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Figure 1. Visualizations of DetCLIPv2 for open-vocabulary word-region alignment. DetCLIPv2 is able to detect broad concepts.

Abstract
This paper presents DetCLIPv2, an efficient and scalable

training framework that incorporates large-scale image-
text pairs to achieve open-vocabulary object detection
(OVD). Unlike previous OVD frameworks that typically rely
on a pre-trained vision-language model (e.g., CLIP) or ex-
ploit image-text pairs via a pseudo labeling process, Det-
CLIPv2 directly learns the fine-grained word-region align-
ment from massive image-text pairs in an end-to-end man-
ner. To accomplish this, we employ a maximum word-region
similarity between region proposals and textual words to
guide the contrastive objective. To enable the model to gain
localization capability while learning broad concepts, Det-
CLIPv2 is trained with a hybrid supervision from detection,
grounding and image-text pair data under a unified data
formulation. By jointly training with an alternating scheme
and adopting low-resolution input for image-text pairs, Det-
CLIPv2 exploits image-text pair data efficiently and ef-
fectively: DetCLIPv2 utilizes 13× more image-text pairs
than DetCLIP with a similar training time and improves
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performance. With 13M image-text pairs for pre-training,
DetCLIPv2 demonstrates superior open-vocabulary detec-
tion performance, e.g., DetCLIPv2 with Swin-T backbone
achieves 40.4% zero-shot AP on the LVIS benchmark,
which outperforms previous works GLIP/GLIPv2/DetCLIP
by 14.4/11.4/4.5% AP, respectively, and even beats its fully-
supervised counterpart by a large margin.

1. Introduction
Traditional object detection frameworks [6,35,36,57] are

typically trained to predict a set of predefined categories,
which fails to meet the demand of many downstream appli-
cation scenarios that require to detect arbitrary categories
(denoted as open-vocabulary detection, OVD). For exam-
ple, a robust autonomous driving system requires accurate
predictions for all classes of objects on the road [26]. Ex-
tending traditional object detectors to adapt these scenar-
ios needs tremendous human effort for extra instance-level
bounding-box annotations, especially for rare classes. To
obtain an open-vocabulary detector without the expensive
annotation process, the central question we should ask is:
where does knowledge about unseen categories come from?
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Recent works [16,44,51] try to achieve open-vocabulary
object detection by transferring knowledge from a pre-
trained vision-language (VL) model [20, 33, 49]. E.g.,
ViLD [16] distills the CLIP’s [33] image embeddings of
cropped proposals into the proposal features of a detection
model. However, these solutions suffer from the domain
gap problem: VL models are typically pre-trained with
an image-level supervision using a fixed resolution input,
which are not capable of recognizing objects with various
scales in the detection task, especially for small objects.

Another line of work resorts to exploiting massive
image-text pairs crawled from the Internet. To utilize the
image-text pair data without instance-level annotation, ap-
proaches [13, 14, 19, 27, 48, 54] generate pseudo-bounding-
box labels following a self-training paradigm [40] or based
on a pre-trained VL model [33]. However, their final per-
formance is restricted by the quality of pseudo-labels pro-
vided by a detector trained with limited human-annotated
concepts or a VL model suffering from the aforementioned
domain gap problem. Besides, using high-resolution inputs
similar to detection data for massive image-text pairs will
impose a huge computational burden on training, prevent-
ing us from further scaling up image-text pairs.

To address the above issues, we present DetCLIPv2, an
end-to-end open-vocabulary detection pre-training frame-
work that effectively incorporates large-scale image-text
pairs. DetCLILPv2 simultaneously learns localization ca-
pability and knowledge of broad concepts without relying
on a teacher model to provide pseudo labels. Specifically,
we perform joint training with heterogeneous data from
multiple sources, including detection [38], grounding [22]
and image-text pairs [7, 39], under a unified data formula-
tion. To enable image-text pairs without instance-level an-
notations to facilitate learning of detection, inspired by [49],
we employ an optimal matching-based set similarity be-
tween visual regions and textual concepts to guide the con-
trastive learning. By alternating different types of data for
training, we enable a “flywheel effect”: learning from de-
tection data provides accurate localization, which helps ex-
tract representative regions for contrastive learning, while
contrastive learning from image-text pairs helps recognize
broader concepts, which further improves the localization
of unseen categories. As the training goes on, the detector
learns to locate and recognize increasingly rich concepts.

Furthermore, to relief the computation burden brought
by large-scale image-text pairs, we adopt a low-resolution
input for image-text pair data, which significantly improves
the training efficiency. This is a reasonable design since the
caption of image-text pair data typically describes only the
main objects appearing in the image, which alleviates the
necessity of high-resolution training.

Benefiting from the effective designs, DetCLIPv2
demonstrates superior open-vocabulary detection perfor-
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Figure 2. Different OVD training paradigms. (a) Distilling
knowledge from a pre-trained VL model [16]. (b) Exploiting
image-text pairs via pseudo labeling [27]. (c) Our end-to-end joint
training eliminates complex multi-stage training schemes, allow-
ing for mutual benefits in learning from different types of data.

mance and promising scaling behavior. E.g., compared
to the prior work DetCLIP [48], DetCLIPv2 is able to
exploit 13× more image-text pairs while requiring only
a similar training time. Using the vanilla ATSS [53] as
the detector, DetCLIPv2 with Swin-T backbone achieves
40.4% zero-shot AP on the LVIS [17] benchmark, sur-
passing previous works GLIP [27]/GLIPv2 [52]/DetCLIP
[48] by 14.4/11.4/4.5% AP, respectively. DetCLIPv2 also
exhibits great generalization when transferring to down-
stream tasks, e.g., it achieves SoTA fine-tuning performance
on LVIS and ODinW13 [27]. We present a possibility
of achieving open-world detection by incorporating large-
scale image-text pairs and hope it will enlighten the commu-
nity to explore a similar successful trajectory to CLIP [33].

2. Related Work

Vision-Language Pre-training (VLP). Conventional
vision-language models are designed to serve a specific
task, e.g., VQA [2, 15, 24, 28] and image caption-
ing [1, 30, 45, 50], etc. Recently, there has been a trend to
develop generic vision-language representation learning
systems by exploiting large-scale low-cost image-text
pairs. For example, CLIP [33] and ALIGN [20] perform
cross-modal contrastive learning on millions of image-text
pairs and achieve impressive zero-shot image classification
performance. The most relevant work to our approach is
FILIP [49], which proposes a cross-modal late interaction
mechanism based on a word-patch similarity to better
facilitate image-text alignment. However, it is non-trivial to
leverage the idea to construct an open-vocabulary detection
system, for which our approach provides a solution.

Open-vocabulary object detection (OVD) emerges re-
cently as a more general and practical paradigm to detect
objects of unbounded concepts. Inspired by the success of
vision-language pre-training, recent works [16, 44, 51, 54]
propose to transfer knowledge of a pre-trained VL model
(e.g., CLIP [33]) into a detector. Another effective idea is
to use a wider source of training data. E.g, [13,14,19,27,48]
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incorporate low-cost image-text pairs to expand domain
coverage via a pseudo labeling process. XDETR [5] in-
tegrates a standard contrastive learning in VLP [20, 33] to
learn image-to-text alignment. Detic [55] turns to solve
a large-vocabulary detection problem by directly assigning
classification labels to the max-size region proposals. Un-
like previous works, our approach targets on building an
end-to-end framework that effectively learns word-region
alignment from massive image-text pairs without relying on
a teacher model.

Semi-supervised Object Detection (SSOD) methods [40,
41, 46, 58] aim to improve object detection systems by ex-
ploiting unlabeled data on the basis of some available la-
beled data. Although effective in improving performance,
these methods still assume a closed-domain setting where
the categories in unlabeled data should be covered by la-
beled data. On the other hand, Weakly-supervised Ob-
ject Detection (WSOD) methods [3, 8, 32] aim to establish
localization-capable detectors by leveraging image-level la-
bels, which also require a set of pre-defined categories. Dif-
fering from methods in these fields, our approach considers
a more challenging open-domain setting and targeting on
establishing an open-world detector by learning unlimited
concepts from massive image-text pairs.

3. The Proposed Approach
An overview framework of the proposed approach is il-

lustrated in Figure 3. To construct a robust open-world ob-
ject detection system, DetCLIPv2 incorporates data from
different sources, i.e., detection, grounding, and image-text
pairs, for pre-training. We first introduce a unified paral-
leled data formulation enabling a training with heteroge-
neous supervisions (Sec. 3.1). To utilize image-text pairs
without instance-level annotations, we introduce a fine-
grained contrastive learning that automatically aligns tex-
tual words and visual regions (Sec. 3.2). Finally, we in-
troduce the model architecture/training objective (Sec. 3.3)
and the joint-training details (Sec. 3.4).

3.1. A Unified Data Formulation
Following DetCLIP [48], we use a paralleled formula-

tion to unify the formats of data from different sources.
Specifically, we formulate each data sample as a triplet:
(xI , {bi}Ni=1, {tj}Mj=1), where xI ∈ R3×h×w is the image,
{bi|bi ∈ R4}Ni=1 and T = {tj}Mj=1 denote a set of bound-
ing box annotations and concept names, respectively. The
triplet is constructed for different types of data differently:

• Detection. T is constructed from a sampled category
names of the dataset, which consists of categories ap-
pearing in the image and additional randomly-sampled
negative categories. To explicitly provide the relation-
ships between various concepts, We apply concept en-
richment [48] during both training and testing phases,

i.e., each tj is obtained by concatenating its category
name with the corresponding definition.

• Grounding. We first extract noun phrases (provided in
annotations) from the original caption to form a posi-
tive concept set Tpos = {tj}|pos|j=1 . To provide enough
negative concepts for learning, we further randomly
sample a negative concept set Tneg = {tj}|neg|j=1 that
does not contained in the caption (i.e., Tpos∩Tneg = ∅)
from a constructed concept dictionary [48]. The final
category name set is formed by T = Tpos ∪ Tneg .

• Image-text pairs. As instance-level annotation is not
available, we have {bi}Ni=1 = ∅. T consists of the
original caption and noun phrases extracted from it1.

For detection and grounding data, each bi is labeled with
a concept tj , which enables the learning of open-vocabulary
object detection. We describe it as follows.

Open-vocabulary object detection. As illustrated in Fig-
ure 3, we use a dual-stream architecture which consists of an
image encoder and a text encoder. The image encoder is an
arbitrary-form object detector that takes an image xI as the
input and outputs a set of region proposals P = {pk}Kk=1

(for one-stage detector, K equals to number of anchors), as
well as their classification features fP ∈ RK×D, where D
is the feature dimension. For the text side, we treat each
concept name tj as a sentence and forward all tj ∈ T to the
text encoder separately to obtain the sentence embeddings
fT ∈ RM×D. Following previous works [20, 33, 52], to in-
crease the number of negative samples, we collect fT across
a global batch and remove duplicate concepts contained in
different samples in a batch, which gives a gathered text
embedding fTbatch ∈ RMB×D, where MB is the total num-
ber of concepts in a global batch after deduplication. Then
we calculate the similarity matrix S ∈ RK×MB between fP

and fTbatch by

S = fP (fTbatch)⊤ (1)

When instance-level annotations are available, e.g., for
detection and grounding data, we can construct a target
matrix G ∈ {0, 1}K×MB following a ground-truth assign-
ment process in conventional object detection frameworks
[36, 43, 53], then the alignment loss Lalign(S,G) (detailed
in Sec. 3.3) can be calculated; while for image-text pairs
where the instance-level annotation is not available, we
elaborate our approach in the Sec. 3.2.

3.2. Learning from Image-text Pairs
Massive image-text pairs crawled from the Internet can

provide rich knowledge for the learning of visual-language
models. However, due to the lack of instance-level anno-
tations, it is non-trivial to leverage image-text pairs to im-
prove a dense prediction (e.g, object detection) learning sys-

1We use NLP parser provided by Spacy [18] repository.
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Figure 3. Overall architecture of DetCLIPv2. DetCLIPv2 performs a joint training with detection, grounding and image-pair data in an
end-to-end manner. The architecture consists of an image encoder to extract region embeddings fP from an input image and a text encoder
to compute word embeddings fT for the input noun phrases. For detection and grounding data, the learning is performed by aligning
the word-region similarity matrix S to a target matrix constructed with instance-level annotations. For image-text pairs, we calculate an
optimal match-based set similarity between fT and fP to guide the contrastive learning, enabling the learning of word-region alignment.

tem. Inspired by [49], we introduce a contrastive learn-
ing method to learn a fine-grained word-region correspon-
dences without relying on instance-level annotation, which
is described as follows.

Word-region alignment similarity. Given an image-text
pair (xI , xT ), we extract a set of noun phrases T = {tj}Mj=1

from xT and take (xI , {tj}Mj=1) as the input of the model.
The image encoder generates a set of proposals P =
{pk}Kk=1 from xI with their region features fP ∈ RK×D

and the text encoder extracts text embeddings fT ∈ RM×D

of {tj}Mj=1. Our word-region alignment contrastive learning
is constructed based on the set similarity between P and T .
Specifically, for j-th concept tj ∈ T , we find its closest
match in P by calculating

mj = argmax
0<k≤K

[fT ]⊤j [f
P ]k, (2)

where [fP ]k is the k-th region feature in fP , and similar for
[fT ]j . This operation can be interpreted as, for each concept
we find a region that best fits its description. Then we cal-
culate the text-to-image similarity sT between xI and xT

by aggregating all word-to-region similarities, i.e.,

sT (xI , xT ) =
1

M

M∑
j=1

[fT ]⊤j [f
P ]mj

(3)

Note that the image-to-text similarity sI(xI , xT ) can be
calculated in a similar way. However, we exclude this part
from our algorithm, since image-text pairs crawled from the
Internet suffer from a severe partial labeling problem – for
the vast majority of data, the text describes only a small
fraction of the objects appearing in the image, i.e., most
of region proposals cannot find their corresponding match
in the caption texts. Including image-to-text matching can
result in a noticeable performance degradation, for which
we give an ablation in Sec. 4.2.1.

Another reasonable consideration is that each textual
concept should correspond to multiple regions. This design
can be modeled by using a softmax-weighted-sum similar-
ity between a textual concept and all visual regions, i.e.,

sT (xI , xT ) =
1

M

M∑
j=1

P∑
k=1

exp(sj,k/τt)∑P
i=1 exp(sj,i/τt)

sj,k (4)

where sj,k = [fT ]⊤j [f
P ]k is the similarity between j-th tex-

tual concept and k-th visual region, and τt is a temperature
hyper-parameter to control sharpness of the softmax-based
weights (when τt → 0, Eq. 4 degrades to Eq. 3). We inves-
tigate this design in Sec. 4.2.1.

Image-text contrastive loss. Based on the introduced
word-region alignment similarity, a standard contrastive
learning between image-text pairs can be performed
[33]. Specifically, assume a batch of B image-text pairs
{(xI

i , x
T
i )}Bi=1, the contrastive loss Lcts is formulated as

Lcts = LT→I = − 1

B
log

exp(sT (xI
i , x

T
i )/τ)∑B

j=1 exp(s
T (xI

j , x
T
i )/τ)

(5)

where sT (xI
i , x

T
j ) is text-to-image word-region alignment

similarity between i-th image xI
i and j-th text xT

j , which is
given by Eq. 3, and τ is a temperature to scale the logits.
As discussed before, we only consider text-to-image con-
trastive loss. By incorporating the word-region alignment
similarity, the contrastive loss helps the model learn fine-
grained word-region correspondences automatically.

Proposal selection. Intuitively, we expect to select the most
representative regions in an image to calculate similarities
with textual concepts. There are several schemes to accom-
plish this. For example, many detectors incorporate class-
agnostic object scores in their designs, e.g., foreground clas-
sification score in RPN [36], centerness in FCOS [43], etc.,
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which can be utilized to generate high-quality region pro-
posals with good generalization [16, 23]. However, these
approaches fail to take the textual information into consider-
ation. To select regions valuable for contrastive learning, for
each candidate region, we calculate its similarities with all
textual concepts within a local batch, and use the maximum
similarity as its objectness score. The benefits of this design
are two-fold: (1) it selects the regions most relevant to the
text description; (2) it selects hard negative concepts that
described in other texts which may benefit the contrastive
learning. With the objectness score, we select top-k pro-
posals after a NMS operation. Different proposal selection
strategies and the optimal k are studied in Sec. 4.2.1.

3.3. Model Architecture and Training Objective

Model architecture. Similar to DetCLIP [48], DetCLIPv2
is built using the vanilla ATSS [53] detector equipped with
a transformer-based [33, 34] text encoder. We do not intro-
duce additional heavy modules such as DyHead [9] adopted
in [27, 52] and cross-modal fusion adopted in [12, 27, 52].

A special design is that we insert a lightweight de-
formable convolution [56] at the beginning of the classifi-
cation head, which uses the features output by the regres-
sion head to calculate the spatial offsets and the modulation
scalar, and aggregates the features from the backbone out-
put. The motivation is that when training with image-text
pairs, there is no supervision signal on the regression branch
and therefore no gradient is generated. This design helps the
gradient from the classification head to flow back to the re-
gression head, so that the regression head also benefits from
training with massive image-text pairs. I.e., learning a bet-
ter spatial aggregation for backbone features helps regres-
sion head acquire better localization ability. We show this
neat design provides substantial performance improvement
when training with image-text pairs (see Sec. 4.2.2).

Training Objective. The overall objective of DetCLIPv2
can be formulated as

L =


Lalign + αLreg + βLcenter, for detection
Lalign, for grounding
λLcts, for image-text pairs

(6)
where Lalign is the alignment loss described in Sec. 3.1;
Lcts is the contrastive loss in Eq. 5; Lreg and Lcenter are
regression and centerness losses, respectively; α, β and λ
are loss weights. Following ATSS [53], we use focal loss
for Lalign, GIoU loss [37] for Lreg, and cross-entropy loss
for Lcenter. We remove the localization loss for grounding
data due to its inaccurate bounding box annotations.
3.4. Joint Training

DetCLIPv2 performs a joint training with heterogeneous
datasets. During training, we group data belonging to the
same type for a global batch. At each iteration, we sample

Dataset Type Volume

Objects365 [38] (O365) Detection 0.66M
GoldG [22] Grounding 0.77M
CC15M
(CC3M [39]+CC12M [7]) Image-text pairs

13M
(3M+10M)

Table 1. A summary of training data. CC15M contains only 13M
image-text pairs since some urls are invalid.

one type of data for training. Different data types are trained
with different input resolutions and batch sizes. Specif-
ically, we use a high-resolution input with a small batch
size for detection and grounding data; while for image-
text pairs, a low-resolution input with a large batch size
is adopted, which helps increase the number of negative
samples in contrastive learning and considerably reduce the
training cost of massive image-text pairs.

4. Experimental Results
4.1. Implementation Details

Training Dataset. We use multiple datasets from differ-
ent sources for training (Table 1). Specifically, for detec-
tion data, we use a sampled subset from Objects365v2 [38]
dataset (denoted as O365) with 0.66M images; for ground-
ing data, we use GoldG [22] with COCO [29] images re-
moved, which results in a fairer zero-shot evaluation on
LVIS [17]. For image-text pairs, we use 2 versions of
Conceptual Captions (CC) datasets, i.e., CC3M [39] and
CC12M [7] (together denoted as CC15M).

Training details. We use Swin-transformer [31] backbones
for image encoder. For text encoder, the maximum token
length is set to 16 for efficient training and inference. We
initialize the text-encoder with a pretrained FILIP model
[49]. 32/64 V100 GPUs are used for training Swin-T/L-
based models, respectively. For detection and grounding
data, we use input resolution 1333 × 800 with a batch size
of 128/256 for Swin-T/L models (4 per card), respectively;
and for image-text pairs, we use input resolution 320× 320
with a batch size of 6144 (192/96 per card for Swin-T/L
model). We set α = 2 and β = 1 and λ = 0.1 in Eq. 6.
Without otherwise specified, all models are trained with 12
epochs. More training details can refer to Appendix.

Evaluation benchmark. Following GLIP [27] and Det-
CLIP [48], we evaluate our method’s zero-shot perfor-
mances on LVIS [17] with 1203 categories. Fixed AP [10]
on LVIS minival5k are reported for ablation and compar-
ison with other methods. To further study the generaliza-
tion ability of our method, we also evaluate with ODinW13
dataset [27, 52], which contains 13 downstream detection
tasks with highly varied distributions. We focus on the
GLIP protocol [27] rather than the ViLD protocol [16] that
splits LVIS into seen/unseen categories, since the former is
a stronger and more practical open-world setting that does
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not make any prior assumptions on downstream tasks while
the latter still requires partial LVIS data for training.

4.2. Ablation Studies
4.2.1 Ablations for Image-text Contrastive Learning
We investigate key factors for our image-text contrastive
learning to work in Table 2. The experiments are conducted
with Swin-T-based model on O365+CC3M datasets.

Proposal selection strategy. Selecting representative re-
gions is critical for image-text contrastive learning. Ta-
ble 2a studies multiple class-agnostic objectness scores for
selecting proposals, which includes foreground classfica-
tion score [47] (row1), IoU score [21] (row2) and center-
ness [43] (row3). Except for centerness which is originally
designed in ATSS [53], other 2 scores are predicted by plug-
ging in an additional head after the regression branch. We
consider 3 additional scores to utilize textual information:
(1) sample-wised text similarity (row4), i.e., each region
calculates the similarities with the textual concepts of the
sample and the maximum similarity is used as the object-
ness score; (2) batch-wised text similarity (row5), i.e., the
similarities are calculated between a region and textual con-
cepts within a local batch, as described in Sec. 3.2; and (3)
multiplying the batch-wised text similarity with the center-
ness score (row6), which is commonly adopted by conven-
tional detectors [43, 53].

Among 3 class-agnostic objectness scores, centerness
and IoU scores are superior to classification score, indicat-
ing that localization-based objectness scores provide better
class-agnostic proposals. The result is consistent with the
observations in [23]. Considering only the sample-wised
text similarity performs worse than using class-agnostic
scores, since the regions selected in this way make it easier
to distinguish between positive and negative samples in the
contrastive learning, thus reducing the learning efficiency.
Batch-wise similarity addresses the problem by consider-
ing text similarities with negative samples and achieves the
best performance of 31.3 AP. Further integrating centerness
score results in a performance drop to 30.9 AP.

Word-region alignment strategy. Table 2b investigates
word-region alignment strategies described in Sec. 3.2.
Specifically, for fine-grained word-region alignment, 2
matching strategies are studied: (1) 1-to-1 match (row2),
i.e., each textual concept is matched with its closest region
and (2) 1-to-many match (row3), i.e., each textual concept
calculates similarities with all regions, which is then aggre-
gated through a softmax-weighted-sum operation. Besides,
we also study a coarse-grained image-text matching strat-
egy proposed in [55] (row1). Specifically, it directly cal-
culates the similarity between the max-size proposal of im-
age and the entire caption of text. Both fine-grained word-
region alignment strategies outperform the coarse-grained
image-text alignment. Assigning each textual concept with

the closest region reaches the best performance (31.3 AP)
and substantially saves the GPU memory compared to the
1-to-many strategy, which allows a larger batch size to boost
the contrastive learning.

Number of proposals k. Table 2d investigates the optimal
k when selecting proposals. We vary k from 25 to 200.
Using a large k = 200 results in too many low-quality can-
didates that slightly decreases the performance. A too small
k = 25 leads to insufficient region extraction which causes
a noticeable performance drop. A modest design with 100
proposals achieves the best performance.

Contrastive loss design. Table 2c performs ablation exper-
iments on different sides of the image-text contrastive loss
(Eq. 5). 3 designs are considered: (1). only image-to-text
side loss; (2) only text-to-image side loss; and (3) bilateral
loss. As discussed in Sec. 3.2, using only image-to-text con-
trastive loss can lead to a significant performance degrada-
tion (29.8 AP) due to the partial labeling problem of the
image-text pair data. Excluding image-to-text contrastive
loss can alleviate the problem and achieving a better perfor-
mance of 31.3 AP.

Temperature and Loss weight. Table 2e and 2f study
the optimal values of temperature τ in Eq. 5 and loss
weight λ in Eq. 6, respectively. The default values of
λ = 1, τ = 0.07 commonly adopted in standard constas-
tive learning methods [33, 49] perform poorly in our case.
We use τ = 0.5 and λ = 0.1 as our final setting.

4.2.2 Effectiveness of Deformable Module

Table 3 studies the effectiveness of the proposed deformable
module described in Sec. 3.3. The deformable module ef-
fectively promotes the weakly supervised learning. Specifi-
cally, it presents negative effect when trained with strongly
supervised detection data (row1 and 2), while demonstrat-
ing substantial performance improvement when incorpo-
rating grounding/image-text pair data without localization
supervisions (row3 and 4). Besides, the lightweight de-
formable module introduces negligible computational cost
in terms of training time.

4.2.3 Incorporating More Data Helps Learning

Table 4 reports the performance gains when scaling up the
training data. With the proposed framework, incorporating
more training data from different sources can consistently
improve the performance. Compared to training with only
Objects365, including CC3M effectively improves the over-
all AP from 28.6 to 31.3, especially for rare categories (from
24.2 to 29.4, +5.2 AP). GoldG helps significantly improve
the overall AP to 38.4 thanks to its instance-level annota-
tions. Including CC12M pushes the envelop further, achiev-
ing a 40.4 overall AP which already surpasses the perfor-
mance of the fully-supervised method (see Table 6).
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# Strategy AP (r/c/f)
1 cls 28.4 (26.6/28.2/28.8)
2 IoU 30.1 (30.0/30.1/30.2)
3 centerness 30.2 (28.4/30.6/30.1)
4 text sim (S) 29.6 (24.9/29.5/30.5)
5 text sim (B) 31.3 (29.4/31.7/31.3)
6 +centerness 30.9 (30.2/31.1/30.8)

(a) Proposal selection strategy. Batch-wised
text similarity generates better proposals for
contrastive learning.

# Strategy AP (r/c/f) Memory
1 max-bbox 29.8 (28.5/39.5/30.4) 19.8 GB
2 1-to-1 31.3 (29.4/31.7/31.3) 20.6 GB
3 1-to-many 30.9 (31.3/30.7/31.1) 26.0 GB

(b) Word-region matching strategy. Match-
ing each textual concept to the closest region is
effective and memory-efficient.

Design AP (r/c/f)
text-to-image 31.3 (29.4/31.7/31.3)
image-to-text 29.8 (30.0/29.7/29.9)

bilateral 30.9 (30.0/31.5/30.5)

(c) Contrastive loss design. Excluding image-
to-text contrastive loss can boost the perfor-
mance.

Top-k AP (r/c/f)
25 30.6 (29.9/30.5/30.8)
50 30.8 (30.2/30.6/31.0)
100 31.3 (29.4/31.7/31.3)
200 30.8 (29.4/30.6/31.1)

(d) Number of proposals. We use k = 100.

τ AP (r/c/f)
1 30.1 (28.4/30.3/30.3)

0.5 31.3 (29.4/31.7/31.3)
0.15 30.8 (29.6/31.0/30.9)
0.07 29.2 (27.5/29.0/29.6)

(e) Temperature τ . τ = 0.5 works the best.

λ AP (r/c/f)
0.03 30.5 (29.6/30.0/31.0)
0.1 31.3 (29.4/31.7/31.3)
0.3 30.9 (29.4/31.5/30.7)
1 28.9 (27.7/28.8/29.3)

(f) Contrastive loss weight. We use λ = 0.1.

Table 2. Ablation experiments for image-text contrastive learning. The models are based on the Swin-T backbone and trained with
O365+CC3M dataset. We report zero-shot fixed AP (%) [10] on LVIS minival5k [22]. r/c/f indicate AP of rare/common/frequent categories,
respectively. Designs with higher overall AP (marked in gray ) are selected as our final setting.

Pretrain-data deform AP (r/c/f) iter time (s)

O365 ✗ 28.8 (26.0 / 28.0 / 30.0) 0.925
O365 ✓ 28.6 (24.2 / 27.1 / 30.6) 1.075
O365+GoldG+CC3M ✗ 37.3 (34.1 / 36.9 / 38.2) 0.980
O365+GoldG+CC3M ✓ 38.4 (36.7 / 37.9 / 39.1) 1.092

Table 3. The deformable module effectively improves the
weakly-supervised learning while introducing negligible compu-
tational cost. ’iter time’ is the training time per iteration.

Pretrain-data AP (r/c/f)

O365 28.6 (24.2 / 27.1 / 30.6)
O365+CC3M 31.3 (29.4 / 31.7 / 31.3)
O365+GoldG+CC3M 38.4 (36.7 / 37.9 / 39.1)
O365+GoldG+CC15M 40.4 (36.0 / 41.7 / 40.0)

Table 4. Incorporating more data from different sources con-
sistently improves the performance.

Model Pretrain-data
Training time
(GPU hours)

Training
FPS

GLIP-T [27]† O365+GoldG 7.4k (3.0k)† 1.6
DetCLIP-T [48] O365+GoldG+YFCC1M 2.0k 4.1
DetCLIPv2-T O365+GoldG+CC15M 2.1k 25.7

Table 5. Training efficiency. For DetCLIP, we directly use the re-
sult reported in the paper; while for GLIP, we calculate the training
time based on the FPS provided in the paper. †: 7.4k is calculated
based on the official implementation which trains 30 epochs, while
3.0k is obtained by converting it to our setting of 12 epochs.

4.2.4 Training Efficiency

We develop DetCLIPv2 with several designs that facilitate
training efficiency, including using low-resolution inputs
for image-text pairs, limiting the maximum token length of
the text encoder to 16, etc. Table 5 compares the training
efficiency of DetCLIPv2 with that of GLIP [27] and Det-
CLIP [48]. First, both DetCLIP and DetCLIPv2 are more
efficient than GLIP due to the lightweight architecture de-
sign, as described in Sec. 3.3. Besides, DetCLIPv2 is much

faster than DetCLIP: it exploits 13× more image-text pairs
than DetCLIP with a similar training time, achieving more
than 6× FPS speed up (25.7 FPS v.s. 4.1 FPS). This indi-
cates the great scaling property of our method and allows
a possibility of incorporating a larger-scale image-text pairs
to build a more powerful open-vocabulary detection system.

4.3. Main Results
4.3.1 Zero-shot Performance on LVIS
To compare with the existing works, We train DetCLIPv2
with the best setting reported in 4.2.1. We vary models’
capacity by considering two backbones, i.e., swin-T and
swin-L [31], denoted as DetCLIPv2-T/L, respectively. Ta-
ble 6 reports the comparison with MDETR [22], GLIP [27],
GLIPv2 [52], and DetCLIP [48] on zero-shot performance.
For better demonstration, we also report the performances
of the fully-supervised method on LVIS.

DetCLIPv2 outperforms the existing methods by a large
margin. Compared to GLIP/GLIPv2, DetCLIPv2 uses a
more lightweight backbone (without heavy DyHead [9]
and cross-modal fusion) but still achieves better perfor-
mances, e.g., DetCLIPv2-T outperforms GLIP-T/GLIPv2-
T by 14.4/11.4 AP, respectively. Compared to DetCLIP,
DetCLIPv2 achieves 4.5 (40.4 v.s. 35.9) and 6.1 (44.7
v.s. 38.6) AP performance gains for Swin-T- and Swin-
L-based models, respectively. Despite using more training
data, our total training cost is on par with DetCLIP [48], as
reported in Table 5. Notably, our models beat their fully-
supervised conterparts in a zero-shot manner, e.g, +6.8/0.8
AP for Swin-T- and Swin-L-based models, respectively. Es-
pecially, due to the long-tailed property of LVIS, the im-
provements over rare categories are significant, i.e., more
than 10 AP improvements can be observed on both models.

4.3.2 Transfer Results with Fine-tuning
We study the transferability of DetCLIPv2 by fine-tuning
it on down-stream tasks. Specifically, we conduct full-
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Method Detector (Backbone) Pre-Train Data LVIS
AP APr / APc / APf

MDETR [22] DETR [6] (RN101) GoldG+ 24.2 20.9 / 24.3 / 24.2

Supervised ATSS [53] (Swin-T) LVIS 33.6 19.7 / 32.4 / 37.2
GLIP-T [27] DyHead [9] (Swin-T) O365,GoldG,Cap4M 26.0 20.8 / 21.4 / 31.0
GLIPv2-T [52] DyHead [9] (Swin-T) O365,GoldG,Cap4M 29.0 - / - / -
DetCLIP-T [48] ATSS [53] (Swin-T) O365,GoldG,YFCC1M 35.9 33.2 / 35.7 / 36.4
DetCLIPv2-T (ours) ATSS [53] (Swin-T) O365,GoldG,CC15M 40.4 36.0 / 41.7 / 40.0

Supervised ATSS [53] (Swin-L) LVIS 43.9 30.6 / 43.6 / 46.6
GLIP-L [27] DyHead [9] (Swin-L) O365,GoldG,Cap24M 37.3 28.2 / 34.3 / 41.5
DetCLIP-L [48] ATSS [53] (Swin-L) O365,GoldG,YFCC1M 38.6 36.0 / 38.3 / 39.3
DetCLIPv2-L (ours) ATSS [53] (Swin-L) O365,GoldG,CC15M 44.7 43.1 / 46.3 / 43.7

Table 6. Zero-shot performance on LVIS minival5k [22]. Fixed AP [10] is reported. DetCLIPv2 achieves SoTA performance.

Method LVIS ODinW13
AP (APr/APc/APf ) average AP

GLIP-T [27] - 64.9
GLIPv2-T [52] †50.6 ( - / - / - ) 66.5
DetCLIPv2-T (ours) 50.7 (44.3/52.4/50.3) 68.0

GLIP-L [27] - 68.9
GLIPv2-B [52] †57.3 ( - / - / - ) 69.4
GLIPv2-H [52] †59.8 ( - / - / - ) 70.4
DetCLIPv2-L (ours) 60.1 (58.3/61.7/59.1) 70.4

Table 7. Fine-tuning performance. Fixed AP [10] on LVIS mini-
val5k [22] and average AP on ODinW13 [27] are reported. Num-
bers with † mean mask annotation are used for training.

shot fine-tuning on LVIS [17] with 1203 categories and
ODinW13 [27, 52] containing 13 detection tasks. The re-
sults are shown in Table 7. Without using mask annota-
tion for training, DetCLIPv2 slightly outperforms GLIPv2
on LVIS, e.g., 50.7 AP of DetCLIPv2-T v.s. 50.6
AP of GLIPv2-T. On ODinW13, DetCLIPv2-T demon-
strates superior performance compared to GLIP-T/GLIPv2-
T, outperforming GLIP-T/GLIPv2-T by 3.1/1.5 average
AP, respectively; and DetCLIPv2-L with Swin-L backbone
achieves the same performance (70.4 average AP) with
GLIPV2-H that uses a heavier Swin-H backbone.

4.4. Visualizations and Analyses

Visualization of word-region alignment. Figure 1 visual-
izes the learning results of word-region alignment on image-
text pairs in CC12M [7]. For each textual concepts, we find
its best matching with the highest similarity to it, as de-
scribed in Sec. 3.2. Our approach achieves accurate word-
region alignment (on instance-level) with great generaliza-
tion, which is demonstrated by several aspects: (1) it suc-
cesses to recognize concepts that do not covered by detec-
tion datasets, e.g., ‘parsley’ in case (b); (2) it works for im-
ages with natural distribution shifts [42], e.g., the sketch
image in case (a) and the cartoon image in case (e); and (3)
it is capable of resolving co-reference expressions, e.g., the

Pretrain-data AR (s/m/l)

O365 44.9 (35.2 / 52.9 / 62.0)
O365+GoldG 57.2 (42.1 / 67.0 / 76.2)
O365+GoldG+CC15M 59.4 (44.5 / 69.4 / 76.8)

Table 8. Average recall (AR) across 0.5-0.95 IoU on LVIS. s/m/l
denote for small/medium/large objects, respectively.

‘juvenile’ in case (h) refers to ‘young bird’ and ‘curator’ in
case (c) refers to a person. These capabilities are critical
for open-world detectors but cannot be reflected well in the
commonly adopted evaluation benchmarks like LVIS [17].

Learning from image-text pairs benefits localization. Ta-
ble 8 provides more evidences showing that learning from
image-text pairs also helps localization. Specifically, we
evaluate the average recall across 0.5-0.95 IoU on LVIS and
compare models trained with different data. Incorporating
image-text pairs brings a significant and comprehensive re-
call improvements for small, medium, and large objects.

5. Conclusion
Learning from massive Internet-crawled data to achieve

generic visual/language understanding systems has always
been an important topic for both NLP [4, 11, 34] and CV
[20, 25, 33] fields. In this paper, we present DetCLIPv2,
a unified end-to-end pre-training framework towards open-
vocabulary object detection. By employing a best-matching
set similarity between regions and words to guide the con-
trastive objective, we effectively leverage massive image-
text pairs to serve the object detection task. Experiments
demonstrate DetCLIPv2’s superior open-vocabulary perfor-
mance and its broad domain coverage. Our method provides
a possible way to achieve open-world detection by further
scaling up image-text pairs and we leave it to future work.
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