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Figure 1. Comparing SAL-VTON with the recent state-of-the-art methods on the VITON-HD testing dataset (left) and controlling the
original try-on results of SAL-VTON via manually manipulating semantically associated landmarks (right).

Abstract

In this paper, a novel virtual try-on algorithm, dubbed
SAL-VTON, is proposed, which links the garment with the
person via semantically associated landmarks to alleviate
misalignment. The semantically associated landmarks are
a series of landmark pairs with the same local seman-
tics on the in-shop garment image and the try-on image.
Based on the semantically associated landmarks, SAL-
VTON effectively models the local semantic association
between garment and person, making up for the misalign-
ment in the overall deformation of the garment. The
outcome is achieved with a three-stage framework: 1) the
semantically associated landmarks are estimated using the
landmark localization model; 2) taking the landmarks as
input, the warping model explicitly associates the corre-
sponding parts of the garment and person for obtaining
the local flow, thus refining the alignment in the global
flow; 3) finally, a generator consumes the landmarks
to better capture local semantics and control the try-on
results. Moreover, we propose a new landmark dataset
with a unified labelling rule of landmarks for diverse
styles of garments. Extensive experimental results on

*Co-first authors contributed equally, † Corresponding author.

popular datasets demonstrate that SAL-VTON can handle
misalignment and outperform state-of-the-art methods both
qualitatively and quantitatively. The dataset is available on
https://modelscope.cn/datasets/damo/SAL-HG/summary.

1. Introduction

In recent years, with the rapid popularization of online
shopping, virtual try-on [6, 9, 16, 32, 52] has attracted
extensive attention for its potential applications. Image-
based virtual try-on [4, 34, 49] aims to synthesize a photo-
realistic try-on image by transferring a garment image onto
the corresponding region of a person. Commonly, there
are significant spatial geometric gaps between the in-shop
garment image and the person image, leading to garments
failing to align the corresponding body parts of person.

To address the above issue, prior arts take geometric
deformation models to align the garment with the person’s
body. Early works [16, 22, 43] widely use the Thin-
Plate Spline (TPS) deformation model [39], whereas the
smoothness constraint of TPS transformation limits the
warping capacity. Recently, the flow operation is applied,
with a high dimension of freedom to warp garments [5, 11,
15, 18]. Nonetheless, the flow operation falls short on gar-
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ment regions with large deformation. The aforementioned
methods focus on modeling the overall deformation of the
garment, but ignore the local semantic association between
garment and person. Therefore, when there are large local
deformations of garments, the try-on results usually occur
misalignment, such as missing or mixing garments (see left
part of Fig. 1). To address the local misalignment problem,
Xie et al. [46] introduce the patch-routed disentanglement
module to splice different parts of the garment. However,
this method may result in significant blank spaces between
spliced parts of the garment.

Fortunately, the landmarks in the garment image and the
person image naturally have local semantic associations. As
can be observed from Fig. 2, the pixels around landmark A
on the try-on result should come from the landmark A′ area
on the garment. Such a pair of landmarks with the same
local semantics are referred to as semantically associated
landmarks. Based on this observation, this paper presents a
novel virtual try-on algorithm named SAL-VTON, which
links the garment with the person via semantically as-
sociated landmarks to help align the garment with the
person. Notably, the proposed approach varies differently
from the previous landmark-guided try-on methods [28,37].
LM-VTON [28] and LG-VTON [37] utilize landmarks to
supervise the TPS transformation. However, the potential
of local semantic association has not been fully explored,
and the limited degrees of freedom of TPS transformation
further hinder performance improvements. SAL-VTON,
for the first time, introduces the local flow estimated via
semantically associated landmarks to effectively model the
local semantic association. In addition, a generator with
Landmark-Aware Semantic Normalization Layer (LASNL)
is carried out to better capture local semantics.

Specifically, the proposed SAL-VTON consists of three
stages. Firstly, the semantically associated landmarks are
estimated using the landmark localization model. Sub-
sequently, the semantically associated landmarks are em-
ployed as a new representation for virtual try-on, and
fed into the warping model. Based on the semantically
associated landmarks and learnable deformable patches,
the warping model explicitly associates the corresponding
parts of the garment and person to obtain the local flow,
which contributes significantly to refine the poor alignment
in the global flow. Finally, conditioned on the landmarks,
the LASNL generator can achieve improved alignment in
virtual try-on images. The estimated landmarks on the try-
on result assist the generator in determining if a specific
region needs to generate corresponding garment parts. In
this way, SAL-VTON can effectively model the local
semantic association between the garment and the person,
making up for the misalignment in the overall deformation
of the garment. Moreover, the try-on results of SAL-VTON
can be precisely controlled by manually manipulating the

PersonGarment Try-on result

Figure 2. An example for the semantically associated landmarks
on the in-shop garment image and the try-on image.

landmarks (see right part of Fig. 1).
To this end, we re-annotate images on the popular virtual

try-on benchmarks including VITON [16] and VITON-HD
[4] datasets. Existing popular clothing landmark datasets
[12, 54] adopt different landmark definitions for different
categories of garments. In contrast to other datasets, we
adopt a unified labelling rule of landmarks for diverse styles
of garments, including both standard and non-standard va-
rieties. In the proposed dataset 1, every image is annotated
with 32 landmarks, each of which possesses three kinds of
attributes: visible, occluded and absent. The landmarks
with the same serial number have the same semantics,
which enhances the universality of the dataset.

This work makes the following main contributions: (1)
A novel virtual try-on algorithm, SAL-VTON, is proposed,
which links the garment with the person via semantically
associated landmarks. SAL-VTON, for the first time, intro-
duces the local flow that can alleviate the misalignment and
the LASNL generator for virtual try-on. (2) A new land-
mark dataset is proposed, providing a new representation
for virtual try-on, with a unified labelling rule of landmarks
for diverse styles of garments. (3) Extensive experiments
over two popular datasets demonstrate that SAL-VTON is
capable of handling misalignment and significantly out-
performs other state-of-the-art methods. Furthermore, the
extended experiments show that the virtual try-on results
can be edited via the landmarks.

2. Related Work
2.1. Clothing Landmark Localization

Clothing landmark localization [2,3,20] aims at locating
the functional key points defined on clothing, such as the
corners of the collar, hemline, and cuff. In previous years,
clothing landmark datasets, such as DeepFashion [29], FLD
[30], and ULD [47], contain very sparse landmarks for
upper-body items (only six). For the purpose of dataset
enrichment, Ge et al. [12] propose DeepFashion2 with an
average of 23 defined landmarks in each category. However,

1More details about the semantically associated landmark dataset are
reported in the supplementary material.
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Figure 3. The detailed flowchart of our proposed SAL-VTON framework. SAL-VTON consists of three stages. Stage 1: Semantically
associated landmarks are estimated by landmark estimation model. Stage 2: The warping model estimates the global flow and the local
flow. The two complement each other and fuse to produce a refined result. Stage 3: LASNL generator synthesizes the final output image.

different categories of garments have different landmark
definitions. The number of landmarks on 13 categories of
garments also ranges from 8 to 39. In the virtual try-on
datasets, there are garment categories that do not exist in
DeepFashion2, thus limiting the role of landmarks in the
virtual try-on task. In contrast to DeepFashion2, the present
study employs a singular definition of landmarks to unify
all garment types and subsequently re-annotate virtual try-
on datasets. In our dataset, the number of landmarks on all
types of garments is 32.

2.2. Virtual Try-on

According to whether the human parser [13, 14] is
needed in the inference stage, image-based virtual try-on
can be divided into parser-based methods [7, 25, 26, 44]
and parser-free methods [11, 18, 21]. The existing available
image-based virtual try-on datasets only contain garments
and a person wearing the garments. To obtain trainable
data pairs, previous methods mainly rely on masking the
garment region of the person image, as well as use the
human parser as the person representation to construct

the trainable data pairs. Consequently, the parser-based
methods necessitate the incorporation of the human parser
during both training and inference stages. The human parser
is usually derived from pre-trained human parser models.
To mitigate the negative effects resulting from inaccurate
parsing outcomes, the parser-free methods first train a
parser-based model, by which the person wearing different
garments can be obtained accordingly. Subsequently, the
garment and the generated person image serve as inputs and
the original person image acts as the supervision to train
the parser-free model. Our method is based on the parser-
free method and introduces a new representation named
semantically associated landmarks.

The spatial transform has an extensive applications in
virtual try-on. According to the type of spatial deformation,
they can be roughly divided into TPS-based and flow-based
methods. TPS-based methods [10, 33, 43, 48] adopt TPS
transformation to warp the whole or parts of the garment.
However, the smoothness constraint of TPS restricts the
warping ability. Currently, a majority of leading algorithms
are flow-based methods [8,18,26], which predict the global
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Figure 4. The detail of the global flow estimation module.

flow with a high dimension of freedom to warp the whole
garment. Our method also belongs to the flow-based
method. However, different from all these existing flow-
based methods, our method focuses on designing the local
flow via semantically associated landmarks.

3. Proposed Method
Framework Overview. As described in Fig. 3, given
an in-shop garment image G ∈ RH×W×3 and a person
wearing other garments Po ∈ RH×W×3 (H and W denote
the image height and width, respectively), the goal of virtual
try-on is to generate a photo-realistic try-on image Pg ∈
RH×W×3 of the same person Po wearing the input garment
G. Following the strategy adopted by existing parser-free
methods [11,18], parser-based models [18,26] are first pre-
trained on the VITON [16] and VITON-HD [4] datasets
respectively, to obtain the rough Po. Then, the (Po, G, Pg)
triplets are adopted to train the proposed SAL-VTON. The
pipeline of SAL-VTON can be roughly divided into three
stages. In the first stage, the landmark estimation model is
applied to estimate the semantically associated landmarks
Lg on the in-shop garment and Lp on the try-on person
(Sec. 3.1). In the second stage, the warping model predicts
the global flow and the local flow to deform the garment G
and align it with the body of the person, in which the local
flow is able to refine the poor alignment in the global flow
(Sec. 3.2). In the third stage, the LASNL generator is used
to synthesize the try-on image Pg (Sec. 3.3).

3.1. Semantically Associated Landmark Estimation

As illustrated in Fig. 3, the HRNet [41] is modified to
estimate the semantically associated landmarks. Specif-
ically, the inputs of the modified HRNet consist of two
components: the garment G and the person Po wearing
other garments. The outputs are the semantically associated
landmarks Lg on the in-shop garment and Lp on the try-on
person. The Lp indicates the locations where the landmarks
Lg will appear in the final try-on result when the person
Po puts on the garment G. In addition to predicting the
locations, the attributes (visible, occluded and absent) of
the landmarks are be estimated simultaneously. For training
the modified HRNet, we utilize binary CrossEntropy for
the landmark heatmap regression and CrossEntropy for the
landmark attributes classification.
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Figure 5. The illustration of the local flow estimation module.

3.2. Landmark-Based Deformable Patch Warping

The same as the previous methods [15,18], two pyramid
feature extractors are adopted to extract the features of
two modalities. The garment pyramid feature extractor
takes the concatenation of the garment G and landmarks
Lg as input, where the landmarks Lg are in the form of
a heatmap. The person Po wearing another garment and
the heatmap of landmarks Lp are concatenated to serve
as input for the person pyramid feature extractor. The
two feature extractors have the identical Feature Pyramid
Network (FPN) [27] structure but do not share weights. The
FPN network consists of N encoding layers where each
layer has a downsampling convolution with a stride of 2,
followed by the residual blocks [17]. This study sets N = 5,
but for simplicity, the case of N = 4 is shown in Fig. 3.

Global Flow. The flow used in virtual try-on is a set of
2D coordinate vectors [15, 50, 53]. Each vector indicates
which pixels in the garment image G ought to be utilized
to fill the given pixel in the person image Po. Taking Fig.
2 as an example, the pixels around landmark A’ should
be filled into the area around landmark A. Through the
global flow fg ∈ Rh×w×2, the garment G is warped to
Wg to fit the shape of the person body. As illustrated in
4, the inputs of the global flow estimation module are two
pyramid features (pi, gi), previous global flow f i−1

g , as well
as the global and local attention maps (mi−1

g ,mi−1
l ) from

the previous level. When i = 0, there is no previous global
flow f i−1

g , thus g′i = g0. Similar to most recent flow-based
methods [11,18], we first warp the garment feature gi using
the previously obtained global flow f i−1

g . Subsequently,
the warped garment feature g′i and the pi are concatenated
to refine the global flow f i−1

g . The final warped feature
g′′i and the person feature pi are fed into Conv block to
predict f i

g and the global attention map mi
g , respectively.

Before obtaining mi
g , this study fuses [mi−1

g ,mi−1
l ] into

Conv block to refine the global attention map, where [·, ·]
indicates the concatenation operation.
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Local Flow. In our case, the local flow fl ∈ Rh×w×64

contains 32 sets of 2D coordinates, each of which corre-
sponds to the local region near a landmark. However, it
is not sufficiently robust to apply a fixed-size region near
the landmark due to the geometric gap between the garment
and the person. Therefore, learnable deformable patches
associated with the semantically associated landmarks are
adopted. As shown in Fig. 5, the width and height of
deformable patches are obtained as follows:

pgi = C0([pi, gi]), (1)
ph, pw = σ(C1(pgi)) ∗ Ih, σ(C1(pgi)) ∗ Iw (2)
gh, gw = σ(C1(pgi)) ∗ Ih, σ(C1(pgi)) ∗ Iw, (3)

where C0 and C1 represent the convolution blocks, σ(·)
denotes Sigmoid function, and Ih and Iw are initial height
and width. We initialize Ih and Iw to a fifth of the size
of the image. Let (pw, ph, Lp) and (gw, gh, Lg) represent
the learned deformable patches on the person and garment,
respectively. The centres of deformable patches are the
semantically associated landmarks Lp and Lg .

In Fig. 5, one pair of deformable patches (pkw, p
k
h, L

k
p)

and (gkw, g
k
h, L

k
g) having the same local semantics are taken

as an instance, where k ∈ {1, . . . , 32}. Based on the
deformable patches, we crop the features of person and gar-
ment respectively. Then, the correlation matrix is obtained
by matrix multiplication of the two cropped features, which
performs pixel-by-pixel matching of features. Through
the correlation matrix, we can search for the correlative
position coordinates on the garment as the 2D coordinates
of the local flow. The obtained local flow has more explicit
constraints. In this way, the local region pixels of the
garment will fill the same semantics local region of the
person via the local flow f i

l ∈ Rh×w×64. In addition, the
local flow estimation module predicts the local attention
map mi

l ∈ Rh×w×32. The local flow fl and the attention
map ml are simultaneously applied to the garment G:

Wl =

K∑
k=1

exp (mlk)∑K
j=1 exp (mlj)

W (G, flk) , (4)

where W(·, ·) denotes the warping operation, Wl denotes
the warped garment with the local flow and K is 32.

Fusion. The global flow deforms the garment as a whole,
however, there exist certain local regions that exhibit mis-
alignment, such as missing and mixing garments. The
local flow focuses on the specific local association between
the garment and the person. The two flow approaches
complement each other and fuse to obtain a new result Wf :

Wf = (1− σ (mg)) ∗Wl + σ (mg) ∗Wg. (5)

As shown in Fig. 6, the proposed approach helps to
alleviate the misalignment and improve the try-on result.

Garment Try-on(a) (b) (c)

Figure 6. Fusing the warping results from the global flow and the
local flow. (a) the warped garment from the global flow, (b) the
local warping result from the local flow, and (c) the fusion result.

In the first row, the local flow fills in the missing garment
at the elbow position in the global flow. In the second row,
the local flow helps the global flow eliminate the overflow
in the hemline to avoid garment mixing.

To train our warping model, we apply the perceptual loss
[23] and L1 loss:

Lp =
∑
i

∥ϕi(Wg)− ϕi(Wgt)∥+
∑
i

∥ϕi(Wf )− ϕi(Wgt)∥ ,

(6)
LL1 = ∥Wg −Wgt∥+ ∥Wf −Wgt∥ , (7)

where ϕi is the i-th block of the pre-trained VGG network
[38] and Wgt is the garment on the ground truth Pgt. We
also apply a smoothness regularization on the global flow
from each global flow estimation module:

LR =
∑
i

∥∇fg∥ , (8)

where ∥∇fg∥ is the generalized charbonnier loss function
[40]. To supervise the training of the local flow, we apply a
loss on the warped garment Wl:

Lp = ∥(Wl −Wgt) ∗Ml∥ , (9)

where Ml denotes the landmark mask with one channel,
which is the union of 32 hard landmark masks. A hard
landmark mask is similar to a landmark heatmap but can
take 0 and 1 values only. The centre coordinates are the
landmark coordinates on the ground truth person Pgt.

3.3. Try-On via Landmark Semantic Normalization

The generator aims to generate the final try-on image Pg

based on the outputs from the previous stages. In general,
we fuse the warped garments (Wg,Wl,Wf ) with the person
Po, guided by the heatmap of landmark Lp. For Lp, we pro-
pose the Landmark-Aware Semantic Normalization Layer,
LASNL for short. LASNL introduces prior knowledge to
the generator, which enables the generator to determine
whether the local regions of the person Po need to wear the
garment, and further alleviate the local misalignment.
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Figure 7. Qualitative results from different models (VITON-HD, HR-VITON and ours) on the VITON-HD testing dataset.

Landmark-Aware Semantic Normalization Layer. Let
Fi ∈ RN×Ci×Hi×Wi be a i-th feature map in the network
for a batch of N samples, where Ci is the number of
channels. Here we use Li ∈ RN×32×Hi×Wi to denote the
heatmap of landmark Lp. First, we obtain the modulation
parameters γi ∈ RN×Ci×Hi×Wi and βi ∈ RN×Ci×Hi×Wi :

Li
s = Ccom(Li), (10)

γi, βi = Cγ(Li
s), Cβ(Li

s), (11)

where Ccom, Cγ and Cβ represent the convolution layers.
Then, the process of normalization can be expressed as:

γi
k,y,x ∗

Fi
n,k,y,x − µi

n,k

σi
n,k

+ βi
k,y,x, (12)

where n ∈ {1, . . . , N}, k ∈ {1, . . . , Ci} and (y, x) is
the pixel index. µi

n,k and σi
n,k are the mean and standard

deviation of the sample n and channel k.

LASNL Generator. Following the designs in prior works
[11, 18], the LASNL generator adopt an encoder-decoder
architecture [36] with skip connections. In the decoder,
we replace the residual block with the proposed landmark-
aware semantic normalization layer. Experiments demon-
strate that the performance of try-on can be improved in
this manner. To train the LASNL generator, we follow [26]
to calculate the perceptual loss, feature matching loss and
adversarial loss for the output Pg and the ground truth Pgt.

4. Experiments
Datasets. Experiments are conducted on the most popular
datasets: VITON [16] and VITON-HD [4]. The VITON
dataset contains a training set of 14,221 image pairs and a
testing dataset of 2,032 pairs. All images in the VITON
dataset have a resolution of 256 × 192. The VITON-HD
is a high-resolution virtual try-on dataset. The resolution
of the images in VITON-HD dataset is 1024 × 768. The
VITON-HD dataset contains a training set of 11,647 image
pairs and a testing dataset of 2,032 pairs.

Implementation details. All the experiments are con-
ducted using Pytorch [35]. Adam [24] is adopted as the
optimizer with β1 = 0.5, β2 = 0.999. We set the
batch size to 8 and train the models with 100 epochs. The
initial learning rate of the semantically associated landmark
estimation model and the warping model is set to 3e-4 and
decays linearly after 50 epochs. The initial learning rates
of the generator and the discriminator of the try-on image
generator are set to 1e-4 and 4e-4, respectively.

Evaluation metrics and baselines. In order to make a
fair comparison, we follow the settings of recent works
[18, 26] to compare the performance of SAL-VTON with
other baseline models. Specifically, our method is evaluated
on the VITON-HD dataset using five widely used metrics,
that is, Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity (SSIM) [45], Learned Perceptual Image Patch
Similarity (LPIPS) [51], Fréchet Inception Distance (FID)
[19, 42] and Kernel Inception Distance(KID) [1]. For the
VITON dataset, three widely used metrics, namely PSNR,
SSIM and FID, are adopted.

To verify the effectiveness of our proposed method,
we report the performance comparisons between ours and
representative virtual try-on methods, covering CP-VTON
[43], ClothFlow [15], CP-VTON+ [31], ACGPN [48], LM-
VTON [28], PF-AFN [11], ZFlow [5], StyleFlow [18],
VITON-HD [4] and HR-VITON [26], with the last two
being implemented on the high-resolution dataset.

Main results. The quantitative results on the VITON-HD
dataset are shown in Table 1. Following previous studies,
SSIM, PSNR and LPIPS are applied to evaluate our method
for paired setting. FID and KID are uesd for the unpaired
setting. It is clearly found that our method surpasses
other comparative algorithms in all evaluation metrics.
Specifically, our method achieves a 1.24 dB improvement
in PSNR and decreases LPIPS, FID and KID by 26.2%,
12.7% and 43.0% than the second-best results. We show
the qualitative comparison of the visual results in Fig. 7 to
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Figure 8. Qualitative results from different models (CP-VTON+, ACGPN, PF-AFN, StyleFlow and ours) on the VITON testing dataset.

Table 1. The quantitative results on VITON-HD test datasets. The
best values are highlighted by the black bold. The ↑ or ↓ indicates
higher or lower metric corresponds to better results.

Methods LPIPS↓ SSIM↑ PSNR↑ FID↓ KID↓

CP-VTON 0.158 0.786 43.28 3.762
ACGPN 0.112 0.850 43.29 3.730

VITON-HD 0.077 0.873 20.82 11.59 0.247
HR-VITON 0.065 0.892 21.90 10.91 0.179

Ours 0.048 0.907 23.14 9.52 0.102

verify the effectiveness of our method over the VITON-HD
dataset. In the first row of Fig. 7, the images generated
by other competing methods show apparent misalignments
such as long black sleeves mixed with skirts and missing
garments on the arm and waist. Even in the case of physical
occlusion, SAL-VTON can generate more photo-realistic
images compared to other methods.

The quantitative results on VITON testing dataset are
shown in Table 2. As can be seen clearly, our proposed
SAL-VTON achieves the best overall results than other
comparative try-on methods. The qualitative results from
different models are illustrated in Fig. 8. Overall, our
method generates better try-on images with less misalign-
ment, especially in the local regions with large geometric
distortions2. For example, in the hard poses on the right
side of Fig. 8, the other methods failed to align the garment
to the elbow and forearm. Benefiting from semantically
associated landmarks, our approach explicitly links the
sleeve of the garment with the arm of the person, addressing
the misalignment.

User study. Image metrics may have limitations in de-
picting the try-on quality, so a user study is conducted
by inviting 50 participants from professional data annota-
tion companies. Compared with ordinary volunteers, the

Table 2. The quantitative results on VITON test datasets. The
best values are highlighted by the black bold. The ↑ or ↓ indicates
higher or lower metric corresponds to better results.

Methods SSIM↑ PSNR↑ FID↓

CP-VTON 0.78 21.01 30.50
ClothFlow 0.84 23.60 23.68

CP-VTON+ 0.82 21.79 21.08
ACGPN 0.85 23.08 16.46

LM-VTON 0.85 21.55 17.18
PF-AFN 0.86 22.65 10.09
ZFlow 0.89 25.64 15.17

StyleFlow 0.91 25.87 8.89
Ours 0.92 28.29 5.74

(a) VITON-HD testing dataset (b) VITON testing dataset

VITON-HD HR-VITON Ours CP-VTON+ PF-AFN OursStlyeFlow

Figure 9. The user study on the VITON-HD and VITON datasets.

expertise background and experience of these participants
could further assurance the reliability of the assessment
results. The number of randomly selected image groups
are increased to 1,000 for more objective and accurate
evaluation results. Meanwhile, each image group are ob-
served and evaluated by three different participants. From
user study results in Fig. 9, SAL-VTON outperforms
the existing state-of-the-art methods compellingly in both
VITON dataset and VITON-HD dataset. The misaligned
regions become noticeable as the resolution of the image
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GarmentPerson (a) (b) (e) (f)(d)(c) (g) (h)

Figure 10. Controlling the try-on effect of SAL-VTON by manipulating the landmarks. (a) the original try-on result, (b) changing the
shape of the collar, (c) controlling the sleeve length, (d) adjusting the hemline, (e) controlling both collar and sleeve, (f) controlling both
collar and hemline, (g) controlling both sleeve and hemline, (h) controlling sleeve, collar and hemline.

Table 3. The results of ablation experiments over VITON dataset.

Config SSIM↑ PSNR↑ FID↓

w/ Fixed Patch 0.90 28.03 5.91
w/ Deformable Patch 0.92 28.29 5.74

w/o LASNL 0.90 27.66 5.86
w/o Local Flow and LASNL 0.88 25.81 6.99

increases, as revealed by the study of Choi et al. [4].
From the results of the user study, our approach is more
advantageous on the high-resolution dataset, which means
our approach can handle misalignment.

Ablation study. To investigate the contribution of the de-
vised modules in our proposed algorithm, an ablation study
is carried out on the VITON dataset. The corresponding
quantitative comparison is reported in Table 3. As can
be observed, the use of deformable patches yields better
results than fixed patches. Without local flow refinement
and landmark-aware semantic normalization layer, there
is a significant performance degradation for our approach.
Overall, the best performance is reported when all modules
are integrated together. Additionally, to better understand
the deformable patches based on the semantically associ-
ated landmarks, we visualize a portion of them in Fig. 11.
It is clear that SAL-VTON can adaptively adjust the size of
patches for different parts of the garment. Compared with
the fixed patches, the proposed deformable patches are more
robust to spatial geometric changes.

Extended experiment. In addition to experimenting with
the regular virtual try-on, an interesting exploration is also
conducted on whether the try-on results can be directly
controlled by manually manipulating the landmarks, such
as by changing the coordinate value of some landmarks or
their attributes. It can be observed from Fig. 10 that ma-

Garment

Person

Try-on Garment

Person

Try-on

Figure 11. Visualization of the deformable patches predicted
by SAL-VTON. The corresponding deformable patches on the
garment and the try-on result are shown in the same color.

nipulating landmarks can achieve garment editing effects,
such as changing the shape of the collar, the sleeve length
of garments, etc. All the manipulations (a)-(c) about the
landmarks can be combined to obtain the combined results
(e)-(f) in Fig. 10. This interesting finding demonstrates
the validity of the semantically associated landmark, which
plays an essential role in our model2.

5. Conclusion
In this paper, we present a novel virtual try-on algo-

rithm, named SAL-VTON, that links the garment with the
person via semantically associated landmarks to alleviate
misalignment. The proposed local flow properly handles the
misaligned local regions. The LASNL generator can better
capture local semantics to generate photo-realistic try-on
images. Extensive experiments show that our proposed
method not only achieves superior performance but can
also be extended to try-on image editing. The encouraging
results of SAL-VTON will inspire computer vision and
computer graphics researchers to explore more effective
methods for modelling the local semantic association for
virtual try-on.
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