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Abstract

In the field of human pose estimation, regression-based
methods have been dominated in terms of speed, while
heatmap-based methods are far ahead in terms of per-
formance. How to take advantage of both schemes re-
mains a challenging problem. In this paper, we propose
a novel human pose estimation framework termed Distil-
Pose, which bridges the gaps between heatmap-based and
regression-based methods. Specifically, DistilPose maxi-
mizes the transfer of knowledge from the teacher model
(heatmap-based) to the student model (regression-based)
through Token-distilling Encoder (TDE) and Simulated
Heatmaps. TDE aligns the feature spaces of heatmap-
based and regression-based models by introducing tok-
enization, while Simulated Heatmaps transfer explicit guid-
ance (distribution and confidence) from teacher heatmaps
into student models. Extensive experiments show that the
proposed DistilPose can significantly improve the perfor-
mance of the regression-based models while maintaining ef-
ficiency. Specifically, on the MSCOCO validation dataset,
DistilPose-S obtains 71.6% mAP with 5.36M parameters,
2.38 GFLOPs, and 40.2 FPS, which saves 12.95×, 7.16×
computational cost and is 4.9× faster than its teacher
model with only 0.9 points performance drop. Furthermore,
DistilPose-L obtains 74.4% mAP on MSCOCO validation
dataset, achieving a new state-of-the-art among predomi-
nant regression-based models. Code will be available at
https://github.com/yshMars/DistilPose.

1. Introduction
2D Human Pose Estimation (HPE) aims to detect the

anatomical joints of a human in a given image to estimate
the poses. HPE is typically used as a preprocessing mod-
ule that participates in many downstream tasks, such as ac-
tivity recognition [28, 31], human motion analysis [1], mo-
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Figure 1. Comparisons between the SOTA methods and the
proposed DistilPose on MSCOCO val dataset. Red circles at the
upper left corner denote DistilPose. DistilPose outperforms SOTA
models in terms of accuracy (AP), Parameter and computational
cost (GFLOPs).

tion capture [16], etc. Previous studies on 2D HPE can
be mainly divided into two mainstreams: heatmap-based
and regression-based methods. Regression-based methods
have significant advantages in speed and are well-suited for
mobile devices. However, the insufficient accuracy of re-
gression models will affect the performance of downstream
tasks. In contrast, heatmap-based methods can explicitly
learn spatial information by estimating likelihood heatmaps,
resulting in high accuracy on HPE tasks. But the estimation
of likelihood heatmaps requires exceptionally high compu-
tational cost, which leads to slow preprocessing operations.
Thus, how to take advantages of both heatmap-based and
regression-based methods remains a challenging problem.

One possible way to solve the above problem is to trans-
fer the knowledge from heatmap-based to regression-based
models [8,23]. However, due to the different output spaces
of regression models and heatmap models (the former is
a vector, and the latter is a heatmap), transferring knowl-
edge between heatmaps and vectors faces the following two
problems: (1) The regression head usually vectorizes the
feature map output by the backbone. And much spatial
information will be lost through Global Average Pooling
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(GAP) or Flatten operation. Thus, previous work failed
to transfer heatmap knowledge to regression models fully.
(2) Compared to the coordinate regression, heatmaps natu-
rally contain shape, position, and gradient information [3].
Due to the lack of explicit guidance for such information,
regression-based methods are more difficult to learn the
implicit relationship between features and keypoints than
heatmap-based methods.

In this paper, we propose a novel human pose esti-
mation framework, DistilPose, which learns to transfer
the heatmap-based knowledge from a teacher model to a
regression-based student model. DistilPose mainly includes
the following two components:

(1) A knowledge-transferring module called Token-
distilling Encoder (TDE) is designed to align the feature
spaces of heatmap-based and regression-based models by
introducing tokenization, which consists of a series of trans-
former encoders. TDE can capture the relationship between
keypoints and feature maps/other keypoints [10,32]. (2) We
propose to simulate heatmaps to obtain the heatmap infor-
mation for regression-based students explicitly. The result-
ing Simulated Heatmaps provide two explicit guidelines,
including each keypoint’s 2D distribution and confidence.
Note that the proposed Simulated Heatmaps can be inserted
between any heatmap-based and regression-based methods
to transfer heatmap knowledge to regression models.

DistilPose achieves comparable performance to
heatmap-based models with less computational cost and
surpasses the state-of-the-art (SOTA) regression-based
methods. Specifically, on the MSCOCO validation dataset,
DistilPose-S achieves 71.6% mAP with 5.36M parameters,
2.38 GFLOPs and 40.3 FPS. DistilPose-L achieves 74.4%
mAP with 21.27M parameters and 10.33 GFLOPs, which
outperforms its heatmap-based teacher model in perfor-
mance, parameters and computational cost. In summary,
DistilPose significantly reduces the computation while
achieving competitive accuracy, bringing advantages from
both heatmap-based and regression-based schemes. As
shown in Figure 1, DistilPose outperforms previous SOTA
regression-based methods, such as RLE [8] and PRTR [9]
with fewer parameters and GFLOPs.

Our contributions are summarized as follows:

• We propose a novel human pose estimation frame-
work, DistilPose, which is the first work to trans-
fer knowledge between heatmap-based and regression-
based models losslessly.

• We introduce a novel Token-distilling Encoder
(TDE) to take advantage of both heatmap-based and
regression-based models. With the proposed TDE, the
gap between the output space of heatmaps and coordi-
nate vectors can be facilitated in a tokenized manner.

• We propose Simulated Heatmaps to model explicit

heatmap information, including 2D keypoint distribu-
tions and keypoint confidences. With the aid of Sim-
ulated Heatmaps, we can transform the regression-
based HPE task into a more straightforward learn-
ing task that fully exploits local information. Simu-
lated Heatmaps can be applied to any heatmap-based
and regression-based models for transferring heatmap
knowledge to regression models.

2. Related Work
2.1. Heatmap-based & Regression-based HPE

Heatmap-based pose estimation [10, 17, 21, 22, 25, 29,
30, 32] dominated the area of human pose estimation in
terms of performance. Some studies [10,17,21,29,32] con-
structed novel networks to extract better features. While
others [5, 20, 24, 33] built upon an optimization perspec-
tive trying to mitigate quantization errors. In summary,
heatmap-based methods made full use of the spatial infor-
mation of the feature map and obtain a preferable perfor-
mance. However, efficiency is still a certain drawback of
heatmap-based methods.

For regression-based methods, Deeppose [26] is firstly
proposed to regress the joint coordinates directly. Center-
Net [36] and DirectPose [23] are proposed to accomplish
multi-person human pose estimation in a one-stage object
detection framework, which directly regresses the joint co-
ordinates instead of the bounding box. SPM [18] intro-
duced the root joints to indicate different person instances
and hierarchical rooted human body joints representations
to better predict long-range displacements for some joints.
Recently, RLE [8] introduced a flow model to capture the
underlying output distribution and gets a satisfying perfor-
mance. Although these methods have made great efforts
to find the implicit relationship of keypoints, their perfor-
mance improvement is still insufficient due to the lack of
explicit guidance of heatmaps.

2.2. Transformer in HPE

Transformer is proposed in [27] and achieves great suc-
cess in Natural Language Processing (NLP). Recent stud-
ies in vision tasks used Transformer as an alternative back-
bone to CNN for its ability to capture global dependen-
cies. In the area of 2D human pose estimation, many ef-
forts [9, 10, 14, 15, 19, 30, 32] have been done to incorpo-
rate the Transformers. TFPose [14] first introduced Trans-
former to the pose estimation framework in a regression-
based manner. PRTR [9] proposed a two-stage and end-
to-end regression-based framework using cascade Trans-
formers and achieves SOTA performance in regression-
based methods. TransPose [32] and TokenPose [10] intro-
duced Transformer for heatmap-based human pose estima-
tion achieving comparable performance while being more
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Figure 2. Overall architecture of DistilPose. During training, a well-trained and fixed heatmap-based teacher provides its knowledge to
help the training of regression-based student with TDE and Simulated Heatmaps.

lightweight. In our work, we introduce the transformer
module to assist in finding potential relationships between
keypoints.

2.3. Distillation in HPE

Knowledge Distillation (KD) is formally proposed in [4],
which aims to transfer the teacher’s learned knowledge to
the student model. In 2D human pose estimation, FPD [34]
first used knowledge distillation classically based on the
Hourglass network. OKDHP [11] introduced an online pose
distillation approach that distills the pose structure knowl-
edge in a one-stage manner. ViTPose [30] also implemented
a large-to-small model knowledge distillation to prove its
knowledge transferability. However, all previous distilla-
tion works on human pose estimation ignore the knowledge
transferring between heatmap-based and regression-based
methods. In this work, for the first time, we propose a
heatmap-to-regression distillation framework to take ben-
efits from both schemes.

3. Method
In this section, we propose a distillation-based human

pose estimation framework DistilPose, the overall frame-
work of which is shown in Fig. 2. In our proposed Distil-
Pose, the teacher is a heatmap-based model, and the stu-
dent is a regression-based model. We transfer the heatmap
knowledge of the teacher model to the student model dur-
ing training and only use the faster student model in the
inference stage. DistilPose mainly consists of two modules:
Token-distilling Encoder and Simulated Heatmaps.

3.1. Token-distilling Encoder

Previous works have tried to introduce the advantages
of heatmap models in regression-based methods, such as
heatmap pre-training [8], auxiliary heatmap loss [23], etc.

However, the predict-heads cannot be aligned due to the
misalignment of the output space. That’s why these works
can only perform knowledge transfer on the backbone,
which brings models limited performance improvement.
According to Fig. 3(a), the heatmap-auxiliary model pays
too much attention to regions other than the human body.
Hence, we propose a Token-distilling Encoder (TDE) to
align the output space of teacher and student by introduc-
ing tokenization. By introducing aligned tokenized fea-
tures, the heatmap knowledge is transferred to the student
model losslessly. Thus, the student model learns informa-
tion that is more focused on the human body itself, as shown
in Fig. 3(a).

Specifically, for an input image I, we divide it into sev-
eral patches according to the size of pw × ph to form a
visual-token. Next, we add K empty nodes as keypoints-
token, which are concatenated with visual-token and sent to
several transformer encoder layers of TDE. Inspired by LV-
ViT [6], we align the visual-tokens and keypoint-tokens be-
tween the student and teacher models to obtain the teacher
model’s refined attention matrix. As shown in Fig. 3(b),
the attention matrix in TDE can learn the relationship be-
tween the keypoint-tokens and the visual-tokens of the cor-
responding position. As for performance improvement,
TDE enables our student model to achieve much higher per-
formance than the heatmap-auxiliary training (7.8% ↑ in
Fig. 3(a)).

3.2. Simulated Heatmaps

Basic Distribution Simulation After the head of the stu-
dent model obtained the aligned knowledge with TDE, we
began to think about whether there were other ways to trans-
fer other knowledge of the teacher model further. Exist-
ing object detection distillation pipelines give us inspira-
tion [35]: in addition to feature distillation, the output of
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Figure 4. Visualization of Basis distribution simulation of kth key-
point in Simulated Heatmaps.

the teacher model can also be used as a soft label to further
distill knowledge to the student model. Compared with the
coordinate vector, the distribution with a well-defined shape
and good gradient contained in the heatmap is explicit guide
information, which can prompt the model to pay attention
to the local information around the keypoints. Not only that,
but teacher heatmaps may be closer to reality. It is because
there may be erroneous annotations in ground-truth, and the
teacher model can filter out these faulty parts by summariz-
ing the knowledge during training. However, heatmaps and
coordinate vectors are in different output spaces. How to in-
troduce the distribution information on the heatmap into the
space of the coordinate vector has become an urgent prob-
lem to be solved.

For this purpose, we do the opposite and propose the
concept of Simulated Heatmaps to introduce coordinate
vectors into the heatmap space. We let the student model
predict both the keypoint coordinates and the correspond-

ing σ values, using a Gaussian distribution to build a virtual
heatmap (as shown in Fig. 4). Since the heatmap of the
teacher model is not necessarily a regular distribution, we
predict σx and σy from the horizontal/vertical directions,
respectively, to construct a heatmap closer to the actual one.
The Gaussian distribution is calculated as follows:

f(x, y) =
1

2πσxσy
e
− 1

2 (
(x−μx)2

σ2
x

+
(y−μy)2

σ2
y

)
, (1)

To align with the ground-truth of the teacher model, we
ignore the constant coefficient 1

2πσxσy
multiplied by the

Gaussian distribution, and the final formula for simulating
a heatmap for kth keypoint can be summarized as:

Hk(x, y) = e
− 1

2 (
(x−μxk)2

σ2
xk

+
(y−μyk)2

σ2
yk

)
, (2)

where 0 < x ≤ hW , 0 < y ≤ hH and 0 < k ≤ K.
hW and hH are the width and height of the heatmap, K
is the total number of keypoints, and Hk refers to the kth

simulated heatmap. (μxk, μyk) is the predicted keypoints
coordinate, and (σxk, σyk) is the corresponding deviation
pair. In the end, we get K heatmap as shown in Fig. 5.

Confidence Distillation. In addition to distribution
information, heatmaps also provide keypoint confidence,
which helps filter out incorrect model predictions and is
critical in industrial applications. However, our simulated
heatmap defaults to 1 at the peak, which cannot be included
in the calculation as a valid confidence.

To this end, we prompt the student model to predict the
confidence of keypoints sk directly. Each keypoint confi-
dence sk corresponds to the keypoint coordinate and is con-
strained by the corresponding value of the coordinate on the
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Figure 5. Visualization of Simulated Heatmaps and teacher heatmaps.

teacher’s heatmap. The keypoint confidence sk will be ac-
cumulated in the human instance score, which is calculated
as follows:

shuman = sbbox ∗
∑K

i=1 sk
K

, (3)

where shuman is the prediction score of the human instance,
and sbbox refers to the confidence score given by the human
detector.

3.3. Loss Function

For TDE, we perform distillation for visual-tokens and
keypoint-tokens, respectively, and the corresponding loss
functions are:

LKT = MSE(KTh,KTr),

LV T = MSE(VTh,VTr),
(4)

where KT ∈ R
K×D and VT ∈ R

P×D refer to keypoint-
tokens and visual-tokens. P is the number of patches, and
D refers to the dimension of tokens. The subscript h and
r refer to the heatmap-based and regression-based model
accordingly. MSE refers to the Mean Squared Error Loss
used to measure the difference between teacher and student

For the Simulated Heatmaps, we try to align the simu-
lated ones to the teacher heatmaps, and the corresponding
loss function is:

LSH =
K∑

i=1

MSE(Hk, HTk), (5)

where HTk indicates the kth teacher heatmap.
For the peak constraint of the Simulated Heatmaps, we

design the following loss function:

LCS =

K∑

i=1

|HTk([xk], [yk])− sk|, (6)

where (xk, yk), k ∈ [1,K] refers to student coordinate pre-
dictions. [·] indicates the round-off operation.

In summary, we train regression-based student models
simultaneously under task supervision and knowledge dis-
tillation. The overall loss function of our distillation frame-
work is as follows:

L = Lreg + α1LKT + α2LV T + α3LSH + α4LCS . (7)

where Lreg is the regression task loss for human pose es-
timation. We use Smooth L1 Loss as Lreg to compute the
distance between predicted joints and ground-truth coordi-
nates. Invisible keypoints will be filtered, including ground-
truth coordinates or predicted coordinates outside the im-
age. In other word, we did not use these invisible keypoints
for loss calculation.

4. Experiments
In this section, we evaluate the proposed distillation

framework on the MSCOCO dataset. What’s more, we
carry out a series of ablation studies to prove the effective-
ness and validity of DistilPose. The implementation of our
method is based on MMPose [2].

4.1. Implementation Details

4.1.1 Datasets

We mainly conduct our experiments on the MSCOCO
dataset [13]. The MSCOCO dataset contains over 200k im-
ages and 250k human instances. Each human instance is
labeled with K = 17 keypoints representing a human pose.
Our models are trained on MSCOCO train2017 with 57k
images and evaluated on both MSCOCO val2017 and test-
dev2017, which contain 5k and 20k images, respectively.
Furthermore, the ablation experiments are conducted on the
MSCOCO val dataset. We mainly report the commonly
used standard evaluation metric Average Precision(AP) as
previous works done on the MSCOCO dataset.

4.1.2 Training

We follow the top-down human pose estimation paradigm.
All input images are resized into 256×192 resolution. We
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Methods Backbone Input Size Param.(M) GFLOPs mAP(%)
Heatmap-based Methods
SimpleBaselines [29] ResNet-50 256×192 34.0 8.90 70.4
SimpleBaselines [29] ResNet-101 256×192 53.0 12.40 71.4
SimpleBaselines [29] ResNet-152 256×192 68.6 15.70 72.0
HRNet [21] HRNet-W32 256×192 28.5 7.10 74.4
HRNet [21] HRNet-W48 256×192 63.6 14.60 75.1
TokenPose [10] stemnet 256×192 6.6 2.40 72.5
TokenPose [10] HRNet-W48-stage3 256×192 27.5 11.60 75.8
TransPose [32] ResNet-small 256×192 5.0 5.40 71.5
TransPose [32] HRNet-Small-W48 256×192 17.5 21.80 75.8

Distillation-based Methods
OKDHP [12] 2-Stack HG 256×192 13.0 25.50 72.8
OKDHP [12] 4-Stack HG 256×192 24.0 47.00 74.8

Regression-based Methods
PRTR∗ [9] ResNet-50 256×192 41.5 5.45 63.7
PRTR [9] ResNet-50 384×288 41.5 11.00 68.2
PRTR [9] ResNet-50 512×384 41.5 18.80 71.0
PRTR∗ [9] HRNet-W32 256×192 57.2 10.23 72.9
PRTR [9] HRNet-W32 384×288 57.2 21.60 73.1
PRTR [9] HRNet-W32 512×384 57.2 37.80 73.3
RLE [8] ResNet-50 256×192 23.6 4.04 70.5
RLE∗ [8] HRNet-W48 256×192 75.6 15.76 74.2
Poseur [15] MobileNetV2 256×192 11.36 0.5 71.9
Poseur [15] ResNet-50 256×192 33.26 4.6 75.4
DistilPose-S (Ours) stemnet 256×192 5.4 2.38 71.6
DistilPose-L (Ours) HRNet-W48-stage3 256×192 21.3 10.33 74.4

Table 1. Comparison on MSCOCO val dataset. Flip test is used on all methods. ∗ indicates that we re-train and evaluate the models.

Methods Backbone Input Size AP(%) AP50(%) AP75(%) APM (%) APL(%)
PRTR [9] ResNet-101 384×288 68.8 89.9 76.9 64.7 75.8
PRTR [9] ResNet-101 512×384 70.6 90.3 78.5 66.2 77.7
RLE∗ [8] ResNet-50 256×192 69.8 90.1 77.5 67.2 74.3
DistilPose-S (Ours) stemnet 256×192 71.0 91.0 78.9 67.5 76.8

PRTR [9] HRNet-W32 384×288 71.7 90.6 79.6 67.6 78.4
PRTR [9] HRNet-W32 512×384 72.1 90.4 79.6 68.1 79.0
RLE∗ [8] HRNet-W48 256×192 73.7 91.4 81.4 71.1 78.6
DistilPose-L (Ours) HRNet-W48-stage3 256×192 73.7 91.6 81.1 70.2 79.6

Table 2. Comparison on MSCOCO test-dev dataset. ∗ indicates that we re-train and evaluate the models.

adopt a commonly used person detector provided by Sim-
pleBaselines [29] with 56.4% AP for the MSCOCO val
dataset and 60.9% AP for the MSCOCO test-dev dataset.
All the models are trained with a batch size of 64 images
per GPU, using 8 Tesla V100 GPUs. We adopt Adam as
our optimizer and train the models for 300 epochs. The base
learning rate is set to 1e-3, and decays to 1e-4 and 1e-5 at
the 200th and 260th epoch, respectively. We follow the data
augmentation setting in HRNet [21]. We empirically set the
hyper-parameters to α1 = α2 = 5e − 4, α3 = 1, α4 =
1e− 2.

4.1.3 Model Setting

If not specified, the teacher model we use is a heatmap-
based model with a performance of 72.5% (75.2% if extra-
post-processing [33] is used during inference) at the cost
of 69.41M parameters and 17.03 GFLOPs, which adopts

HRNet-W48 as its backbone.
DistilPose-S adopts a lightweight backbone named stem-

net from TokenPose [10], which is widely used to down-
sample the feature map into 1/4 input resolution quickly.
Stemnet is a very shallow convolutional structure and is
trained from scratch. Besides, DistilPose-L uses feature
map output by HRNet-W48 [21] at the 3rd stage, follow-
ing the same setting as TokenPose-L [10].

For the architecture configurations of TDE of DistilPose,
the num of transformer layers is 12, embedding dim is 192,
the num of heads is 8, and patch size pw × ph is 4×3.

4.2. Main Results

4.2.1 Comparison with SOTA Regression Methods

We compare the proposed DistilPose with the SOTA
regression-based methods on MSCOCO val and test-dev
dataset, and the experimental results are shown in Table 1
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Model Role Backbone Methods Ex-post. AP(%) Param(M) GFLOPs FPS
TokenPose∗ Teacher HRNet-W48 heatmap Y 75.2 69.41 17.03 7.8
TokenPose∗ Teacher HRNet-W48 heatmap N 72.5 69.41 17.03 8.2
DistilPose-S Student stemnet regression - 71.6 (0.9↓) 5.36 (12.95× ↓) 2.38 (7.16× ↓) 40.2 (4.90× ↑)
DistilPose-L Student HRNet-W48-s3 regression - 74.4 (1.9↑) 21.27 (3.26× ↓) 10.33 (1.65× ↓) 13.7 (1.72× ↑)

Table 3. Comparison with Teacher Model. Ex-post. = extra post-processing, which means extra post-processing used to refine the heatmap-
to-coordinate transformation during inference. We compute the multiples in comparison with non extra post-processing heatmap-based
method. ∗ indicates that we re-train and evaluate the models. And HRNet-W48-s3 is short for HRNet-W48-stage3.

and Table 2, respectively. Also, a line chart is drawn for
more visual comparison in Figure 1. We mainly compare
our methods with PRTR [9] and RLE [8]. Since PRTR
is also Transformer-based methods that achieved SOTA
performance among regression-based methods, RLE still
dominates regression-based methods. We further compare
DistilPose with the latest regression-based SOTA method
Poseur [15] in our supplementary materials.

Specifically, DistilPose-S achieves 71.6% with 5.36M
and 2.38 GFLOPs, which outperforms PRTR-Res50 by
7.9% at the same input resolution 256×192 while reducing
36.14M (87.1%↓) parameters and 3.07 GFLOPs (56.3%↓).
Even if PRTR adopts larger input resolutions (384×288,
512×384), DistilPose still performs better using 256×192
input resolution.

Compared to non-Transformer SOTA algorithms, Distil-
Pose exceeds RLE in performance, parameter, and compu-
tation simultaneously on MSCOCO val dataset. As shown
in Table 2, we can see that DistilPose performs much better
than RLE on large human instances. Since RLE is the first
regression-based work with superior performance to con-
temporary heatmap-based methods and DistilPose outper-
forms RLE, we also claim that DistilPose achieves compa-
rable performance on par with heatmap-based methods, as
shown in Table 1.

4.2.2 Comparison with Teacher Model

We conduct experiments to compare the performance of the
student and teacher models in the dimension of AP, Param-
eter, GFLOPs, and FPS on the MSCOCO val dataset. Ex-
tra post-processing [5, 33] is always used in the heatmap-
based model for the heatmap-to-coordinate transformation
during inference to eliminate quantization error, signifi-
cantly improving performance, but is also followed by ex-
tra test-time overhead. In this part, we remove the extra
post-processing [33] for more fairly exploring the advan-
tages and disadvantages of heatmap-based and regression-
based methods. We report the results between student
and teacher without extra post-processing. As shown in
Table 3, DistilPose-S sacrifices 0.9% precision but dra-
matically improves in the reduction of parameter, compu-
tation, and test-time overhead. DistilPose-L comprehen-
sively outperformed the heatmap-based teacher. That’s be-
cause DistilPose is not only immune to quantization error

Distillation Simulated
Heatmaps

TDE AP Improv.

LCS LSH LKT LV T

No - - - - 56.0% -

Yes

� 63.2% +7.2%
� 56.4% +0.4%

� � 64.1% +8.1%
� 67.1% +11.1%

� 61.7% +5.7%
� � 67.5% +11.5%

� � � � 71.6% +15.6%

Table 4. Ablation studies for different types of knowledge dis-
tillation. All types of proposed knowledge transferring benefit
the regression-based model, and the combination of all proposed
knowledge transferring brings the best performance. Improv. =
Improvement.

of heatmaps, but also maintains the structural advantages of
the regression model [7]. Even if compared to the heatmap-
based teacher with extra post-processing, DistilPose-L still
achieves comparable performance with much less resource
consumption. The experiments above demonstrate that Dis-
tilPose can aggregate heatmap and coordinate information
and benefit from both schemes.

4.3. Ablation Study

4.3.1 Performance Gain from Different Parts

In this subsection, we conduct several ablation experiments
to show how each type of knowledge transfer helps the
training of the regression-based student. As shown in Ta-
ble 4, all types of proposed knowledge transfer benefit the
regression-based model. From the perspective of knowl-
edge levels, TDE and Simulated Heatmaps each bring an
improvement of 11.5% and 8.1%, respectively. In the sim-
ulation heatmap module, the Gaussian simulation heatmaps
combined with the confidence prediction can improve the
contribution of the two by 0.5%. This proves that confi-
dence predictions and Simulated Heatmaps have mutually
reinforcing effects within the model. The combination of
all proposed knowledge transfers brings the best perfor-
mance, which significantly improves the performance by
15.6% comparing to the non-distillation regression-based
student model.
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Student
Teacher None stemnet HRNet-W48

stemnet 56.0% 63.6% 71.6%
HRNet-W48-stage3 63.0% 66.8% 74.4%

Table 5. Ablation studies on different volumes of student and
teacher, which demonstrates that regression-based student model
performs better with a stronger teacher.

Model Simulated
Heatmaps Role mAP Improv.

SimpleBaseline - Teacher 70.4% -
Deeppose × - 52.6% -
Deeppose � Student 59.7% + 6.9%

Table 6. Generalization on CNN-based Model. We only imple-
ment Simulated Heatmaps to transfer heatmap-level knowledge
on CNN-based models and get a significant performance improve-
ment. Improv. = Improvement.

4.3.2 Better Teacher, Better Performance

We conduct experiments to study the performance gain be-
tween different students and teachers. As shown in Table 5,
we demonstrate that the student models will perform better
if they are guided by stronger teacher models. This sug-
gests that the performance of DistilPose we report is not the
upper-bound accuracy of our distillation framework but an
example to illustrate validity. In practice, we could get help
from previous algorithms to train a more potent teacher,
which can be further used to enhance the performance of
the student model. Or we can simply expand the teacher
model’s capacity, finding a trade-off between performance
and training memory limitation to maximize the utilization
of training resources and not introduce any test-time over-
head during inference.

4.3.3 Generalization on CNN-based Model

We also conduct an ablation study on a CNN-based model
to show its generalizability. We adopt Deeppose [26] as
the student and SimpleBaselines [29] as the teacher. Both
are the most concise algorithms in regression-based and
heatmap-based models, respectively. We introduce Simu-
lated Heatmaps to transfer heatmap-level knowledge as we
do in DistilPose, and ignore TDE for the CNN-based model.
Both student and teacher adopt ResNet-50 as the backbone,
and the experimental results in Table 6 show that Simulated
Heatmaps adapted from DistilPose improve the regression-
based student’s performance significantly with no extra test-
time overhead.

4.4. Visualization of Confidence Scoring

We show that the confidence score predicted by Dis-
tilPose for each coordinate is plausible. As the examples
shown in Figure 6, most of the joint predictions are in the
right position, and the confidence score predictions of these
joints are relatively high. However, there are also some poor

left hip
0.60

left knee
0.04

right hip
0.68

right knee
0.09

right ankle
0.00

left hip
0.61

left knee
0.04

left ankle
0.08

right hip
0.60

right knee
0.04

right ankle
0.08

Figure 6. Visualization of confidence scoring. There are 2 rows in
each box, representing the type of joint and the confidence score
prediction value, respectively. The box border color represents
whether the predicted joint is in the correct position (green is cor-
rect while red is wrong).

predictions(e.g., the predictions denoted by red box in Fig-
ure 6). Fortunately, DistilPose can predict a low confidence
score for most poor predictions while keeping high confi-
dence in the correct predictions. Thus we could filter these
poor predictions simply by setting a threshold. A plausible
confidence score not only enhances the performance of the
pose estimator, but is significant in practical applications
and downstream tasks for pose estimation.

5. Conclusion
In this work, we proposed a novel human pose estima-

tion framework, termed DistilPose, which includes Token-
distilling Module (TDE) and Simulated Heatmaps to per-
form heatmap-to-regression knowledge distillation. In this
way, the student regression model acquired refined heatmap
knowledge at both feature and label levels, achieving a big
leap in performance while maintaining efficiency. Exten-
sive experiments were conducted on the MSCOCO dataset
to demonstrate the effectiveness of our proposed DistilPose.
In short, DistilPose achieved state-of-the-art performance
among regression-based methods with a much lower com-
putational cost.
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