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Abstract

The dual-pixel (DP) sensor captures a two-view image
pair in a single snapshot by splitting each pixel in half.
The disparity occurs in defocus blurred regions between
the two views of the DP pair, while the in-focus sharp
regions have zero disparity. This motivates us to propose a
K3DN framework for DP pair deblurring, and it has three
modules: i) a disparity-aware deblur module. It estimates
a disparity feature map, which is used to query a trainable
kernel set to estimate a blur kernel that best describes
the spatially-varying blur. The kernel is constrained to
be symmetrical per the DP formulation. A simple Fourier
transform is performed for deblurring that follows the blur
model; ii) a reblurring regularization module. It reuses the
blur kernel, performs a simple convolution for reblurring,
and regularizes the estimated kernel and disparity feature
unsupervisedly, in the training stage; iii) a sharp region
preservation module. It identifies in-focus regions that
correspond to areas with zero disparity between DP
images, aims to avoid the introduction of noises during
the deblurring process, and improves image restoration
performance. Experiments on four standard DP datasets
show that the proposed K3DN outperforms state-of-the-art
methods, with fewer parameters and flops at the same time.

1. Introduction

Dual-pixel (DP) sensors are widely employed in digital
single-lens reflex cameras (DSLR) and smartphone cam-
eras. Each pixel of a DP sensor is divided into two photodi-
odes to provide two sub-views of a scene, namely, left and
right views, to assist in auto-focusing. Recently, researchers
have used the two-view DP pair to benefit several computer
vision tasks, especially defocus deblurring [1,2,24]. Specif-
ically, blurred pixels in the left and right view of the DP pair
exhibit an amount of shift, termed DP disparity, which pro-
vides information for the blur kernel estimation (the key for
defocus deblurring [14, 16, 19]).
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Figure 1. Comparison of our method and state-of-the-art methods
on the real DPD-blur dataset [1]. The Blue and red cycles sep-
arately denote our tiny and lightweight models. We show PSNRs
(dB) with respect to model parameters (M) and Flops (G). The
numbers in the brackets beside methods denote publication years.
Best viewed in color on the screen.

Existing DP-based defocus deblurring methods are gen-
erally divided into two categories: end-to-end-based and
disparity (defocus map)-based methods. End-to-end based
methods [1, 2, 11, 17, 19, 24] directly restore an all-in-focus
image from a defocus blurred DP pair without consider-
ing DP domain knowledge for network design. Therefore, it
is challenging for these methods to tackle spatially-varying
and large blur. Disparity-based methods [10,11,15,23] esti-
mate the DP disparity (or defocus map) to aid the restoration
of an all-in-focus image. However, these methods either re-
quire extra data (ground-truth DP disparity as supervision)
[15], neglect DP disparity knowledge when warping [10],
heavily depend on the number of network branches [11], or
rely on pre-calibrated kernel sets and additional priors [23]
for training.

Our method, K3DN, belongs to the disparity-based
group, and it has high performance on real DP datasets (see
Fig. 1 for an example). K3DN follows the mathematic in-
dications of DP and blur models, while not requiring pre-
calibrated kernel sets and extra data. K3DN consists of
three modules: i) a disparity-aware deblur module; ii) a re-
blurring regularization module; iii) a sharp region preserva-
tion module.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

13263



The first component is a disparity-aware deblur module
that estimates spatially-varying kernels for deblurring. We
define a trainable kernel set, and kernels in the set can model
diverse blur patterns. Each kernel satisfies the horizontally
symmetric constraint [2, 16], following the DP image for-
mulation. Given the input DP image pair, we first estimate
a disparity feature map, and then use the disparity feature
map to query the kernel set to estimate a DP blur kernel that
best describes the spatially-varying blur. With the blur ker-
nel, we simply perform a Fourier transform for deblurring
that follows the blur model.

The second component we developed is a reblurring reg-
ularization module. It reuses the DP blur kernel, takes an
all-in-focus image as input, and performs a simple convolu-
tion to generate a blurred image. By enforcing the similarity
between the blurred image and the input DP image, we reg-
ularize the proposed deblur module.

Our third component is a sharp region preservation mod-
ule. Not all regions of DP pairs are blurred. We observe that
previous works neglect to preserve pixel values or features
from in-focus sharp regions. By mining (based on the DP
model) similarities between features before and after our
deblur module, we preserve features from all-in-focus re-
gions and improve feature quality, leading to better image
restoration performance.

Please note that all intermediate parts (e.g., the train-
able kernel set and disparity estimator) do not require ex-
tra ground-truth information (e.g., pre-calibrated kernel sets
and disparity) for training. We only need ground-truth all-
in-focus images for end-to-end training.

Our contributions are summarized below:
• A simple K3DN framework for DP image pair defocus

deblurring;
• A disparity-aware deblur module. It has a trainable

kernel set, and estimates a disparity feature map to
query the set to estimate a DP blur kernel that best de-
scribes the spatial varying blur;

• A reblurring regularization module. It follows the DP
model, reuses the blur kernel from the deblur module,
and regularizes the deblur module;

• A sharp region preservation module. It mines in-focus
regions of DP pairs, improves feature quality from in-
focus regions, resulting in better restoration perfor-
mance.

Experimentally, we validate the proposed K3DN on four
standard benchmark datasets [1,2,15,16], showing state-of-
the-art performance in image restoration and model size.

2. Related Works

End-to-end-based method. Existing methods directly
restore all-in-focus images from defocus blurred DP pairs.
Abuolaim et al. [1] propose the first deep learning frame-
work for DP pair defocus deblurring. In their following

work [2], a synthetic dataset (that uses the Butterworth fil-
ter to benefit approximations of DP kernels) is proposed to
help model performance. Instead of using the left and right
view of the DP pair, several works consider a center view
(i. e., an average) of the DP pair. Ruan et al. [17] use filter
dynamic networks [5] to adaptively infer pixel-wise convo-
lution kernels. Son et al. iteratively learn deblur kernels for
different feature channels with the shape attention mech-
anism [26]. Zamir et al. [24] introduce the self-attention
mechanism [21] over feature channels to this task. Though
favourable performance is achieved, they ignore the DP for-
mulation during network design.
Disparity-based method. This strategy restores an all-in-
focus image while estimating DP disparity or defocus map.
Pan et al. [15] use ground-truth DP disparity during net-
work training, but the DP disparity is hard to obtain. Liang
et al. [11] use the translating disk proposed by Abhijith et
al. [16] to estimate a four-layer defocus mask by a four-
branch network, and then employ another four-branch net-
work for deblurring. Lee et al. [10] estimate disparity unsu-
pervisedly by using a spatial transformer to warp a left-view
DP image to its right view. However, the warping ignores
the difference between the disparity of the classical stereo
model and the DP model [16]. Xin et al. [23] decompose
the blurred image layer-wisely to estimate the defocus map
and the all-in-focus image jointly. However, manually de-
fined parameters and pre-calibrated kernel sets are required,
which is hard to generalize. Although several works use re-
bur loss to regularize the deblur model, their rebur models
need to be specially trained with extra parameters.

This paper follows disparity-based approaches but is dif-
ferent from the past works in three main factors: i) un-
like [10, 15], our blur kernels are shared in the deblurring
and reblurring processes through only an inverse operation;
ii) different from [11,23], our K3DN do not need those pre-
calibrated kernel set and pre-defined thresholds to layerwise
the defocus mask/map; iii) we observe the importance of
preserving the non-blurred (i. e., in-focus) regions when de-
blurring, and preserve those sharp features by following the
DP formulation and blur model.

3. K3DN

3.1. Problem Definition

For a DP sensor, the left and right views (BL,BR) are
formed by light rays of the scene that pass through the left
and right sub-aperture. When a point is outside the depth-
of-field (DoF) of the sensor, its reflected rays are defocused,
and this point is defocus blurred in the left and right views
while forming a relative shift, e.g., points on the surface of
the sphere in Fig. 2. For light rays coming from a point
inside the DoF, there is no difference between the left and
right view images, and they are both in-focus, e.g., points
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on the surface of the cone in Fig. 2.
Assuming constant scene depth, the left and right DP im-

ages (BL,BR) can be separately modeled by left and right
kernels (KL,KR) and an associated all-in-focus image I,

BL = I⌦KL, BR = I⌦KR , (1)

where ⌦ denotes the convolution operation. The left kernel
equals the right kernel flipped about the vertical axis (which
is the axis perpendicular to the axis of disparity), i.e., KL =

flip(KR)
1, and vice versa.

For BL and BR, they can be thought of as a two-sample
lightfield [16, 23] with a sum equivalent to the image cap-
tured by a regular sensor B,

B =
1

2
(BL +BR) = I⌦ 1

2
(KL +KR) = I⌦K , (2)

where K is horizontally symmetric based on the DP model.
Given a scene with varying depth, the defocus blur in DP

images is spatially-varying. In other words, a blurred image
is formed by multiple blur kernels. Regions/Layers of the
DP pair with the same disparity share a specific blur kernel.

For the all-in-focus image I, it can be decomposed into
multiple layers via

I =

Z tf

tn

I�M (t) dt,

Z tf

tn

M (t) dt = 1, (3)

where t is the layer index and corresponds to a specific
scene depth (or image disparity). tn and tf are the near and
far depth bounds, respectively. M (t) is an impulse func-
tion, to sample image pixels corresponding to the t-th layer.
� denotes the element-wise multiplication, and 1 denotes
an all-ones matrix with the same size as I.

We numerically evaluate a layer of I using quadrature,

I =

TX

i=1

I
i, I

i
= I�M

i, (4)

where M
i is a binary mask with value ones in the region

corresponding to the i-th layer of I. T is the number of
quantization intervals (layers). Pixels in I

i have the same
disparity.

Substituting Eq. 4 into Eq. 2, we have the DP model,

B =

TX

i=1

B
i
=

TX

i=1

I
i ⌦K

i , (5)

where B
i
= I

i ⌦ K
i is the i-th layer of the DP image se-

lected by M
i.

Transforming convolution into element-wise multiplica-
tion in the frequency domain, we have

F(B
i
) = F(I

i
)� F(K

i
) , (6)

1The assumption of symmetric left and right kernels has been widely
used in the community [4, 16]. However, a special case occurred in the
Pixel phone, where the left and right kernels additionally spatially-varying
for constant scene depth. This is caused by the optical imperfections of
cheap smartphone lenses [23].
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Figure 2. Illustration of the DP image formulation. Here is an ex-
ample of a sphere outside and a cone within the camera DoF. Rays
from the sphere form two defocus blurred regions on the left/right
DP views with a detectable disparity, where the disparity is di-
rectly correlated to the amount of defocus blur, i. e., blur kernels.
Rays from points of the cone object intersect at the sensor and are
in-focused. The resulting regions in the DP pairs (i. e., left and
right views) exhibit no disparity. An auxiliary line is drawn to in-
dicate the DP disparity.

where F(·) denotes the discrete Fourier transform. The
restoration of the all-in-focus image I is given by

I =

TX

i=1

B
i ⌦ F 0

✓
1

F(Ki)

◆
, (7)

where F 0
(·) is the inverse discrete Fourier transform. Note

that Eq. 5 and Eq. 7 separately constrain kernels K
i used

in the blurring and deblurring processes in a closed-form
expression. Based on this observation, our key idea is to
use a neural network to estimate a kernel that best describes
the blurring of Ii and deblurring of Bi.

Specifically, we use a network to estimate a kernel set
K = {Ki | i = 1, · · · , N}. For the i-th layer of the blurred
image B, we first estimate its corresponding disparity fea-
tures and then use these features to query the kernel set K,
to estimate the best kernel that corresponds to B

i. Finally,
the estimated kernel is used to deblur B

i. Collecting all
deblurred image layers composes our restored image Î.
Overall architecture. In practice, considering that neural
networks are good at extracting features, we propose to first
embed original blurry DP images into a high-dimensional
feature space and then perform the proposed deblurring pro-
cess (Eq. 7) on feature maps channel-wisely. Finally, a de-
coder network is used to restore Î from deblurred feature
maps. Our overall framework is given in Fig. 3. The fol-
lowing section details each component of our K3DN.

3.2. Spatial Varying Deblurring

In this section, we elaborate on all components of our
K3DN. Detailed component structures and parameters are
given in the supplementary material.
Encoder. We use a convolution-based encoder E(·, ·) to
embed a DP image pair into a high-dimensional feature
space, i. e., extract a feature map FB = E(BL,BR), where
FB 2 RHf⇥Wf⇥Cf . Hf , Wf , and Cf are the height, width, and
channel of the encoded feature map, respectively.
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Figure 3. Overall architecture of K3DN. Given input blurry DP
images (BL,BR), they are simultaneously passed to an encoder
to extract a feature map FB, and a disparity estimator to extract
a disparity feature map R. Note that R and FB are spatially
aligned, i. e., for each feature vector r

i 2 R, we can easily find
its corresponding features Fi

B (the i-th layer of FB). R is used to
query a trainable kernel set K to estimate the best kernel K̂i for
F

i
B. A PSF block takes FB and its corresponding spatial-varying

kernels as input, and performs a simple Fourier transform to de-
blur FB, and outputs a deblurred feature map F̂B. By comparing
the similarity of FB and F̂B, an SRP block mines in-focus sharp
regions within DP images, and preserves features from these re-
gions to improve the feature map quality. Finally, a decoder re-
stores sharp image Î from the output feature map of the SRP block.

Disparity estimator. We borrow the architecture from
[3], and adapt a lightweight encoder D(·, ·) to extract a
disparity feature map R = D(BL,BR), where R 2
RHd⇥Wd⇥Cd .
The alignment of encoder and disparity estimator.

Note that FB and R are spatially aligned since we only per-
form convolution operations on a DP pair. R 2 RHd⇥Wd⇥Cd

can be considered as a set of Cd-dimensional feature vec-
tors r

i 2 RCd⇥1, which is extracted at Hd ⇥Wd spatial
locations, i. e., {ri|i = 1, ...,Hd ⇥Wd}. The correspond-
ing i-th layer of the feature map FB can be found by per-
forming nearest neighbor interpolation 2, and is given by

F
i
B 2 R

H
f

H
d
⇥ W

f

W
d
⇥Cf . Note that Fi

B with the same disparity
feature vector ri share a specific blur kernel. r

i is used as
a proxy to query a trainable kernel set for estimating the
specific blur kernel.
Kernel estimation. We maintain a trainable kernel set
K = {Ki | Ki 2 RHk⇥Wk⇥Cf , i = 1, ..., N} for the fea-
ture space, where Hk, Wk, Cf , N are height, width, channel
and the number of kernels, respectively. Each K

i follows
Eq. 2 by the symmetry constraint, i.e., Ki

R = flip(K
i
L).

Note that the channel of kernels equals that of FB since we
will estimate a kernel that deblurs FB channel-wisely.

By comparing r
i and K, we estimate a weighting vector

a
i 2 RN⇥1, describing the contribution of each element in

2If the sizes of an image and its disparity map are different, the only
correct way to find the disparity value of an image pixel is performing
nearest neighbor interpolation, to avoid the wrong interpolation at disparity
discontinuity regions/boundaries.

the kernel set K. We have

a
i
= �

⇣
Wv

�
Sum(WK ~K)� (Wrr

i
)
�⌘

, (8)

WK 2 RHk⇥Wk⇥Cf⇥N is a weighting tensor to project (~)
the kernel set. Specifically, for the i-th kernel Ki 2 K,
the i-th slice along the last dimension of WK is used to
weight (Hadamard product) Ki. Sum(·) returns the sum of
all elements for each weighted kernel and outputs a N -dim
vector. Wr 2 RN⇥Cd and Wv 2 RN⇥N are weighting
matrices. �(·) is the Softmax function to enforce

P
a
i
= 1.

We use the weighting vector ai to aggregate the trainable
kernel set K, and estimate a blur kernel K̂i describing the
blurring process of Fi

B,

K̂
i
=

NX

j=1

aijK
j , (9)

where aij is the j-th element of ai, and it denotes the weight
of the j-th trainable kernel Kj .

Eq. 8 and Eq. 9 can be viewed as a differentiable pool-
ing of N trainable kernels. To avoid hard-assignment of one
kernel from K to F

i
B, which is not differentiable, we replace

it with a soft assignment of kernels to F
i
B, by estimating a

K̂
i using r

i as a proxy. Practically, we use sparse represen-
tation for K to reduce trainable parameters, keeping only
one sub-kernel of Ki 2 K to be non-zero.
PSF block. With K̂

i and F
i
B, the proposed PSF block

performs a simple Fourier transform to deblur Fi
B channel-

wisely. The deblurred i-th feature layer F̂i
B is given by

F̂
i
B = F

i
B ⌦ F 0

(
1

F(K̂i)
), i = 1, ...,Hd ⇥Wd . (10)

Eq. 10 can be implemented easily via depth-wise convo-
lution in Pytorch or Tensorflow. Collecting all deblurred
feature layers composes our deblurred feature map FB.
SRP block. Some feature layers F

i
B should not be de-

blurred 3 as they correspond to in-focus regions of DP im-
ages. We observe features from these regions retained
similarity before and after the PSF block. Therefore, we
compare FB and F̂B, use an SRP block S (·, ·) to mine in-
focus regions, and preserve features from these regions to
improve the feature quality. Motivated by the attention
mechanism [21], we define the similarity OB between FB

and F̂B as

OB = Attention (QB, KB) , (11)

QB = �Q

⇣
CAT(FB, F̂B)

⌘
, QB 2 RHf⇥Wf⇥2Cf , (12)

KB = �K

⇣
CAT(FB, F̂B)

⌘
, KB 2 RHf⇥Wf⇥2Cf , (13)

where CAT(·, ·) denotes concatenation. �Q(·) and �K(·) are
two simple convolutions to obtain the query QB and KB from

3Ideally, deblurring with a impulse function. In practice, we can only
approximate it while introducing unwanted artifacts.
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(a) (b) (c) (d)

Figure 4. (a)(c): Two sample DP images B; (b)(d): Visualizations
of their corresponding OB. Note that we can easily identify sharp
regions from OB, which corresponds to bright regions. Since fea-
tures from sharp image regions are preserved before and after our
deblur module (i. e., Fi

B and F̂
i
B are similar), their dot products

are large, resulting in bright regions.

original feature maps. To save computations, we only per-
form local attention operations. Specifically, for a feature
vector of QB, it only attends to (dot product) spatially nearby
feature vectors in KB, rather than all features in KB. We
constrain the attention window size at s ⇥ s. Aggregating
attention scores for all query vectors in QB, we obtain the
similarity OB 2 RHf⇥Wf⇥s

2

. We provide a visualization of
OB in Fig. 4.

The similarity (or attention score map) OB is used to
refine features FB and F̂B, and the refined feature map
S(FB, F̂B) is given by

S(FB, F̂B) = FFN
�
VB + VB̂

�
, (14)

VB = �V1 (OB)� FB, VB 2 RHf⇥Wf⇥Cf , (15)

VB̂ = �V2 (OB)� FB̂, VB̂ 2 RHf⇥Wf⇥Cf , (16)

where VB and VB̂ are the aggregated values from FB and
F̂B, respectively. FFN(·) is a feed forward network.

Decoder. Given refined feature map S(FB, F̂B) from the
SRP block, We use a convolution based decorder G(·) to
restore an all-in-focus image Î.

3.3. Regularization by Reblurring

We have presented our deblurring process in Sec. 3.2.
The key finding is that we can estimate a kernel K̂i describ-
ing the blurring process of F

i
B. According to Eq. 7 and

Eq. 6, the deblurring and blurring processes use the same
kernel. In this section, we present our reblurring (blurring)
process to regularize the learning of K̂i. Please note that
our reblurring process is only used in the network training
stage. The overall framework is given in Fig. 5.

In the training stage, we use the provided in-focus DP
image I as an input to our reblurring process, and restore
a blurry image B̂ =

1
2 (B̂L + B̂R). Note that the clear

feature map FI is blurred by the kernel K̂, to generate a
blurry feature map F̂I,

F̂
i
I = F

i
I ⌦ K̂

i , i = 1, ...,Hd ⇥Wd. (17)

The blurry feature map F̂I is further refined by the SRP
block and decoded to restore B̂. By supervising B̂ using
the ground-truth blurry image B, we regularize the learning

E
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e
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PSF block SRP block

D
e
c
o

d
e
r

Kernel K̂

I, I

FI F̂I

B̂

Figure 5. Overall architecture of our reblurring process. Given
input in-focus DP image I, it is first duplicated and then passed
to the same encoder, PSF block, SRP block, and decoder given in
Sec. 3.2. Note that the same kernel K̂ (Eq. 9) is used as an input
to the PSF block.

of the blur kernel K̂.
Remark. Note that [10] and [23] also have reblur
schemes. However, their reblur schemes use independent
parameters, thus their reblurring and blurring processes use
different kernels. This limitation reduces their models’ gen-
eralization ability. Please refer to comparisons on the DPD-
disp dataset (Fig. 7) and our supplementary material.

3.4. Loss

To train our network, we have deblurring loss Ldeb and
reblurring loss Lreb (refer to our supplementary material for
details). Our overall training loss L is given by

L = Ldeb(I, Î) + �1Lreb(B, B̂), (18)

where �1 is a balancing weight.

4. Experiment

4.1. Experimental setup

Synthetic dataset. We evaluate our method on two syn-
thetic DP datasets, namely, the DDD-syn [15] and RDPD
[2] datasets. DDD-syn provides 5,000 and 500 pairs of
defocus and all-in-focus images for training and testing,
respectively. This dataset is synthesized from the NYU
RGBD dataset [18], approximating the DP kernel with inte-
gral image. RDPD provides 10,115 training and 1,005 test-
ing image pairs that are synthesized from the SYNTHIA
dataset [6] by using the Butterworth filter.
Real dataset. We evaluate our method on two real DP
datasets, namely, the DPD-blur [1] and DPD-disp [16]
datasets. They are captured by the Canon EOS 5D Mark IV.
DPD-blur provides 350 training and 76 testing image pairs.
DPD-disp has 100 defocus blurred DP images, without pro-
viding corresponding all-in-focus images. Our model is
qualitatively evaluated on the DPD-disp dataset, using pre-
trained model on the DPD-blur dataset.
Evaluation metric. We evaluate the quality of restored
images with using standard metrics, i. e., peak signal-to-
noise ratio (PSNR), structural similarity (SSIM) [22], rela-
tive error (RMSE rel) [15], and mean absolute error (MAE).
Moreover, we use the number of parameters and flops (with
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Table 1. Comparison of image restoration performance and computation cost on the DPD-blur dataset [1]. ‘*’ indicates the method is
trained with extra data. We highlight the best and the second-best numbers in red and blue, respectively.

Method Restoration Performance Computation Cost
PSNR" SSIM" RMSE rel(10�2) # MAE(10�1) # Params (M) Flops (G)

Input 23.89 0.725 6.39 0.471 - -
EBDB [7] 23.69 0.707 6.54 0.471 - -
DMENet [9] 23.90 0.720 6.38 0.470 26.71 4787
DPDNet [1] 25.13 0.787 5.54 0.401 31.03 3150
KPAC [19] 25.22 0.774 5.48 0.400 1.58 349
RDPD⇤ [2] 25.39 0.772 5.38 0.400 24.28 901
DDDNet [15] 25.41 0.786 5.36 0.385 6.40 1661
DRBNet⇤ [17] 25.73 0.791 5.17 0.393 11.69 1273
DeepRFT [14] 25.71 0.801 5.18 0.389 9.60 3682
IFAN [10] 25.99 0.804 5.01 0.373 10.48 794
BAMBNet [11] 26.40 0.821 4.79 0.450 4.50 1804
Restormer [24] 26.66 0.833 4.65 0.350 26.13 4458
Ours (Tiny) 26.74 0.825 4.60 0.351 3.00 571
Ours (Lightweight) 26.84 0.829 4.55 0.349 5.00 1033
Ours (Large) 27.06 0.835 4.44 0.341 15.90 3352

Table 2. Comparison of image restoration performance on the
DDD-syn dataset [15].

Method PSNR" SSIM" RMSE rel(10�2) # MAE(10�1) #
Input 31.06 0.895 2.80 0.165
EBDB [7] 26.48 0.683 4.74 0.363
DMENet [9] 30.14 0.939 3.11 0.177
DPDNet [1] 31.45 0.926 2.68 0.160
RDPD⇤ [2] 32.42 0.912 2.39 0.155
DDDNet [15] 33.21 0.956 2.17 0.094
DeepRFT [14] 36.53 0.952 1.49 0.096
IFAN [10] 34.18 0.929 1.95 0.124
BAMBNet [11] 35.90 0.954 1.60 0.117
Restormer [24] 36.44 0.957 1.50 0.104
Ours (Tiny) 36.18 0.953 1.55 0.113
Ours (Lightweight) 37.50 0.960 1.33 0.083
Ours (Large) 38.23 0.965 1.23 0.076

Table 3. Comparison of image restoration performance on the
RDPD dataset [2].

Method PSNR" SSIM" RMSE rel(10�2) # MAE(10�1) #
Input 25.32 0.679 5.42 0.313
EBDB [7] 24.23 0.637 6.14 0.357
DMENet [9] 25.17 0.731 5.51 0.319
DPDNet [1] 29.84 0.828 3.22 0.250
RDPD⇤ [2] 31.09 0.861 2.79 0.160
DDDNet [15] 30.14 0.840 3.11 0.231
DeepRFT [14] 31.71 0.879 2.60 0.162
IFAN [10] 31.12 0.865 2.78 0.181
BAMBNet [11] 31.78 0.867 2.58 0.169
Restormer [24] 32.27 0.871 2.43 0.164
Ours (Tiny) 31.82 0.887 2.56 0.168
Ours (Lightweight) 32.22 0.894 2.45 0.151
Ours (Large) 32.84 0.905 2.28 0.142

image size at 1120⇥ 1680⇥ 3) to measure the computation
cost of each method.
State-of-the-art method. Our method is compared with
EBDB [7], DMENet [9], DPDNet [1], KPAC [19], DDDNet
[15], RDPD [2], DRBNet [17], DeepRFT [14], IFAN [10],
BAMBNet [11], and Restormer [24].
Implementation detail. Our network is trained from
scratch using the AdamW optimizer [12] with a learning
rate of 3 ⇥ 10

�4 and a batch size of 4. Please refer to the
supplementary material for adapting our model on single
image defocus deblurring tasks.

4.2. Results

Quantitative evaluation. The comparisons with state-of-
the-art methods on the DPD-blur, DDD-syn, and RDPD
datasets are given in Tab. 1, Tab. 2 and Tab. 3, respectively.
For our method, we train three models (Tiny, Lightweight,
and Large) by varying the number of parameters (see our
supplementary material for details). We have the follow-

ing observations according to the comparisons: i) with a
similar number of parameters and flops as the second-best
method Restormer, our method (Large) consistently out-
performs all methods on all datasets. For example, the
PSNR (dB) of our method (Large) and Restormer on the
DPD-blur, DDD-syn, and RDPD datasets are 27.06/26.66,
38.23/36.44, 32.84/32.27, respectively; ii) though the per-
formance of the second-best method Restormer is compara-
ble with respect to our lightweight model, Restormer has
large computation costs (26.13M parameters and 4458G
flops). In contrast, our lightweight model (5.00M param-
eters and 1033G flops) has small computation costs, and
ranks third place overall.
Qualitative evaluation. The comparisons with state-of-
the-art methods on the two real datasets DPD-blur and
DPD-disp are given in Fig. 6 and Fig. 7, respectively. The
results show that our method restores clearer images with
sharp edges than state-of-the-art methods. For example, our
restored texts in Fig. 6 and Fig. 7 are clearer than others.
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Figure 6. Comparison of image restoration performance on the DPD-blur dataset [1]. The large sharp images in the first column are
ground-truth sharp images. The small sharp images in the second column are cropped images from the green bounding box in the large
ground-truth sharp images. The blurred images in the second column are corresponding input blurry images (BL).

Table 4. The effectiveness of our network modules.
Components PSNR" SSIM"

PSF Block SRP Block Reblur
3 3 3 26.84 0.829
3 3 7 26.80 0.828
3 7 3 26.76 0.826
7 3 7 26.69 0.825
3 7 7 26.68 0.823

Sharp region preservation. Not all regions in an input
blurry DP image are defocus blurred, and pixel values of
these sharp (or in-focus) regions should not be altered by
a deblurring method. To show the efficacy of our method
in preserving sharp regions of an input DP image, we man-
ually label sharp regions of testing DP images of the real
DPD-blur dataset. We compare pixel values of input DP
images and output restored clear images, corresponding to

these sharp regions. We use two metrics: i) an error map,
i. e., absolute pixel value difference; ii) intensity error dis-
tribution, i. e., the percentage of pixels with respect to dif-
ferent pixel value difference thresholds. One sample error
map and the intensity error distribution are given in Fig. 8.
We have the following observation. Most current state-of-
the-art methods largely alter pixel values of in-focus sharp
regions. In contrast, our method can detect and preserve
pixel values of in-focus sharp regions, and outperforms cur-
rent state-of-the-art methods.

4.3. Ablation

Architecture. We first validate the effectiveness of our
network modules, i. e., the PSF block, SRP block, and Re-
blurring regularization. The results are given in Tab. 4. It
shows that the best performance is obtained when all three
network modules are used. Removing modules will reduce
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Figure 7. Comparison of image restoration performance on the DPD-disp dataset [16]. The large blurred images in the first column are
input blurry images (BL). The small blurred images in the second column are cropped images from the green bounding box in the large
input blurry images. Note that the DPD-disp dataset does not provide ground-truth sharp images.
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Figure 8. The efficacy of sharp region preservation. Left: error
maps of different methods. The brighter the color, the larger the
error. Right: Intensity error (i. e., ‘RMSE rel’) distributions of
different methods on DPD-blur dataset [1]. We show the percent-
age of pixels with respect to different error thresholds. At each
error threshold, the larger the percentage, the better the method.

the performance of our model.
Kernel set size. Our method has a trainable kernel set K,
with size at N . We study the impact of kernel set size N , by
varying N from 64 to 192. The results are given in Tab. 5.
It shows that our image restoration performance improves
with respect to an increasing number of kernels. We set
N = 128, balancing the computational cost and perfor-
mance of our model.
Scalability. We investigate the scalability of our method
by building three model variants (i. e., tiny, lightweight, and
large) of K3DN. They have a different number of param-

Table 5. The impact of the size of kernel set K.

N 64 96 128 160 192

PSNR" 26.71 26.76 26.84 26.85 26.87
SSIM" 0.822 0.823 0.829 0.829 0.830

eters and flops (please refer to supplementary material for
details). The comparisons of the model performance on
the DPD-blur, DDD-syn, and RDPD datasets are given in
Tab. 1, Tab. 2 and Tab. 3, respectively. The results show that
our large model achieves the best performance. Please note
that the PSNR of our tiny model is better than those of cur-
rent state-of-the-art methods on the real DPD-blur dataset.

5. Conclusion

In this paper, we have proposed the K3DN framework
for DP pair defocus deblurring. It has three new modules.
We first maintain a trainable kernel set and use DP dispar-
ity to dynamically estimate a kernel that best describes the
spatial varying blur. With the estimated kernel, our PSF
block performs a simple Fourier transform for deblurring.
We then use an SRP block to preserve in-focus sharp re-
gions of the input DP images. Finally, in the training stage,
we propose a reblurring module to regularize the estimated
kernel, by performing a simple convolution. Experimen-
tal results on both synthetic and real datasets show that our
method outperforms state-of-the-art methods.
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