
Local Implicit Normalizing Flow for Arbitrary-Scale Image Super-Resolution

Jie-En Yao⇤1, Li-Yuan Tsao⇤1, Yi-Chen Lo†2, Roy Tseng†2, Chia-Che Chang†2, and Chun-Yi Lee1
1ElsaLab, National Tsing Hua University, 2MediaTek Inc.

{matt1129yao, lytsao}@gapp.nthu.edu.tw, {yichen.lo, roy.tseng, chia-che.chang}@mediatek.com
cylee@cs.nthu.edu.tw

Abstract

Flow-based methods have demonstrated promising re-
sults in addressing the ill-posed nature of super-resolution
(SR) by learning the distribution of high-resolution (HR)
images with the normalizing flow. However, these methods
can only perform a predefined fixed-scale SR, limiting their
potential in real-world applications. Meanwhile, arbitrary-
scale SR has gained more attention and achieved great
progress. Nonetheless, previous arbitrary-scale SR meth-
ods ignore the ill-posed problem and train the model with
per-pixel L1 loss, leading to blurry SR outputs. In this work,
we propose “Local Implicit Normalizing Flow” (LINF) as
a unified solution to the above problems. LINF models the
distribution of texture details under different scaling fac-
tors with normalizing flow. Thus, LINF can generate photo-
realistic HR images with rich texture details in arbitrary
scale factors. We evaluate LINF with extensive experiments
and show that LINF achieves the state-of-the-art perceptual
quality compared with prior arbitrary-scale SR methods.

1. Introduction

Arbitrary-scale image super-resolution (SR) has gained
increasing attention recently due to its tremendous appli-
cation potential. However, this field of study suffers from
two major challenges. First, SR aims to reconstruct high-
resolution (HR) image from a low-resolution (LR) counter-
part by recovering the missing high-frequency information.
This process is inherently ill-posed since the same LR im-
age can yield many plausible HR solutions. Second, prior
deep learning based SR approaches typically apply upsam-
pling with a pre-defined scale in their network architectures,
such as squeeze layer [1], transposed convolution [2], and
sub-pixel convolution [3]. Once the upsampling scale is de-
termined, they are unable to further adjust the output res-
olutions without modifying their model architecture. This
causes inflexibility in real-world applications. As a result,

* and † indicate equal contribution. This work was developed during
the internship of Jie-En Yao and Li-Yuan Tsao at MediaTek Inc.

Figure 1. A comparison of the previous arbitrary-scale SR ap-
proaches and LINF. LINF models the distribution of texture details
in HR images at arbitrary scales. Therefore, unlike the prior meth-
ods that tend to produce blurry images, LINF is able to generate
arbitrary-scale HR images with rich and photo-realistic textures.

discovering a way to perform arbitrary-scale SR and pro-
duce photo-realistic HR images from an LR image with a
single model has become a crucial research direction.

A natural approach to addressing the one-to-many in-
verse problem in SR is to consider the solution as a dis-
tribution. Consequently, a number of generative-based SR
methods [1, 4–8] have been proposed to tackle this ill-
posed problem. Among them, flow-based SR methods
show promise, as normalizing flow [9–12] offers several
advantages over other generative models. For instance,
flow does not suffer from the training instability and mode
collapse issues present in generative adversarial networks
(GANs) [13]. Moreover, flow-based methods are compu-
tationally efficient compared to diffusion [14] and autore-
gressive (AR) [15, 16] models. Representative flow-based
models, such as SRFlow [1] and HCFlow [7], are able to
generate high-quality SR images and achieve state-of-the-
art results on the benchmarks. However, these methods are
restricted to fixed-scale SR, limiting their applicability.

Another line of research focuses on arbitrary-scale SR.
LIIF [17] employs local implicit neural representation to
represent images in a continuous domain. It achieves
arbitrary-scale SR by replacing fixed-scale upsample mod-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1776

ules with an MLP to query the pixel value at any coordi-
nate. LTE [18] further estimates the Fourier information at
a given coordinate to make MLP focus on learning high-
frequency details. However, these works did not explicitly
account for the ill-posed nature of SR. They adopt a per-
pixel L1 loss to train the model in a regression fashion. The
reconstruction error favors the averaged output of all possi-
ble HR images, leading the model to generate blurry results.

Based on the observation above, combining flow-based
SR model with the local implicit module is a promising di-
rection in which flow can account for the ill-posed nature
of SR, and the local implicit module can serve as a solu-
tion to the arbitrary-scale challenge. Recently, LAR-SR [8]
claimed that details in natural images are locally correlated
without long-range dependency. Inspired by this insight, we
formulated SR as a problem of learning the distribution of
local texture patch. With the learned distribution, we per-
form super-resolution by generating the local texture sepa-
rately for each non-overlapping patch in the HR image.

With the new problem formulation, we present Local Im-
plicit Normalizing Flow (LINF) as the solution. Specifi-
cally, a coordinate conditional normalizing flow models the
local texture patch distribution, which is conditioned on the
LR image, the central coordinate of local patch, and the
scaling factor. To provide the conditional signal for the
flow model, we use the local implicit module to estimate
Fourier information at each local patch. LINF excels the
previous flow-based SR methods with the capability to up-
scale images with arbitrary scale factors. Different from
prior arbitrary-scale SR methods, LINF explicitly addresses
the ill-posed issue by learning the distribution of local tex-
ture patch. As shown in Fig 1, hence, LINF can generate
HR images with rich and reasonable details instead of the
over-smoothed ones. Furthermore, LINF can address the is-
sue of unpleasant generative artifacts, a common drawback
of generative models, by controlling the sampling tempera-
ture. Specifically, the sampling temperature in normalizing
flow controls the trade-off between PSNR (fidelity-oriented
metric) and LPIPS [19] (perceptual-oriented metric). The
contributions of this work can be summarized as follows:

• We proposed a novel LINF framework that leverages
the advantages of a local implicit module and normal-
izing flow. To the best of our knowledge, LINF is the
first framework that employs normalizing flow to gen-
erate photo-realistic HR images at arbitrary scales.

• We validate the effectiveness of LINF to serve as a uni-
fied solution for the ill-posed and arbitrary-scale chal-
lenges in SR via quantitative and qualitative evidences.

• We examine the trade-offs between the fidelity- and
perceptual-oriented metrics, and show that LINF does
yield a better trade-off than the prior SR approaches.

2. Related Work

In this section, we briefly review the previous deep learn-
ing based fixed-scale and arbitrary-scale SR methodologies.

2.1. Fixed-Scale Super-Resolution

A number of previous approaches have been proposed
in the literature with an aim to learn mapping functions
from given LR images to fixed-scale HR ones. These ap-
proaches can be broadly categorized into PSNR-oriented
methods [2, 3, 20–23] and generative model based meth-
ods [1, 4–8, 24–28]. The former category deterministically
maps an LR image to an HR one using the standard L1 or
L2 losses as the learning objectives. Despite the promis-
ing performance on the PSNR metric, the L1 or L2 losses
adopted by such methods usually drives the models to pre-
dict the average of all plausible HR images [1, 24, 29, 30],
leading to an over-smoothed one. On the other hand, the
latter category seeks to address the ill-posed nature of the
SR problem by learning the distribution of possible HR
images. Such methods include GAN-based SR, diffusion-
based SR, flow-based SR, and AR-based SR. GAN-based
SR methods [4, 5, 24, 25] train their SR models with ad-
versarial loss, and are able to generate sharp and natural
SR images. However, they sometimes suffer from train-
ing instability, mode collapse, and over-sharpen artifacts.
Diffusion-based SR methods [6, 26] generate an HR image
by iteratively refining a Gaussian noise using a denoising
model conditioned on the corresponding LR image. These
methods are promising and effective, nevertheless, the slow
iterative denoise processes limit their practical applications.
Flow-based SR methods [1, 7, 27, 28] utilize invertible nor-
malizing flow models to parameterize a distribution. They
are promising and achieve state-of-the-art results on the
benchmark as they possess several advantages over other
generative models, as discussed in Section 1. Among these
methods, SRFlow [1] first pioneered the flow-based SR do-
main. It was then followed by HCFlow [7], which designed
a hierarchical conditional mechanism in the flow framework
and achieved better performance than SRFlow. Recently,
LAR-SR [8] introduced the first AR-based SR model. It di-
vides an image into non-overlapping patches, and learns to
generate local textures in these patches using a local autore-
gressive model.

2.2. Arbitrary-Scale Super-Resolution

Despite the successes, the approaches discussed in Sec-
tion 2.1 are only able to super-resolve LR images with pre-
defined upsampling scales, which are usually restricted to
certain integer values (e.g., 2⇥⇠4⇥). Meta-SR [31] first
attempted to address this limitation by introducing a meta-
learning based method to adaptively predict the weights
of the upscaling filters for each scaling factor. This av-
enue is then explored by a number of follow-up endeav-

1777

Figure 2. An illustration of the proposed LINF framework. LINF
consists of two parts. The local implicit model first encodes an LR
image, a local coordinate and a cell into Fourier features, which
is followed by an MLP for generating the conditional parameters.
The flow model then leverages these parameters to learn a bijective
mapping between a local texture patch space and a latent space.

ors [17, 18, 32–37]. RSAN [32] proposed a scale attention
module to learn informative features according to the speci-
fied scaling factor. ArbSR [33] employed a plug-in module
to perform scale-aware feature adaptation and scale-aware
upsampling. Recently, LIIF [17] introduced the concept of
local implicit neural representation. Given necessary fea-
ture embeddings and a coordinate in the real coordinate
space R2, LIIF enables the RGB value of that pixel coor-
dinate to be decoded by a multilayer perceptron (MLP).
Inspired by [38–41], UltraSR [34] and IPE [35] enhanced
LIIF by introducing positional encoding to the framework,
allowing it to focus more on high-frequency details. The
authors of LTE [18] further introduced the use of Fourier
features in their local texture estimator for estimating the
dominant frequencies of an image.

3. Methodology

In this section, we first formally define the SR problem
concerned by this paper, and provide an overview of the pro-
posed framework. Then, we elaborate on the details of its
modules, followed by a discussion of our training scheme.

Problem definition. Given an LR image I
LR 2

RH⇥W⇥3 and an arbitrary scaling factor s, the objective of
this work is to generate an HR image I

HR 2 RsH⇥sW⇥3,
where H and W represent the height and width of the LR
image. Different from previous works, we formulate SR
as a problem of learning the distributions of local texture
patches by normalizing flow, where ‘texture’ is defined as
the residual between an HR image and the bilinearly up-
sampled LR counterpart. These local texture patches are
constructed by grouping sH ⇥ sW pixels of I

HR into

h⇥ w non-overlapping patches of size n⇥ n pixels, where
h = dsH/ne, w = dsW/ne. The target distribution of a
local texture patch mi,j to be learned can be formulated as
a conditional probability distribution p(mi,j |ILR

, xi,j , s),
where (i, j) represent the patch index, and xi,j 2 R2 de-
notes the center coordinate of mi,j . The predicted local
texture patches are aggregated together to form I

HR

texture
2

RsH⇥sW⇥3, which is then combined with a bilinearly up-
sampled image ILR

" 2 RsH⇥sW⇥3 via element-wise addi-
tion to derive the final HR image I

HR.

Overview. Fig. 2 provides an overview of the LINF
framework, which consists of two modules: (1) a local im-
plicit module, and (2) a coordinate conditional normalizing
flow (or simply “the flow model” hereafter). The former
generates the conditional parameters for the latter, enabling
LINF to take advantages of both local implicit neural repre-
sentation and normalizing flow. Specifically, the former first
derives the local Fourier features [18] from I

LR, xi,j , and
s. The proposed Fourier feature ensemble is then applied
on the extracted features. Finally, given the ensembled fea-
ture, the latter utilizes an MLP to generate the parameters
for the flow model to approximate p(mi,j |ILR

, xi,j , s). We
next elaborate on their details and the training strategy.

3.1. Coordinate Conditional Normalizing Flow

Normalizing flow approximates a target distribution by
learning a bijective mapping f

✓
= f1 � f2 � ... � fl be-

tween a target space and a latent space, where f
✓

denotes a
flow model parameterized by ✓, and f1 to fl represent l in-
vertible flow layers. In LINF, the flow model approximates
such a mapping between a local texture patch distribution
p(mi,j |ILR

, xi,j , s) and a Gaussian distribution pz(z) as:

mi,j = h0

f1

�
f
�1
1

h1

f2

�
f
�1
2

... hk�1

fk

�
f
�1
k

hk ...

fl

�
f
�1
l

hl = z, (1)

where z ⇠ N (0, ⌧) is a Gaussian random variable, ⌧ is a
temperature coefficient, hk = fk(hk�1), k 2 [1, ..., l], de-
notes a latent variable in the transformation process, and
f
�1
k

is the inverse of fk. By applying the change of
variable technique, the mapping of the two distributions
p(mi,j |ILR

, xi,j , s) and pz(z) can be expressed as follows:

log p✓(mi,j |ILR
, xi,j , s) = log pz(z)

+
lX

k=1

log

���det
@fk(hk�1)

@hk�1

���.
(2)

The term log |det@fk(hk�1)
@hk�1

| is the logarithm of the abso-
lute Jacobian determinant of fk. As I

HR

texture
(and hence,

the local texture patches) can be directly derived from I
HR,

I
LR, and s during the training phase, the flow model can be

optimized by minimizing the negative log-likelihood loss.

1778

During the inference phase, the flow model is used to infer
local texture patches by transforming sampled z’s with f

�1.
Note that the values of ⌧ are different during the training and
the inference phases, which are discussed in Section 4.

Implementation details. Since the objective of our flow
model is to approximate the distributions of local texture
patches rather than an entire image, it is implemented with
a relatively straightforward model architecture. The flow
model is composed of ten flow layers, each of which con-
sists of a linear layer and an affine injector layer proposed
in [1]. Each linear layer k is parameterized by a learnable
pair of weight matrix Wk and bias �k. The forward and
inverse operations of the linear layer can be formulated as:

hk = Wkhk�1 + �k , hk�1 = W�1
k

(hk � �k), (3)

where W�1
k

is the inverse matrix of Wk. The Jacobian de-
terminant of a linear layer is simply the determinant of the
weight matrix Wk. Since the dimension of a local texture
patch is relatively small (i.e., n ⇥ n pixels), calculating the
inverse and determinant of the weight matrix Wk is feasible.

On the other hand, the affine injector layers are employed
to enable two conditional parameters ↵ and � generated
from the local implicit module to be fed into the flow model.
The incorporation of these layers allows the distribution of
a local texture patch mi,j to be conditioned on I

LR, xi,j ,
and s. The conditional parameters are utilized to perform
element-wise shifting and scaling of latent h, expressed as:

hk = ↵k � hk�1 + �k , hk�1 = (hk � �k)/↵k, (4)

where k denotes the index of a certain affine injector
layer, and � represents element-wise multiplication. The
log-determinant of an affine injector layer is computed asP

log(↵k), which sums over all dimensions of indices [1].

3.2. Local Implicit Module

The goal of the local implicit module is to generate con-
ditional parameters ↵ and � from the local Fourier features
extracted from I

LR, xq , and s. This can be formulated as:

↵,� = g�(E (v
⇤
, xq � x

⇤
, c)), (5)

where g� represents the parameter generation function im-
plemented as an MLP, xq is the center coordinate of a
queried local texture patch in I

HR, v⇤ is the feature vec-
tor of the 2D LR coordinate x

⇤ which is nearest to xq in
the continuous image domain [17], c = 2/s denotes the
cell size, and xq � x

⇤ is known as the relative coordinate.
Following [18], the local implicit module employs a local
texture estimator E to extract the Fourier features given
any arbitrary xq . This function can be expressed as follows:

E (v
⇤
, xq � x

⇤
, c) : A�

cos(⇡F (xq � x

⇤) + P)
sin(⇡F (xq � x

⇤) + P)

�
, (6)

where � denotes element-wise multiplication, and A, F , P
are the Fourier features extracted by three distinct functions:

A = Ea(v
⇤), F = Ef (v

⇤), P = Ep(c), (7)

where Ea, Ef , and Ep are the functions for estimating am-
plitudes, frequencies, and phases, respectively. In this work,
the former two are implemented with convolutional layers,
while the latter is implemented as an MLP. Given the num-
ber of frequencies to be modeled as K, the dimensions of
these features are A 2 R2K , F 2 RK⇥2, and P 2 RK .

Fourier feature ensemble. To avoid color discontinuity
when two adjacent pixels select two different feature vec-
tors, a local ensemble method was proposed in [17] to allow
RGB values to be queried from the nearest four feature vec-
tors around xq and fuse them with bilinear interpolation. If
this method is employed, the forward and inverse transfor-
mation of our flow model f✓ would be expressed as follows:

z =
X

j2⌥
wj ⇤ f✓(patch; g�(E (vj , xq � xj , c)))

patch =
X

j2⌥
wj ⇤ f�1

✓
(z; g�(E (vj , xq � xj , c))),

(8)

where ⌥ is the set of four nearest feature vectors, and wj is
the derived weight for performing bilinear interpolation.

Albeit effective, local ensemble requires four forward
passes of the local texture estimator E , the parameter
generator g�, and the flow model f✓. To deal with this
drawback, our local implicit module employs a different
approach named “Fourier feature ensemble” to streamline
the computation. Instead of directly generating four RGB
samples and then fuse them in the image domain, we pro-
pose to ensemble the four nearest feature vectors right af-
ter the local texture estimator E . More specifically, these
feature vectors are concatenated to form an ensemble =
concat({wj ⇤E (vj , xq � xj , c), 8j 2 ⌥}), in which each
feature vector is weighted by wj to allow the model to fo-
cus more on closer feature vectors. The proposed technique
requires g� and f✓ to perform only one forward pass to cap-
ture the same amount of information as the local ensemble
method and deliver same performance. It is expressed as:

z = f✓(patch; g�()); patch = f
�1
✓

(z; g�()). (9)

3.3. Training Scheme

LINF employs a two-stage training scheme. In the first
stage, it is trained only with the negative log-likelihood loss
Lnll. In the second stage, it is fine-tuned with an additional
L1 loss on predicted pixels Lpixel, and the VGG perceptual
loss [30] on the patches predicted by the flow model Lvgg .
The total loss function L can be formulated as follows:

L =�1Lnll(patchgt) + �2Lpixel(patchgt, patch⌧=0)

+ �3Lvgg(patchgt, patch⌧=0.8),
(10)

1779

where �1 �2, and �3 are the scaling parameters, patchgt de-
notes the ground-truth local texture patch, and (patch⌧=0,
patch⌧=0.8) represent the local texture patches predicted by
LINF with temperature ⌧ = 0 and ⌧ = 0.8, respectively.

4. Experimental Results

In this section, we report the experimental results,
present the ablation analyses, and discuss the implications.

4.1. Experimental Setups

In this section, we describe the experimental setups. We
compare LINF with previous arbitrary-scale SR methods
and generative SR models to show that LINF is able to gen-
erate photo-realistic HR images for arbitrary scaling factors.

Arbitrary-scale SR. We use the DIV2K [42] dataset for
training and evaluate the performance on several widely
used SR benchmark datasets, including Set5 [43], Set14
[44], B100 [45], and Urban100 [46]. To compare our LINF
with the prior pixel-wise SR methods [17, 18], we set the
patch size n to 1 ⇥ 1, which models the distribution of
a single pixel. We use three different encoders, EDSR-
baseline [21], RDN [22], and SwinIR [23], to extract fea-
tures of LR images. In the first training stage, we train the
models for 1, 000 epochs, with a learning rate of 1⇥ 10�4,
which is halved at epochs [200, 400, 600, 800] for EDSR-
baseline and RDN, and at epochs [500, 800, 900, 950] for
SwinIR. In the second stage, we fine-tune EDSR-baseline
and RDN for 1, 000 epochs, and SwinIR for 1, 500 epochs,
with a fine-tune learning rate of 5 ⇥ 10�5, which is halved
at epochs [200, 400, 600, 800] for EDSR-baseline and RDN,
and at epochs [800, 1100, 1300, 1400] for SwinIR. The pa-
rameters in Eq. (10) are set by �1 = 5⇥ 10�4, �2 = 1, and
�3 = 0. The Adam optimizer is used for training. The batch
size is 16 for EDSR-baseline and RDN, and 32 for SwinIR.

Generative SR. For generative SR, our models are
trained on both the DIV2K [42] and Flickr2K [47] datasets,
with performance evaluation conducted using the DIV2K
validation set. To effectively capture the underlying tex-
ture distribution, we set the patch size n to 3 ⇥ 3. The
RRDB architecture [4] is employed as the encoder. The
training parameters, such as epoch, learning rate, batch size,
and optimizer settings, are maintained in alignment with
RDN. Moreover, we set the loss weighting parameters to be
�1 = 5⇥10�4, �2 = 1, and �3 = 2.5⇥10�2, respectively.

Training strategy. In the proposed LINF methodology,
the model is trained utilizing scaling factors within a con-
tinuous range from ⇥1 to ⇥4. In practice, for each data
sample within a mini-batch, a scale denoted as s is obtained
by sampling from a uniform distribution U(1, 4). The LR
image dimensions are set to 48 ⇥ 48 pixels. As a result,
this configuration necessitates the cropping of HR images

of 48s⇥ 48s pixels from the original training images. Sub-
sequently, these HR images are down-sampled to their cor-
responding 48 ⇥ 48 pixel LR counterparts using bicubic
interpolation. The dimensions of each HR image can be
interpreted as a set of coordinate-patch pairs, with a total
count of (48s)2. From this set, a fixed number of 482 pairs
are selected as the training data to ensure consistency in the
quantity of training data samples across different patches.

Evaluation metrics. In our experiments, fidelity-oriented
metrics, such as Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM), are reported to facilitate
a fair comparison with existing methods. However, PSNR
and SSIM are known to be insufficient in reflecting percep-
tual quality for SR tasks. Therefore, an alternative metric,
referred to as LPIPS [19], is employed to evaluate percep-
tual quality. Moreover, a Diversity metric, defined as the
pixel value standard deviation of five samples, is utilized
when comparing LINF with generative SR models to high-
light the diversity of the SR images generated by LINF.

Inference temperature. While the flow model maps the
target distribution to a standard normal distribution N (0, 1)
during the training phase, temperature can be adjusted in
the testing phase. In the deterministic setting (⌧ = 0), the
flow model operates similarly to PSNR-oriented SR mod-
els by generating the mean of the learned distribution. In
contrast, when employing random samples with ⌧ > 0, the
flow model generates diverse and photo-realistic results. We
report both deterministic and random sample outcomes to
demonstrate the distinct characteristics of our flow model.

4.2. Arbitrary-Scale SR

Table 1 presents a quantitative comparison between our
LINF and the previous arbitrary-scale SR models [17, 18,
31]. Unlike previous arbitrary-scale SR methods, which
only report PSNR, we take LPIPS into consideration to re-
flect the perceptual quality. We report results under deter-
ministic and random sampling settings to validate the effec-
tiveness of our model. In the random sample setting, we set
⌧0 to 0.5 for ⇥2-⇥4 SR. As the SR scale increases, we de-
crease the sampling temperature to obtain more stable out-
puts by setting ⌧0 = 0.4 for ⇥6 SR and ⌧0 = 0.2 for ⇥8
SR. Our observations reveal that LINF significantly outper-
forms the prior methods in terms of the LPIPS metric when
utilizing random sampling, indicating its ability to generate
images with enhanced perceptual quality. The qualitative
results depicted in Fig. 3 support the above findings, indi-
cating that LINF can generate rich texture under arbitrary
scales, while the previous PSNR-oriented method gener-
ates blurrier outcomes. Moreover, LINF maintains compet-
itive performance in terms of PSNR under the deterministic
setting, validating that the learned distribution is centered
around the average of all plausible HR images.

1780

Set5 Set14
Method In-Scale Out-of-scale In-Scale Out-of-scale

⇥2 ⇥3 ⇥4 ⇥6 ⇥8 ⇥2 ⇥3 ⇥4 ⇥6 ⇥8
EDSR-baseline-MetaSR 37.96 / 0.057 34.38 / 0.125 32.07 / 0.175 28.67 / 0.253 26.73 / 0.326 33.60 / 0.094 30.29 / 0.207 28.52 / 0.286 26.31 / 0.395 24.81 / 0.460

EDSR-baseline-LIIF 37.99 / 0.056 34.40 / 0.124 32.24 / 0.173 28.96 / 0.248 26.98 / 0.307 33.66 / 0.093 30.34 / 0.205 28.62 / 0.284 26.45 / 0.390 24.94 / 0.449
EDSR-baseline-LTE 38.04 / 0.056 34.43 / 0.123 32.24 / 0.174 28.97 / 0.257 27.04 / 0.326 33.72 / 0.092 30.37 / 0.203 28.65 / 0.283 26.50 / 0.396 24.99 / 0.463

EDSR-baseline-Ours ⌧ = 0 38.00 / 0.058 34.45 / 0.125 32.26 / 0.176 28.91 / 0.251 26.96 / 0.312 33.62 / 0.096 30.33 / 0.207 28.63 / 0.286 26.46 / 0.395 24.93 / 0.457
EDSR-baseline-Ours ⌧ = ⌧0 37.06 / 0.039 33.39 / 0.067 31.00 / 0.087 27.88 / 0.173 26.69 / 0.254 32.73 / 0.071 29.26 / 0.129 27.54 / 0.189 25.71 / 0.314 24.74 / 0.396

RDN-MetaSR 38.22 / 0.055 34.65 / 0.124 32.40 / 0.173 28.99 / 0.246 26.93 / 0.316 34.15 / 0.086 30.55 / 0.200 28.80 / 0.279 26.50 / 0.381 24.95 / 0.444
RDN-LIIF 38.17 / 0.055 34.68 / 0.122 32.50 / 0.170 29.15 / 0.240 27.14 / 0.299 33.97 / 0.088 30.53 / 0.197 28.80 / 0.277 26.64 / 0.379 25.15 / 0.438
RDN-LTE 38.23 / 0.055 34.72 / 0.122 32.61 / 0.171 29.32 / 0.253 27.26 / 0.316 34.09 / 0.087 30.58 / 0.198 28.88 / 0.277 26.71 / 0.389 25.16 / 0.455

RDN-Ours ⌧ = 0 38.21 / 0.056 34.71 / 0.122 32.50 / 0.172 29.21 / 0.244 27.23 / 0.304 33.91 / 0.089 30.56 / 0.199 28.83 / 0.277 26.65 / 0.386 25.14 / 0.445
RDN-Ours ⌧ = ⌧0 37.36 / 0.038 33.76 / 0.065 31.38 / 0.081 28.32 / 0.160 27.00 / 0.246 33.09 / 0.068 29.60 / 0.125 27.77 / 0.179 25.95 / 0.300 24.95 / 0.381

SwinIR-MetaSR 38.26 / 0.055 34.77 / 0.120 32.47 / 0.168 29.09 / 0.237 27.02 / 0.314 34.14 / 0.086 30.66 / 0.195 28.85 / 0.272 26.58 / 0.379 25.09 / 0.446
SwinIR-LIIF 38.28 / 0.055 34.87 / 0.118 32.73 / 0.168 29.46 / 0.234 27.36 / 0.293 34.14 / 0.087 30.75 / 0.194 28.98 / 0.273 26.82 / 0.377 25.34 / 0.435
SwinIR-LTE 38.33 / 0.055 34.89 / 0.120 32.81 / 0.170 29.50 / 0.243 27.35 / 0.308 34.25 / 0.086 30.80 / 0.194 29.06 / 0.270 26.86 / 0.382 25.42 / 0.449

SwinIR-Ours ⌧ = 0 38.28 / 0.056 34.85 / 0.121 32.74 / 0.170 29.40 / 0.238 27.45 / 0.294 34.13 / 0.087 30.71 / 0.195 28.95 / 0.273 26.84 / 0.376 25.30 / 0.436
SwinIR-Ours ⌧ = ⌧0 37.49 / 0.038 33.94 / 0.066 31.70 / 0.084 28.49 / 0.153 27.19 / 0.236 33.38 / 0.067 29.84 / 0.127 27.98 / 0.176 26.15 / 0.286 25.09 / 0.370

B100 Urban100
Method In-Scale Out-of-scale In-Scale Out-of-scale

⇥2 ⇥3 ⇥4 ⇥6 ⇥8 ⇥2 ⇥3 ⇥4 ⇥6 ⇥8
EDSR-baseline-MetaSR 32.17 / 0.147 29.09 / 0.285 27.55 / 0.376 25.76 / 0.492 24.70 / 0.565 32.10 / 0.065 28.12 / 0.157 25.96 / 0.233 23.59 / 0.352 22.30 / 0.446

EDSR-baseline-LIIF 32.17 / 0.147 29.10 / 0.282 27.60 / 0.372 25.84 / 0.486 24.79 / 0.556 32.15 / 0.064 28.22 / 0.155 26.15 / 0.228 23.79 / 0.338 22.45 / 0.422
EDSR-baseline-LTE 32.21 / 0.146 29.14 / 0.280 27.62 / 0.371 25.87 / 0.495 24.82 / 0.570 32.29 / 0.063 28.32 / 0.152 26.24 / 0.224 23.85 / 0.345 22.53 / 0.436

EDSR-baseline-Ours ⌧ = 0 32.16 / 0.151 29.12 / 0.286 27.61 / 0.374 25.85 / 0.492 24.80 / 0.563 32.11 / 0.066 28.21 / 0.157 26.15 / 0.232 23.79 / 0.344 22.45 / 0.431
EDSR-baseline-Ours ⌧ = ⌧0 31.39 / 0.114 28.21 / 0.174 26.62 / 0.238 25.21 / 0.382 24.64 / 0.486 31.22 / 0.052 27.26 / 0.115 25.15 / 0.184 23.11 / 0.331 22.27 / 0.415

RDN-MetaSR 32.34 / 0.143 29.26 / 0.282 27.71 / 0.369 25.89 / 0.477 24.82 / 0.549 32.96 / 0.055 28.87 / 0.140 26.60 / 0.211 24.00 / 0.317 22.59 / 0.408
RDN-LIIF 32.32/ 0.145 29.26 / 0.278 27.74 / 0.365 25.98 / 0.475 24.91 / 0.544 32.87 / 0.057 28.82 / 0.139 26.68 / 0.209 24.20 / 0.312 22.79 / 0.392
RDN-LTE 32.36 / 0.142 29.30 / 0.275 27.77 / 0.363 26.01 / 0.485 24.95 / 0.561 33.04 / 0.055 28.97 / 0.138 26.81 / 0.206 24.28 / 0.324 22.88 / 0.412

RDN-Ours ⌧ = 0 32.31 / 0.145 29.26 / 0.279 27.75 / 0.366 26.00 / 0.482 24.93 / 0.555 32.86 / 0.057 28.81 / 0.140 26.69 / 0.210 24.19 / 0.317 22.77 / 0.403
RDN-Ours ⌧ = ⌧0 31.60 / 0.111 28.46 / 0.173 26.84 / 0.229 25.40 / 0.365 24.78 / 0.470 32.06 / 0.044 27.97 / 0.099 25.79 / 0.155 23.55 / 0.288 22.60 / 0.376

SwinIR-MetaSR 32.39 / 0.141 29.31 / 0.280 27.75 / 0.365 25.94 / 0.472 24.87 / 0.549 33.29 / 0.052 29.12 / 0.132 26.76 / 0.200 24.16 / 0.315 22.75 / 0.403
SwinIR-LIIF 32.39 / 0.143 29.34 / 0.277 27.84 / 0.362 26.07 / 0.469 25.01 / 0.539 33.36 / 0.054 29.33 / 0.133 27.15 / 0.201 24.59 / 0.299 23.14 / 0.377
SwinIR-LTE 32.44 / 0.139 29.39 / 0.270 27.86 / 0.357 26.09 / 0.476 25.03 / 0.553 33.50 / 0.052 29.41 / 0.130 27.24 / 0.194 24.62 / 0.309 23.17 / 0.396

SwinIR-Ours ⌧ = 0 32.39 / 0.142 29.34 / 0.273 27.83 / 0.361 26.09 / 0.470 25.02 / 0.542 33.27 / 0.053 29.23 / 0.133 27.06 / 0.200 24.54 / 0.299 23.08 / 0.379
SwinIR-Ours ⌧ = ⌧0 31.72 / 0.110 28.55 / 0.170 26.96 / 0.223 25.46 / 0.352 24.85 / 0.457 32.49 / 0.042 28.39 / 0.093 26.16 / 0.144 23.78 / 0.267 22.85 / 0.351

Table 1. The arbitrary-scale SR results of the baselines and LINF (denoted as “Ours”) evaluated on the widely used SR benchmark
datasets [43–46]. Note that PSNR is evaluated on the Y channel of the YCbCr space. The best results are denoted in bold and underlined.

Figure 3. A comparison of the qualitative results evaluated by LTE [18] and our proposed LINF for arbitrary-scale SR.

4.3. Generative SR

Quantitative and qualitative results. We compare LINF
with GAN-based [4, 5], Diffusion-based [6], AR-based [8],
and flow-based [1, 7] SR models in Table 2 and Fig 4.
HCFlow+ and HCFlow++ are two versions of HCFlow [7].
The former employs fine-tuning with an L1 loss to enhance
its PSNR performance, while the latter incorporates a VGG
loss [30] and an adversarial loss to improve visual quality
and LPIPS scores. In the random sampling setting, LINF
outperforms all the baselines in terms of both PSNR and
LPIPS, except for SRDiff and HCFlow++. Although LINF
exhibits a marginally lower PSNR than SRDiff, it signif-
icantly surpasses SRDiff in LPIPS. Moreover, LINF out-
performs HCFlow++ in PSNR with a comparable LPIPS
score. These results suggest that LINF is a balanced model

excelling in both PSNR and LPIPS, and are further corrob-
orated by Fig 4. In the first row, SRFlow yields blurry re-
sults, while HCFlow and GAN-based models generate over-
sharpened artifacts. On the other hand, LINF generates rich
textures and achieves high fidelity when compared to the
ground truth image. This evidence validates the effective-
ness of LINF as a versatile and balanced model for achiev-
ing optimal performance in both PSNR and LPIPS metrics.

Fidelity-perception trade-off. Since SR presents an ill-
posed problem, achieving optimal fidelity (i.e., the dis-
crepancy between reconstructed and ground truth images)
and perceptual quality simultaneously presents a consider-
able challenge [48]. As a result, the trade-off between fi-
delity and perceptual quality necessitates an in-depth ex-

1781

Figure 4. The ⇥4 SR qualitative results of generative SR methods on the DIV2K [42] validation set.

Method PSNR" SSIM" LPIPS# Diversity"

ESRGAN [4] 26.22 0.75 0.124 0
RankSRGAN [5] 26.55 0.75 0.128 0
SRDiff [6] 27.41 0.79 0.136 6.1
LAR-SR [8] 27.03 0.77 0.114 -
SRFlow ⌧ = 0.9 [1] 27.08 0.76 0.121 5.6
HCFlow+ ⌧ = 0.9 [7] 27.11 0.76 0.127 4.7
HCFlow++ ⌧ = 0.9 [7] 26.61 0.74 0.111 5.4
Ours ⌧ = 0.8 27.33 0.76 0.112 5.1

SRFlow ⌧ = 0 [1] 29.05 0.83 0.251 0
HCFlow+ ⌧ = 0 [7] 29.25 0.83 0.262 0
HCFlow++ ⌧ = 0 [7] 29.04 0.82 0.258 0
Ours ⌧ = 0 29.14 0.83 0.248 0

Table 2. The ⇥4 SR results on the DIV2K [42] validation set. Note
that PSNR and SSIM are evaluated on the RGB space. The best
and second best results are marked in red and blue, respectively.

Figure 5. An illustration of the trade-off between PSNR and LPIPS
with varying sampling temperatures ⌧ . The sampling temperature
increases from the top left corner (t = 0.0) to the bottom right cor-
ner (t = 1.0). The x-axis is reversed for improved visualization.

ploration. By leveraging the inherent sampling property of
normalizing flow, it is feasible to plot the trade-off curve
between PSNR (fidelity) and LPIPS (perception) for flow-

Figure 6. An example for depicting the trade-off between fidelity-
and perceptual-oriented results using different temperature ⌧ .

based models by adjusting temperatures, as depicted in
Fig 5. This trade-off curve reveals two distinct insights.
First, when the sampling temperature escalates from low
to high (i.e., from the top left corner to the bottom right
corner), the flow models tend to exhibit lower PSNR but
improved LPIPS. However, beyond a specific temperature
threshold, both PSNR and LPIPS degrade as the tempera-
ture increase. This suggests that a higher temperature does
not guarantee enhanced perceptual quality, as flow mod-
els may generate noisy artifacts. Nevertheless, through ap-
propriate control of the sampling temperature, it is possi-
ble to select the preferred trade-off between fidelity and vi-
sual quality to produce photo-realistic images, as demon-
strated in Fig 6. Second, Fig 5 illustrates that the trade-off
Pareto front of LINF consistently outperforms those of the
prior flow-based methods except at the two extreme ends.
This reveals that given an equal PSNR, LINF exhibits supe-
rior LPIPS. Conversely, when LPIPS values are identical,
LINF demonstrates improved PSNR. This finding under-
scores that LINF attains a more favorable balance between
PSNR and LPIPS in comparison to preceding techniques.

Computation time. To demonstrate the advantages of the
proposed Fourier feature ensemble and local texture patch

1782

Method LPIPS # Time (s)# #Param

LAR-SR [8] 0.114 14.70 62.1M
SRFlow ⌧ = 0.9 [1] 0.121 1.43 39.5M
HCFlow++ ⌧ = 0.9 [7] 0.111 1.46 23.2M
Ours ⌧ = 0.8 0.112 0.54 17.5M

Table 3. The average ⇥4 SR inference time of a single DIV2K [42]
image. The computation time is evaluated on an NVIDIA Tesla
V100. The best results are denoted in bold and underlined.

Method PSNR" SSIM" LPIPS# Time (s)#

Local ensemble 29.04 0.82 0.270 2.16
Fourier ensemble 29.04 0.82 0.270 1.44
Fourier ensemble (-W) 29.03 0.82 0.271 1.39

Fourier ensemble (+P) ⌧ = 0 28.85 0.82 0.273
0.33

Fourier ensemble (+P) ⌧ = 0.6 27.43 0.77 0.158

Table 4. The ⇥4 SR results on the DIV2K [42] validation set.
EDSR-baseline [21] is used as the encoder, -W refers to removing
the amplitude scaling, and +P indicates the usage of 3⇥3 patch-
based model. The computation time is evaluated on an NVIDIA
TITAN X. The best results are denoted in bold and underlined.

based generative approach in enhancing the inference speed
of LINF, we compare the average inference time for a sin-
gle DIV2K image with that of the contemporary generative
SR models [1,7,8]. As shown in Table 3, the inference time
of LINF is approximately 27.2 times faster than the autore-
gressive (AR)-based SR models [8] and 2.6 times faster than
the flow-based SR models [1,7], while concurrently achiev-
ing competitive performance in terms of the LPIPS metric.

4.4. Ablation Study

Fourier feature ensemble. As discussed in Section 3.2,
LINF employs a Fourier feature ensemble mechanism to re-
place the local ensemble mechanism. To validate its effec-
tiveness, we compare the two mechanisms in Table 4. The
results show that the former reduces the inference time by
approximately 33% compared to the latter, while maintain-
ing a competitive performance on the SR metrics. More-
over, neglecting to scale the amplitude of the Fourier fea-
tures with ensemble weights results in a slightly worse per-
formance. This validates that scaling the amplitude of the
Fourier features with ensemble weights is effective, and en-
ables LINF to focus on the more important information.

Analysis of the impact of local region size. As described
in Section 3, our proposed framework aims to learn the tex-
ture distribution of an n ⇥ n local region, where n governs
the region size. As a result, our model can be categorized
as either pixel-based and patch-based by setting n = 1
and n > 1, respectively. Table 4 also presents a quan-
titative comparison between pixel-based and patch-based
models. The results reveal that a pixel-based model can
generate high-fidelity images with a superior PSNR com-
pared to a patch-based one when the temperature is set to

Figure 7. The local incoherence issue of the pixel-based method.
Note that both images are sampled with a temperature of ⌧ = 0.6.

zero. However, in the random sample setting, a patch-based
model can generate higher perceptual quality images with
a lower LPIPS. This phenomenon is attributed to the local-
incoherent issue when sampling with pixel-based method.
Specifically, pixel-wise random sampling can occasionally
result in incoherent color, as illustrated in Fig 7. In con-
trast, a patch-based model preserves local coherency by
considering the distribution of a patch, thereby achieving
enhanced visual quality. In addition, while a pixel-based
model requires H ⇥ W forward passes to generate an im-
age of shape H⇥W , a patch-based model necessitates only
(dH/ne) ⇥ (dW/ne) forward passes, yielding greater effi-
ciency in inference, particularly for larger values of n.

5. Conclusion

In this paper, we introduced a novel framework called
LINF for arbitrary-scale SR. To the best of our knowl-
edge, LINF is the first approach to employ normalizing
flow for arbitrary-scale SR. Specifically, we formulated SR
as a problem of learning the distributions of local texture
patches. We utilized coordinate conditional normalizing
flow to learn the distribution and a local implicit module
to generate conditional signals. Through our quantitative
and qualitative experiments, we demonstrated that LINF
can produce photo-realistic high-resolution images at arbi-
trary upscaling scales while achieving the optimal balance
between fidelity and perceptual quality among all methods.

Acknowledgements

The authors gratefully acknowledge the support from
the National Science and Technology Council (NSTC) in
Taiwan under grant numbers MOST 111-2223-E-007-004-
MY3 and MOST 111-2628-E-007-010, as well as the fi-
nancial support from MediaTek Inc., Taiwan. The authors
would also like to express their appreciation for the dona-
tion of the GPUs from NVIDIA Corporation and NVIDIA
AI Technology Center (NVAITC) used in this work. Fur-
thermore, the authors extend their gratitude to the National
Center for High-Performance Computing (NCHC) for pro-
viding the necessary computational and storage resources.

1783

References

[1] A. Lugmayr, M. Danelljan, L. Van Gool, and R. Timofte. SR-
Flow: Learning the super-resolution space with normalizing
flow. In Proc. European Conf. on Computer Vision (ECCV),
2020. 1, 2, 4, 6, 7, 8

[2] C. Dong, C. C. Loy, and X. Tang. Accelerating the super-
resolution convolutional neural network. In Proc. European
Conf. on Computer Vision (ECCV), pages 391–407, 2016. 1,
2

[3] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R.
Bishop, D. Rueckert, and Z. Wang. Real-time single image
and video super-resolution using an efficient sub-pixel con-
volutional neural network. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 1874–1883,
2016. 1, 2

[4] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and
C. C. Loy. Esrgan: Enhanced super-resolution generative
adversarial networks. In Proc. European Conf. on Computer
Vision Workshop (ECCVW), pages 63–79, 2018. 1, 2, 5, 6, 7

[5] W. Zhang, Y. Liu, C. Dong, and Y. Qiao. Ranksrgan: Gen-
erative adversarial networks with ranker for image super-
resolution. In Proc. IEEE Int. Conf. on Computer Vision
(ICCV), pages 3096–3105, 2019. 1, 2, 6, 7

[6] H. Li, Y. Yang, M. Chang, H. Feng, Z. Xu, Q. Li, and Y.
Chen. Srdiff: Single image super-resolution with diffusion
probabilistic models. Neurocomputing, 479:47–59, 2022. 1,
2, 6, 7

[7] J. Liang, A. Lugmayr, K. Zhang, M. Danelljan, L. Van Gool,
and R. Timofte. Hierarchical conditional flow: A unified
framework for image super-resolution and image rescaling.
In Proc. IEEE Int. Conf. on Computer Vision (ICCV), pages
4056–4065, 2021. 1, 2, 6, 7, 8

[8] B. Guo, X. Zhang, H. Wu, Y. Wang, Y. Zhang, and Y.-F.
Wang. Lar-sr: A local autoregressive model for image super-
resolution. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 1899–1908, 2022. 1, 2,
6, 7, 8

[9] D. J. Rezende and S. Mohamed. Variational inference with
normalizing flows. In Proc. Int. Conf. on Machine Learning
(ICML), 2015. 1

[10] L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear in-
dependent components estimation. CoRR, abs/1410.8516,
2015. 1

[11] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estima-
tion using real nvp. ArXiv, abs/1605.08803, 2017. 1

[12] D. P. Kingma and P. Dhariwal. Glow: Generative flow with
invertible 1x1 convolutions. In Proc. Conf. on Neural Infor-
mation Processing Systems (NeurIPS), page 10236–10245,
2018. 1

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gener-
ative adversarial nets. In Proc. Conf. on Neural Information
Processing Systems (NeurIPS), volume 27, 2014. 1

[14] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion proba-
bilistic models. arXiv preprint arxiv:2006.11239, 2020. 1

[15] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu.
Pixel recurrent neural networks. ArXiv, abs/1601.06759,
2016. 1

[16] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt,
A. Graves, and K. Kavukcuoglu. Conditional image gener-
ation with pixelcnn decoders. ArXiv, abs/1606.05328, 2016.
1

[17] Y. Chen, S. Liu, and X. Wang. Learning continuous image
representation with local implicit image function. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 8628–8638, 2021. 1, 3, 4, 5

[18] J. Lee and K. H. Jin. Local texture estimator for implicit
representation function. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 1929–1938,
2022. 2, 3, 4, 5, 6

[19] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.
The unreasonable effectiveness of deep features as a percep-
tual metric. pages 586–595, 2018. 2, 5

[20] C. Dong, C. C. Loy, K. He, and X. Tang. Image
super-resolution using deep convolutional networks. IEEE
Trans. Pattern Analysis and Machine Intelligence (TPAMI),
38(2):295–307, 2016. 2

[21] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced
deep residual networks for single image super-resolution. In
Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition Workshop (CVPRW), pages 1132–1140, 2017. 2, 5,
8

[22] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu. Residual
dense network for image super-resolution. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 2472–2481, 2018. 2, 5

[23] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R.
Timofte. Swinir: Image restoration using swin transformer.
In Proc. IEEE Int. Conf. on Computer Vision Workshop (IC-
CVW), pages 1833–1844, 2021. 2, 5

[24] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham,
A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W.
Shi. Photo-realistic single image super-resolution using a
generative adversarial network. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pages 105–
114, 2017. 2

[25] X. Wang, K. Yu, C. Dong, and C. C. Loy. Recovering realis-
tic texture in image super-resolution by deep spatial feature
transform. In Proc. IEEE Conf. on Computer Vision and Pat-
tern Recognition (CVPR), pages 606–615, 2018. 2

[26] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and
M. Norouzi. Image super-resolution via iterative refine-
ment. IEEE Trans. Pattern Analysis and Machine Intelli-
gence (TPAMI), PP, 2022. 2

[27] C. Winkler, D. E. Worrall, E. Hoogeboom, and M. Welling.
Learning likelihoods with conditional normalizing flows.
ArXiv, abs/1912.00042, 2019. 2

[28] A. Lugmayr, M. Danelljan, F. Yu, L. Van Gool, and R. Tim-
ofte. Normalizing flow as a flexible fidelity objective for
photo-realistic super-resolution. In Proc. IEEE Winter Conf.
on Applications of Computer Vision (WACV), pages 874–
883, 2022. 2

1784

[29] J. Bruna, P. Sprechmann, and Y. LeCun. Super-resolution
with deep convolutional sufficient statistics. CoRR,
abs/1511.05666, 2016. 2

[30] J. Johnson, A. Alahi, and Li F.-F. Perceptual losses for real-
time style transfer and super-resolution. In Proc. European
Conf. on Computer Vision (ECCV), pages 694–711, 2016. 2,
4, 6

[31] X. Hu, H. Mu, X. Zhang, Z. Wang, T. Tan, and J. Sun. Meta-
sr: A magnification-arbitrary network for super-resolution.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), pages 1575–1584, 2019. 2, 5

[32] Y. Fu, J. Chen, T. Zhang, and Y. Lin. Residual scale attention
network for arbitrary scale image super-resolution. Neuro-
computing, 427:201–211, 2021. 3

[33] L. Wang, Y. Wang, Z. Lin, J. Yang, W. An, and Y.
Guo. Learning a single network for scale-arbitrary super-
resolution. In Proc. IEEE Int. Conf. on Computer Vision
(ICCV), pages 4781–4790, 2021. 3

[34] X. Xu, Z. Wang, and H. Shi. Ultrasr: Spatial encoding is a
missing key for implicit image function-based arbitrary-scale
super-resolution. CoRR, abs/2103.12716, 2021. 3

[35] Y.-T. Liu, Y.-C. Guo, and S.-H. Zhang. Enhancing multi-
scale implicit learning in image super-resolution with inte-
grated positional encoding. CoRR, abs/2112.05756, 2021.
3

[36] J. Yang, S. Shen, H. Yue, and K. Li. Implicit transformer net-
work for screen content image continuous super-resolution.
In Proc. Conf. on Neural Information Processing Systems
(NeurIPS), pages 13304–13315, 2021. 3

[37] S. Shen, H. Yue, J. Yang, and K. Li. Itsrn++: Stronger and
better implicit transformer network for continuous screen
content image super-resolution. ArXiv, abs/2210.08812,
2022. 3

[38] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. A.
Hamprecht, Y. Bengio, and A. Courville. On the spectral bias
of neural networks. In Proc. Int. Conf. on Machine Learning
(ICML), pages 5301–5310, 2019. 3

[39] V. Sitzmann, J. N. P. Martel Martel, A. W. Bergman, D. B.
Lindell, and G. Wetzstein. Implicit neural representations
with periodic activation functions. In Proc. Conf. on Neural
Information Processing Systems (NeurIPS), 2020. 3

[40] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R.
Ramamoorthi, and R. Ng. Nerf: Representing scenes as neu-
ral radiance fields for view synthesis. In Proc. European
Conf. on Computer Vision (ECCV), 2020. 3

[41] M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil,
N. Raghavan, U. Singhal, R. Ramamoorthi, J. T. Barron, and
R. Ng. Fourier features let networks learn high frequency
functions in low dimensional domains. In Proc. Conf. on
Neural Information Processing Systems (NeurIPS), 2020. 3

[42] E. Agustsson and R. Timofte. NTIRE 2017 challenge on sin-
gle image super-resolution: Dataset and study. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition Work-
shop (CVPRW), pages 1122–1131, 2017. 5, 7, 8

[43] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. Alberi
Morel. Low-complexity single-image super-resolution based
on nonnegative neighbor embedding. In Proc. British Ma-
chine Vision Conf. (BMVC), pages 1–10, 2012. 5, 6

[44] R. Zeyde, M. Elad, and M. Protter. On single image scale-up
using sparse-representations. In Curves and Surfaces, vol-
ume 6920 of Lecture Notes in Computer Science, pages 711–
730, 2010. 5, 6

[45] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In Proc. IEEE Int. Conf. on Computer Vision
(ICCV), pages 416–425, 2001. 5, 6

[46] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-
resolution from transformed self-exemplars. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 5197–5206, 2015. 5, 6

[47] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, and
L. Zhang. NTIRE 2017 challenge on single image super-
resolution: Methods and results. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition Workshop
(CVPRW), pages 1110–1121, 2017. 5

[48] Y. Blau and T. Michaeli. The perception-distortion tradeoff.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2018. 6

1785

