5 / 84.7 / 98.0
Dual-RCNet [33] 79.6 / 88.8 / 100.0
PDCNet [74] 80.6 / 87.8 / 100.0
DGCNet [40] 22.9 / 49.8 / 84.7 14.3 / 37.8 / 79.6
Pixloc [56] 84.7 / 94.2 / 98.8 81.6 / 93.9 / 100.0
AHM [18] 47.8 / 72.2 / 91.3 30.6 / 53.1 / 78.6
S2DNet [19] 84.5 / 90.3 / 95.3 74.5 / 82.7 / 94.9
Patch2Pix [84] 84.6 / 92.1 / 96.5 82.7 / 92.9 / 99.0
SPP+SPG [14, 55] 89.6 / 95.4 / 98.8 86.7 / 93.9 / 100.0
SPP+SGMNet [8, 14] 86.8 / 94.2 / 97.7 83.7 / 91.8 / 99.0
SPP+ClusterGNN [14, 65] 89.4 / 95.5 / 98.5 81.6 / 93.9 / 100.0
Ours 88.2 / 96.0 / 98.7 87.8 / 94.9 / 100.0

Table 2. Results on Aachen dataset [59,60]. The best and second
best results are highlighted with bold and red fonts.

study in Sec. 4.3. More implementation details, results and
analysis are provided in the supplementary material.

Implementation. We use the identical training dataset
as R2D2 [51]. The training dataset consists of reference
images in Aachen v1.0 dataset [60] and web images. As
R2D2 [51] and LBR [79], training images are augmented
with style transfer. To mitigate segmentation uncertainties
caused by style transfer, semantic labels of stylized images
are generated from their corresponding normal images. The
network is implemented in PyTorch [48] and trained using
Adam [29] optimizer with β1 = 0.9, β2 = 0.99, batch size
of 4, weight decay of 4× 10−4 on a single 3090Ti GPU for
40 epochs. The hyper-parameter wintra is set to 0.5, while
winter, wdet, wdesc, and wfeat are set to 1.0.

4.1. Long-term Large-scale Localization

We test our method on Aachen (v1.0 and v1.1) [59,
60] and RobotCar-Seasons (RoCaS) [39, 60] datasets un-
der various illumination, season, and weather conditions.
Aachen v1.0 contains 4,328 reference and 922 (824 day,
98 night) query images captured around the Aachen city
center. Aachen v1.1 expands v1.0 by adding 2,369 refer-

Group Method Day Night
(2◦, 0.25m)/(5◦, 0.5m)/(10◦, 5m)

S LBR [79] 89.1 / 96.1 / 99.3 77.0 / 90.1 / 99.5
Ours 88.2 / 96.0 / 98.7 78.0 / 92.1 / 99.5

H

SIFT [35] 72.2 / 78.4 / 81.7 19.4 / 23.0 / 27.2
SPP [14] 87.9 / 93.6 / 96.8 70.2 / 84.8 / 93.7
D2Net [16] 84.1 / 91.0 / 95.5 63.4 / 83.8 / 92.1
R2D2 [51] 88.8 / 95.3 / 97.8 72.3 / 88.5 / 94.2
ASLFeat [37] 88.0 / 95.4 / 98.2 70.7 / 84.3 / 94.2
CAPS+SIFT [35, 77] 82.4 / 91.3 / 95.9 61.3 / 83.8 / 95.3
LISRD+SPP [14, 49] 73.3 / 86.9 / 97.9
LLF+R2D2 [14, 68] 71.2 / 81.2 / 94.2
PoSFeat [32] 73.8 / 87.4 / 98.4
Ours 88.2 / 96.0 / 98.7 78.0 / 92.1 / 99.5

M
SPP+SGMNet [8, 14] 88.7 / 96.2 / 98.9 75.9 / 89.0 / 99.0
SPP+SPG [14, 55] 89.8 / 96.1 / 99.4 77.0 / 90.6 / 100.0
Patch2Pix [84] 86.4 / 93.0 / 97.5 72.3 / 88.5 / 97.9
LoFTER [67] 88.7 / 95.6 / 99.0 78.5 / 90.6 / 99.0
ASpanFormer [9] 89.4 / 95.6 / 99.0 77.5 / 91.6 / 99.5
Ours 88.2 / 96.0 / 98.7 78.0 / 92.1 / 99.5

Table 3. Results on Aachen v1.1 dataset [59, 60]. The best and
second best results are highlighted with bold and red fonts.

ence and 93 night query images. RoCaS has 26,121 refer-
ence and 11,934 query images. It is challenging because of
various conditions of day query images (rain, snow, dusk,
winter) and poor lighting of night query images in subur-
ban areas. We adopt the success ratio at error thresholds of
(2◦, 0.25m), (5◦, 0.5m), (10◦, 5m) as metric. We addition-
ally provide results on Extended CMU-Seasons dataset in
the supplementary material.

Baselines. Baselines include classic systems (C) e.g.
AS v1.1 [57], CSL [69], and CPF [12] and methods using
semantics (S), e.g. LLN [78], SMC [73], SSM [64], DAS-
GIL [25], ToDayGAN [1] and LBR [79]. We also compare
our model with learned features [14, 16, 37, 50, 51, 77] (L).
As prior methods [14, 16, 37, 50, 51, 77], we use HLoc [54]
pipeline for reconstruction and mutual nearest matching
(MNN). NetVLAD [2] is used to offer 50 and 20 candidates
for Aachen and RoCaS datasets, respectively. We addi-
tionally compare our approach with advanced sparse/dense
matchers (M) e.g., Superglue (SPG) [55], SGMNet [8],
ClusterGNN [65] and ASpanFormer [9], LoFTER [67],
Patch2Pix [84], Dual-RCNet [33]. Their results are ob-
tained from the visual benchmark1 or original papers.

Comparison with classic methods (C). As shown in Ta-
ble 2 and 4, our model outperforms all classic methods. As
most these methods use SIFT [35], they are more sensitive
to weather and illumination changes than learned features.

Comparison with methods using explicit semantics
(S). By leveraging semantic labels to filter potentially
wrong matches, these models achieve better performance
for day and night images in Table 2 and 4 but require seg-
mentation results at test time. Our model outperforms all
other approaches (except LBR [79]). LBR [79] reports

1https://www.visuallocalization.net/benchmark/
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Group Method day night night-rain
(2◦, 0.25m)/(5◦, 0.5m)/(10◦, 5m)

C
AS [57] 43.6 / 76.0 / 94.0 1.6 / 3.9 / 10.5 2.0 / 10.9 / 18.0
CSL [69] 45.3 / 73.5 / 90.1 0.2 / 0.9 / 5.3 0.9 / 4.3 / 9.1
CPF [12] 48.0 / 78.0 / 94.2 2.3 / 6.6 / 15.3 4.5 / 12.3 / 18.6
Ours 56.9 / 81.6 / 97.4 27.6 / 66.2 / 90.2 43.0 / 71.1 / 90.0

S

SSM [64] 54.5 / 81.6 / 96.7 10.0 / 23.7 / 45.4 14.5 / 33.2 / 47.5
VLM [78] 7.9 / 30.0 / 85.9 11.9 / 26.0 / 55.0 15.7 / 34.5 / 60.5
SMC [73] 50.3 / 79.3 / 95.2 6.2 / 18.5 / 44.3 8.0 / 26.4 / 46.4
DASGIL-FD [25] 8.7 / 30.7 / 81.3 1.6 / 4.8 / 19.9 1.8 / 4.3 / 21.6
ToDayGAN [1, 16] 52.2 / 80.1 / 95.9 16.4 / 43.2 / 73.3 24.1 / 50.5 / 74.1
LBR [79] 56.7 / 81.7 / 98.2 24.9 / 62.3 / 86.1 47.5 / 73.4 / 90.0
Ours 56.9 / 81.6 / 97.4 27.6 / 66.2 / 90.2 43.0 / 71.1 / 90.0

L

SIFT [35] 53.5 / 77.6 / 92.6 7.8 / 13.9 / 22.1 9.5 / 14.5 / 17.0
SPP [14] 56.5 / 81.5 / 97.1 16.9 / 41.6 / 71.5 22.0 / 45.0 / 68.0
D2Net [16] 54.5 / 80.0 / 95.3 18.0 / 39.7 / 53.9 22.7 / 40.5 / 56.1
R2D2 [51] 57.4 / 81.9 / 97.9 18.3 / 43.4 / 67.8 29.1 / 50.2 / 68.2
CAPS [77] 56.0 / 81.5 / 96.5 21.9 / 54.3 / 86.8 27.0 / 58.9 / 85.9
ASLFeat [37] 57.1 / 81.9 / 98.4 23.5 / 55.9 / 80.1 41.1 / 66.8 / 86.1
Ours 56.9 / 81.6 / 97.4 27.6 / 66.2 / 90.2 43.0 / 71.1 / 90.0

M
SPP+SPG [14, 55] 56.9 / 81.7 / 98.1 24.2 / 62.6 / 87.4 42.3 / 69.3 / 90.2
Pixloc [56] 56.9 / 82.0 / 98.1 24.2 / 62.8 / 88.4 45.5 / 72.5 / 90.7
AHM [18] 45.7 / 78.0 / 95.1 16.2 / 55.3 / 93.6 28.4 / 68.4 / 95.5
Ours 56.9 / 81.6 / 97.4 27.6 / 66.2 / 90.2 43.0 / 71.1 / 90.0

Table 4. Results on RobotCar-Seasons dataset [39,59]. The best
and second best results are highlighted with bold and red fonts.

excellent accuracy by selecting keypoints from buildings
and performing instance-wise matching. Our method gives
close results to LBR on day images but better performance
on most night images, because our model does not require
explicit semantic labels and is less fragile to segmentation
errors especially for night images. LBR performs better
than ours on night-train images in Table 4 because it is
trained on augmented night rainy images, while our model
is trained only on generated night images as R2D2.

Comparison with learned features (L). Benefiting
from training with massive data, learned features such as
R2D2 [51], ASLFeat [37] and PoSFeat [32], outperform
SIFT [3, 35]. As they extract keypoints indiscriminately,
they are still more sensitive to appearance changes espe-
cially on night images than semantic-aware methods [79],
as shown in Table 2 and 4. Our model extracts semantic-
aware features directly, so it gives higher accuracy.

Comparison with advanced matchers (M). In Table 2,
3 and 4, we also show the results of previous advanced
matchers. We find that our approach outperforms the recent
efficient variations of SPG [55] (e.g. SGMNet [8], Clus-
terGNN [65]) and gives competitive results to SPG, which
achieves the best accuracy and is also the slowest method.
Note that our model only uses the simple MNN for match-
ing. We provide a detailed analysis of time and memory us-
age in Sec. 4.2 and argue that our method provides a good
trade off between running time and accuracy especially on
devices with limited computing resources.

Robustness to the number of keypoints. We observe
that most previous methods [16, 32, 37, 50, 51] extract key-
points with the number ranging from 10k (R2D2, ASLFeat)
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Figure 6. Influence of the number of keypoints. We re-
port results of different number (from 4k to 1k) of keypoints on
Aachen v1.1 [59, 60] at error threshold of (2◦, 0.25m).

to 40k (PosFeat) for evaluation. Although increasing the
number improves the accuracy, it causes the time cost as
well, which should be taken into consideration especially
on devices with limited computing resources. In this ex-
periment, we test the ability of previous and our methods
of extracting fewer but more robust features by reducing
the number of keypoints from 4k to 1k. Note that re-
sults of [14, 51, 55, 79] are from LBR [79] and results of
ASLFeat [37] are obtained by running official source code.

Fig. 6 shows that as the number of keypoints decreases,
all previous features [14,37,51] undergo dramatic accuracy
loss especially for night images. SPP+SPG and LBR per-
form more robust because of the global context or seman-
tics. With implicitly embedded semantics, our feature out-
performs R2D2, ASLFeat, and SPP especially on night im-
ages and gives competitive results to SPP+SPG and LBR.

Qualitative comparison. Fig. 7 shows the detection and
matching results of query images under conditions of large
illumination and season changes. Compared with prior fea-
tures [14, 37, 51], which prefer keypoints from areas with
rich textures, our method favors keypoints from objects ro-
bust for long-term localization (e.g. buildings). When insuf-
ficient keypoints can be found from stale regions, our model
also uses keypoints from Short-term objects e.g. trees from
compensation but assigns them with lower reliability. Be-
sides, our feature gives more inliers for query images with
large occlusions of trees and severe illumination changes.

4.2. Running time analysis

Table 5 demonstrates the test time of previous
features [14, 37, 51, 79], matchers [8, 55], and our
method. Our method (33.2ms) is faster than R2D2
(72.4ms) [51] and slower than SPP (13.1ms) [14], but
has higher accuracy. Besides, our method is faster
than LBR (9.2+30.1ms) [79], which uses explicit in-
stances to filter keypoints and advanced matchers includ-
ing SPP+SPG (13.1+52.2/146.5ms) [14,55] and SPP+SGM
(13.1+33.2/97.6ms) [8, 14]. As the matching method is ex-
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Figure 7. Qualitative comparison of detection and matching. Left→right: SPP [14], R2D2 [51], ASLFeat [37] and our method. Our
model favors keypoints on stable areas (reliability high→low: 1-250 , 251-500 , 501-750 , 751-1000 ) and gives more inliers.

Model Input size Running time (ms)

SPP [14] 1024×1024 13.1
R2D2 [51] 1024×1024 72.4
ASLFeat* [37] 1024×1024 112.3
LBR (feature) [79] 1024×1024 30.1
LBR (segmentation) [79] 256×256 9.2
SPG [55] 2k×2k, 4k×4k 52.2, 146.5
SGMNet [8] 2k×2k, 4k×4k 85.5, 97.6
Ours 1024×1024 33.2

Table 5. Running time. We report test time of prior features [14,
37, 51], matchers [8, 55] and our method (*in TensorFlow).

tensively used for each image pair in mapping and local-
ization processes, SPG/SGMNet are about 18.3/3.3 times
slower than NN on Aachen dataset [59, 60] in the mapping
process as discussed in [8]. Therefore, our approach could
be a good trade off between accuracy and efficiency.

4.3. Ablation study

In Table 6, we verify the effectiveness of all components
in our network by progressively adding the semantic de-
tection (SD), description (SS), and feature consistency (SF)
losses. We also compare results of SS loss with triplet and
ranking as intra-class loss. Our baseline is trained with
detection scores of SPP [14] as detector supervision and
ap [23] loss for descriptor learning. After adding SD loss,
the model performs better especially for night images. The
accuracy is further improved by introducing SS loss because
it augments the discriminative ability of descriptors with se-
mantics. Compared to triplet loss with carefully tuned mar-
gin, ranking loss improves more accuracy as objects’ inner
diversity can be better retained by optimizing ranks of sam-
ples. SF loss enhances the network’s ability of embedding
semantic information, leading to further improvements.

5. Limitations
The first limitation is the hand-defined stability values. A

learned stability map from training data could be more ro-

SD SS SF Day Night
(2◦, 0.25m)/(5◦, 0.5m)/(10◦, 5m)

7 7 7 85.4 / 93.6 / 97.9 71.2 / 84.3 / 98.4
3 7 7 87.3 / 94.3 / 97.8 72.8 / 88.5 / 99.5
7 3(triplet) 7 87.9 / 95.1 / 98.9 73.8 / 86.9 / 99.0
7 3(ranking) 7 87.9 / 95.3 / 98.7 74.9 / 89.5 / 99.0
3 3 7 88.2 / 95.5 / 98.8 75.9 / 89.0 / 99.5
3 3 3 88.2 / 96.0 / 98.7 78.0 / 92.1 / 99.5

Table 6. Ablation study. We test the efficacy of semantic detec-
tion (SD), semantic description (SS), and semantic feature consis-
tency (SF) losses. The best results are highlighted.

bust and further improve the localization accuracy. Besides,
semantic labels used in the paper are from ADE20K [83]
and the number of these labels is limited. Fine grained se-
mantic labels [31] from automatic segmentation might be
more reliable in real applications. Moreover, this work fo-
cuses mainly on outdoor localization and may not work very
well in indoor scenarios due to the significant differences of
object classes. Better performance for indoor scenes can
be achieved by retraining the model with redefined stability
map for indoor objects.

6. Conclusions

In this paper, we implicitly incorporate semantic infor-
mation into the feature detection and description processes,
enabling the model to extract globally reliable features from
a single network end-to-end. Specifically, we leverage out-
puts of an off-the-shelf semantic segmentation network as
guidance and adopt a combination of semantic- and feature-
aware guidance strategies to enhance the ability of embed-
ding semantic information at training time. Experiments on
large-scale visual localization datasets demonstrate that our
method outperforms prior local features and gives competi-
tive performance to advanced matchers but has higher effi-
ciency. We argue that our approach could be a good trade-
off between accuracy and efficiency.
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