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Abstract

In this paper, we study a novel task that enables par-
tial knowledge transfer from pre-trained models, which we
term as Partial Network Cloning (PNC). Unlike prior meth-
ods that update all or at least part of the parameters in the
target network throughout the knowledge transfer process,
PNC conducts partial parametric “cloning” from a source
network and then injects the cloned module to the target,
without modifying its parameters. Thanks to the transferred
module, the target network is expected to gain additional
functionality, such as inference on new classes; whenever
needed, the cloned module can be readily removed from the
target, with its original parameters and competence kept
intact. Specifically, we introduce an innovative learning
scheme that allows us to identify simultaneously the com-
ponent to be cloned from the source and the position to be
inserted within the target network, so as to ensure the opti-
mal performance. Experimental results on several datasets
demonstrate that, our method yields a significant improve-
ment of 5% in accuracy and 50% in locality when com-
pared with parameter-tuning based methods. Our code is
available at https://github.com/JngwenYe/PNCloning.

1. Introduction

With the recent advances in deep learning, an increas-
ingly number of pre-trained models have been released
online, demonstrating favourable performances on various
computer vision applications. As such, many model-reuse
approaches have been proposed to take advantage of the
pre-trained models. In practical scenarios, users may re-
quest to aggregate partial functionalities from multiple pre-
trained networks, and customize a target network whose
competence differs from any network in the model zoo.

A straightforward solution to the functionality dynamic
changing is to re-train the target network using the origi-
nal training dataset, or to conduct finetuning together with
regularization strategies to alleviate catastrophic forget-
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Figure 1. Illustration of partial network cloning. Given a set of
pre-trained source models, we “clone” the transferable modules
from the source, and insert them into the target model (left) while
preserving the functionality (right).

ting [3,19,39], which is known as continual learning. How-
ever, direct re-training is extremely inefficient, let alone the
fact that original training dataset is often unavailable. Con-
tinual learning, on the other hand, is prone to catastrophic
forgetting especially when the amount of data for finetun-
ing is small, which, unfortunately, often occurs in practice.
Moreover, both strategies inevitably overwrite the original
parameters of the target network, indicating that, without
explicitly storing original parameters of the target network,
there is no way to recover its original performance or com-
petence when this becomes necessary.

In this paper, we investigate a novel task, termed as
Partial Network Cloning (PNC), to migrate knowledge
from the source network, in the form of a transferable mod-
ule, to the target one. Unlike prior methods that rely on
updating parameters of the target network, PNC attempts to
clone partial parameters from the source network and then
directly inject the cloned module into the target, as shown
in Fig. 1. In other words, the cloned module is transferred
to the target in a copy-and-paste manner. Meanwhile, the
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original parameters of the target network remain intact, in-
dicating that whenever necessary, the newly added module
can be readily removed to fully recover its original function-
ality. Notably, the cloned module per se is a fraction of the
source network, and therefore requirements no additional
storage expect for the lightweight adapters. Such flexibil-
ity to expand the network functionality and to detach the
cloned module without altering the base of the target or al-
locating extra storage, in turn, greatly enhances the utility
of pre-trained model zoo and largely enables plug-and-play
model reassembly.

Admittedly, the ambitious goal of PNC comes with sig-
nificant challenges, mainly attributed to the black-box na-
ture of the neural networks, alongside our intention to pre-
serve the performances on both the previous and newly-
added tasks of the target. The first challenge concerns the
localization of the to-be-cloned module within the source
network, since we seek discriminant representations and
good transferability to the downstream target task. The sec-
ond challenge, on the other hand, lies in how to inject the
cloned module to ensure the performance.

To solve these challenges, we introduce an innovative
strategy for PNC, through learning the localization and in-
sertion in an intertwined manner between the source and tar-
get network. Specifically, to localize the transferable mod-
ule in the source network, we adopt a local-performance-
based pruning scheme for parameter selection. To adap-
tively insert the module into the target network, we utilize a
positional search method in the aim to achieve the optimal
performance, which, in turn, optimizes the localization op-
eration. The proposed PNC scheme achieves performances
significantly superior to those of the continual learning set-
ting (5% ∼ 10%), while reducing data dependency to 30%.

Our contributions are therefore summarized as follows.

• We introduce a novel yet practical model re-use setup,
termed as partial network cloning (PNC). In contrast
to conventional settings the rely on updating all or part
of the parameters in the target network, PNC migrates
parameters from the source in a copy-and-paste man-
ner to the target, while preserving original parameters
of the target unchanged.

• We propose an effective scheme towards solving PNC,
which conducts learnable localization and insertion of
the transferable module jointly between the source and
target network. The two operations reinforce each
other and together ensure the performance of the tar-
get network.

• We conduct experiments on four widely-used datasets
and showcase that the proposed method consis-
tently achieves results superior to the conventional
knowledge-transfer settings, including continual learn-
ing and model ensemble.

2. Related Work
2.1. Life-long Learning

Life-long/online/incremental learning, which is capable
of learning, retaining and transferring knowledge over a
lifetime, has been a long-standing research area in many
fields [35, 43, 51, 52]. The key of continual learning is
to solve catastrophic forgetting, and there are three main
solutions, which are the regularization-based methods [3,
19, 20, 39], the rehearsal-based methods [4, 34, 40] and
architecture-based methods [16, 18, 24, 45].

Among these three streams of methods, the most related
one to PNC is the architecture-based pruning, which aims
at minimizing the inter-task interference via newly designed
architectural components. Li et al. [18] propose to separate
the explicit neural structure learning and the parameter es-
timation, and apply evolving neural structures to alleviate
catastrophic forgetting. At each incremental step, DER [45]
freezes the previously learned representation and augment
it with additional feature dimensions from a new learnable
feature extractor. Singh et al. [36] choose to calibrate the ac-
tivation maps produced by each network layer using spatial
and channel-wise calibration modules and train only these
calibration parameters for each new task.

The above incremental methods are fine-tuning all or
part of the current network to solve functionality changes.
Differently, we propose a more practical life-long solution,
which learns to transfer the functionality from pre-trained
networks instead of learning from the new coming data.

2.2. Network Editing

Model editing is proposed to fix the bugs in networks,
which aims to enable fast, data-efficient updates to a pre-
trained base model’s behavior for only a small region of
the domain, without damaging model performance on other
inputs of interest [26, 37, 38].

A popular approach to model editing is to establish learn-
able model editors, which are trained to predict updates to
the weights of the base model to produce the desired change
in behavior [37]. MEND [25] utilizes a collection of small
auxiliary editing networks as a model editor. Eric et al. [26]
propose to store edits in an explicit memory and learn to rea-
son over them to modulate the base model’s predictions as
needed. Provable point repair algorithm [38] finds a prov-
ably minimal repair satisfying the safety specification over
a finite set of points. Cao et al. [5] propose to train a hyper-
network with constrained optimization to modify without
affecting the rest of the knowledge, which is then used to
predict the weight update at test time.

Different from network edition that directly modifies a
certain of weights to fix several bugs, our work do the
functionality-wise modification by directly inserting the
transferable modules.
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Figure 2. The proposed partial network cloning framework. The localized samples are fed into the source network for the original
transferable module localization. To refine the transferable module, we learn how to locate and insert it, with the network weights fixed.

2.3. Model Reuse

With a bulk of pre-trained models online, model reuse
becomes a hot topic, which attempts to construct the model
by utilizing existing available models, rather than building
a model from scratch. Model reuse is applied for the pur-
pose of reducing the time complexity, data dependency or
and expertise requirement, which is studied by knowledge
transfer [6–8,30,53,55] and model ensemble [1,27,33,41].

Knowledge transfer [21,22,31,46,47,49,50] utilizes the
pre-trained models by transferring knowledge from these
networks to improve the current network, which has pro-
moted the performance of domain adaptation [12], multi-
task learning [42], Few-Shot Learning [17] and so on [13].
For example, KTN [28] is proposed to jointly incorporate
visual feature learning, knowledge inferring and classifier
learning into one unified framework for their optimal com-
patibility. To enable transferring knowledge from multi-
ple models, Liu et al. [23] propose an adaptive multi-
teacher multi-level knowledge distillation learning frame-
work which associates each teacher with a latent represen-
tation to adaptively learn the importance weights.

Model ensemble [14, 15, 48] integrates multiple pre-
trained models to obtain a low-variance and generalizable
model. Peng et al. [27] apply sample-specific ensemble of
source models by adjusting the contribution of each source
model for each target sample. MEAL [33] proposes an
adversarial-based learning strategy in block-wise training to
distill diverse knowledge from different trained models.

The above model reuse methods transfer knowledge
from networks to networks, with the base functionality un-
changed. We make the first step work to directly transfer
part of the knowledge into a transferable module by cloning
part of the parameters from the source network, which en-
ables network functionality addition.

3. Proposed Method
The goal of the proposed partial network cloning frame-

work is to clone part of the source networks to the target net-
work so as to enable the corresponding functionality trans-
fer in the target network.

The illustration of the proposed PNC framework is
shown in Fig. 2, where we extract a transferable module
that could be directly inserted into the target network.

3.1. Preliminaries

Given a total number of P pre-trained source models
Ms = {M0

s,M1
s, ...,MP−1

s }, each Mρ
s (0 ≤ ρ < P )

serves for cloning the functionality tρs , where tρs is a subset
of the whole functionality set ofMρ

s and the to-be-cloned
target set is denoted as Ts = {t0s, t1s, ..., tP−1

s }. The partial
network cloning is applied on the target modelMt for new
functionalities addition, which is the pre-trained model on
the original set Tt (Tt ∩ Ts = ∅).

Partial network cloning aims at expending the function-
ality set of target network on the new Ts by directly cloning.
In the proposed framework, it is achieved by firstly extract-
ing part ofMs to form a transferable moduleMf , and then
inserting it into target model Mt to build a after-cloned
target network Mc. The whole process won’t change any
weights of the source and target models, and also each trans-
ferable module is directly extracted from the source model
free of any tuning on its weights. Thus, the process can be
formulated as:

Mc ← Clone(Mt,M,Ms, R), (1)

which is directly controlled by M and R, where M is a
set of selection functions for deciding how to extract the
explicit transferable module on source networks Ms, and
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R is the position parameters for deciding where to insert
the transferable modules to the target network. Thus, partial
network cloning Clone(·) consists of two steps:

Mρ
f ← Local(Mρ

s ,M
ρ),

Mc ← InsertPρ=0(Mt,Mρ
f , R

ρ),
(2)

where both M and R are learnable and optimized jointly.
Once M and R are learned, Mc can be determined with
some lightweight adapters.

Notably, we assume that only the samples related to the
to-be-cloned task set Ts are available in the whole process,
keeping the same setting of continual learning. And to be
practically feasible, partial network cloning must meet three
natural requirements:

• Transferability: The extracted transferable module
should contain the explicit knowledge of the to-be-
cloned task Ts, which could be transferred effectively
to the downstream networks;

• Locality: The influence on the cloned modelMc out
of the target data Dt should be minimized;

• Efficiency: Functional cloning should be efficient in
terms of runtime and memory;

• Sustainability: The process of cloning wouldn’t do
harm to the model zoo, meaning that no modifica-
tion the pre-trained models are allowed and the cloned
model could be fully recovered.

In what follows, we consider the partial network cloning
from one pre-trained network to another, which could cer-
tainly be extended to the multi-source cloning cases, thus
we omit ρ in the rest of the paper.

3.2. Localize with pruning

Localizing the transferable module from the source net-
work is actually to learn the selection function M .

In order to get an initial transferable moduleMf , we lo-
cate the explicit part in the source network Ms that con-
tributes most to the final prediction. Thus, the selection
function M is optimized by the transferable module’s per-
formance locally on the to-be-cloned task Ts.

Here, we choose the selection function as a kind of mask-
based pruning method mainly for two purposes: the first one
is that it applies the binary masks on the filters for pruning
without modifying the weights ofMs, thus, ensuring sus-
tainability; the other is for transferability that pruning would
be better described as ‘selective knowledge damage’ [9],
which helps for partial knowledge extraction.

Note that unlike the previous pruning method with the
objective function to minimize the error function on the

whole task set of Ms, here, the objective function is de-
signed to minimize the locality performance on the to-be-
cloned task set Ts. Specifically, for the source networkMs

with L layers Ws = {w0
s , w

1
s , ..., w

L−1
s }, the localization

can be denoted as:

Mf =M · Ms ⇔ {ml · wl
s|0 ≤ l < L},

M =argmax
M

Sim(Mf ,Ms|Dt)

− Sim(Mf ,Ms|Dt),

(3)

where M = {m0,m1, ...,mL−1} is a set of learnable mask-
ing parameters, which are also the selection function as
mentioned in Eq. 1. Sim(·|·) represents the conditional
similarity among networks, Dt is the rest data set of the
source network. The localization to extract the explicit part
on the target Dt is learned by maximizing the similarity be-
tweenMs andMf on Dt while minimizing it on Dt.

Considering the black-box nature of deep networks that
all the knowledge (both from Dt and Dt) is deeply and
jointly embedded in Ms, it is non-trivial to calculate the
similarity on the Dt-neighbor source networkMs|Dt . Mo-
tivated by LIME [32] that utilizes interpretable representa-
tions locally faithful to the classifier, we train a model set
containing N small local models G = {gi}(N) to model the
source Ms in the Dt neighborhood, and then use the lo-
cal model set as the surrogate: G ≈ Ms|Dt . To obtain G,
for each xi ∈ Dt, we get its augmented neighborhood by
separating it into patches (i.e. 8×8) and applying the patch-
wise perturbations with a set of binary masks B. Thus, G is
obtained by:

min
gi

1

|B|
∑
b∈B

Πb ·
∥∥Ms(b · xi)− gi(b))

∥∥2 +Ω(gi), (4)

where Πb is the weight measuring sample locality according
to xi, Ω(gi) is the complexity of gi and |B| donates the
total number of masks. G is optimized by the least square
method and more details are given in the supplementary.
For each xi, we calculate a corresponding gi. And actually,
we set N < |Dt| (about 30%), which is clarified in the
experiments.

The new G, calculated from the original source network
Ms in the Dt neighborhood, models the locality of the tar-
get task Ts onMs. Note that G can be calculated in advance
for each pre-trained model, as it could also be a useful tool
for the model distance measurement and others [10]. In this
paper, G perfectly matches our demand for the transferable
module localization. So the localization process in Eq. 3
could be optimized as:

min
M

∑
gi∈G

∑
b∈B

∥∥∥ft[Ms

(
M ·Ws; b · x

)
]− ft[gi(b)]

∥∥∥2
s.t. |ml| ≤ cl

(5)
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where ft is for selecting the Ts related output and cl is the
parameter controlling the number of non-zero values of M
(cl < |W l|). And for inference, the learned soft masks M
are binarized by selecting cl filters with the top-cl masking
values in each layer.

3.3. Insert with adaptation

After the transferable module Mf being located at the
source network, it could be directly extracted fromMs with
M , without any modifications on its weights. Then the fol-
lowing step is to decide where to insertMf intoMt, as to
get best insertion performance.

The insertion is controlled by the position parameter R
mentioned in Eq. 3. Following most of the model reuse set-
tings that keep the first few layers of the pre-trained model
as a general feature extractor, the learning-to-insert process
with R is simplified as finding the best position (R-th layer
to insertMf ). The insertion could be denoted as:

MR
c =Mt

(
W

[0:R]
t

)
◦
{
Mt

(
W

[R:L]
t

)
,Mf

}
,

R∗ =argmax
R

Sim(Mf ,MR
c |Dt)

+ Sim(Mt,MR
c |Do),

(6)

where Do is the original set for pre-training the target net-
work, and Do ∪ Dt = ∅. The cloned Mc is obtained by
the parallel connection of the transferable module into the
target networkMt. Thus the insertion learned by Eq. 6 is to
find the best insertion position by maximizing the similarity
betweenMf andMc on Dt (for the best insertion perfor-
mance on Dt) and the similarity between Mt and Mc on
Do (for the least accuracy drop on the previously learned
Do).

In order to learn the best position R, we need maximize
the network similarities Sim(|). Different from the solution
used to optimize the objective function while localizing, in-
sertion focuses on the prediction accuracies on the original
and the to-be-cloned task set. So we use the network out-
puts to calculate Sim(·), which is the KL-divergence loss
Lkd. we write:

min
Fc,A
Lkd ◦ ft

[
Fc(A;MR

c (B · x)),G(B)
]

+Lkd ◦ f t

[
Fc(A;MR

c (B · x)),Mt(B · x)
]
,

s.t. R ∈ {0, 1, ..., L− 1}

(7)

where ft is for selecting the Ts related output while f t is
for selecting the rest. Fc is the extended fully connection
layers from the original FC layers ofMt. And we add an
extra adapter module A to do the feature alignment for the
transferable module, which further enables cloning between
heterogeneous models. The adapter is consisted of one 1×
1 conv layer following with ReLu, which, comparing with

Ms andMt, is much smaller in scale. G and B are defined
in Eq. 5.

While training, R is firstly set to be L− 1 and then mov-
ing layer by layer to R = 0. In each moving step, we fine-
tune the adapter A and the corresponding fully connected
layers Fc. It is a light searching process, since only a few
of weights (A and Fc) need to be fine-tuned for only a cou-
ple epochs (5∼ 20). Extra details for heterogeneous model
pair are in the supplementary. Please note that although ap-
plying partial network cloning from the source to the target
needs two steps (Clone(·) and Insert(·)), the learning pro-
cess is not separable and are interacted on each other. As a
result, the whole process can be jointly formulated as:

min
M,Fc,A

Lloc

(
M[0:R]

s ,M ·W [R:L]
s ,G

)
+Lins

(
M[0:R]

t ,

A ◦ (M ·W [R:L]
s ),M[R:L]

t ,Fc,G
)
,

where R : (L− 1)→ 0

(8)

where Lloc(·) is the objective function in Eq. 5 and Lins(·)
is the objective function in Eq. 7. And in this objective func-
tion,Ms andMt are using the same R for simplification,
while in practice a certain ratio exists for the heterogeneous
model pair.

Once the above training process is completed, we could
roughly estimate the performance by the loss convergence
value, which follows the previous work [54]. Finally the
layer with least convergence value is marked as the final R.
The insertion is completed by this determined R and the
corresponding A and Fc.

3.4. Cloning in various usages

The proposed partial network cloning by directly insert-
ing a fraction of the source network enables flexible reuse
of the pre-trained models in various practical scenarios.
Scenario I: Partial network cloning is a better form for in-
formation transmission. When there is a request for trans-
ferring the networks, it is better to transfer the cloned net-
work obtained by PNC as to reduce latency and transmis-
sion loss.

In the transmission process, we only need to transfer the
set {M,R,A,Fc}, which together with the public model
zoo, could be recovered by the receiver. {M,R,A,Fc} is
extremely small in scale comparing with a complete net-
work, thus could reduce the transmission latency. And if
there is still some transmission loss on A and Fc, it could
be easily revised by the receiver by fine-tuning on Dt. As
a result, PNC provides a new form of networks for high-
efficiency transmission.
Scenario II: Partial network cloning enables model zoo on-
line usage. In some resource limited situation, the users
could flexibly utilize model zoo online without download-
ing it on local.
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Note that the cloned model is determined by
Clone(Mt,M,Ms, R), Mt and Ms are fixed and
unchanged in the whole process. There is not any mod-
ifications on the pre-trained models (Mt and Ms) nor
introducing any new models. PNC enables any functional
combinations in the model zoo, which also helps maintain
a good ecological environment for the model zoo, since
PNC with M and R is a simple masking and positioning
operation, which is easy of revocation. Thus, the proposed
PNC supports to establish a sustainable model zoo online
inference platform.

4. Experiments
We provide the experimental results on four publicly

available benchmark datasets, and evaluate the cloning per-
formance in the commonly used metrics as well as the lo-
cality metrics. And we compare the proposed method with
the most related field – continual learning, to show concrete
difference between these two streams of researches. More
details and experimental results including partially cloning
from multiple source networks, can be found in the supple-
mentary.

4.1. Experimental settings

Datasets. Following the setting of previous contin-
ual methods, we report experiments on MNIST, CIFAR-
10, CIFAR-100 and TinyImageNet datasets. For MNIST,
CIFAR-10 and CIFAR-100 datasets, we are using input size
of 32 × 32. For TinyImageNet dataset, we are using input
size of 256 × 256. In the normal network partial cloning
setting, the first 50% of classes are selected to pre-train the
target networkMt, and the last 50% of classes classes are
selected to pre-train the source networkMs.

In the partial network cloning process, 30% of the train-
ing data are used for each sub dataset, which reduces the
data dependency to 30%. And for training the local model
set G, we set |B| = 100 and segment the input into
4 × 4 patches for the MNIST, CIFAR-10 and CIFAR-100
datasets, set |B| = 1000 and segment the input into 8 × 8
patches for the Tiny-ImageNet dataset.

Training Details. We used PyTorch framework for the
implementation. We apply the experiments on the several
network backbones, including plain CNN, LeNet, ResNet,
MobileNetV2 and ShuffleNetV2. In the pre-training pro-
cess, we employ a standard data augmentation strategy:
random crop, horizontal flip, and rotation. In the process
of partial cloning, 10 epochs fine-tuning are operated for
each step on MNIST and CIFAR-10 datasets, 20 epochs for
CIFAR-100 and Tiny-ImageNet datasets.

For simplifying and accelerating the searching process in
Eq. 8, we split LeNet into 3 blocks, the ResNet-based net-
work into 5 blocks, MobileNetV2 into 8 blocks and Shuf-
fleNetV2 into 5 blocks (excluding the final FC layers). Thus

the block-wise adjustment for R is applied for acceleration.
Evaluation Metrics. For the cloning performance eval-

uation, we evaluate the task performance by average accu-
racy:‘Ori. Acc’ (accuracy on the original set), ‘Tar. Acc’
(accuracy on the to-be-cloned set) and ‘Avg. Acc’ (accuracy
on the original and to-be-cloned set), which is evaluated on
the after-cloning target networkMc.

For evaluating the transferable module quality evaluation
on local-functional representative ability, we use the condi-
tional similarity Sim(|) with G [11], which can be calcu-
lated as:

Sim(Ma|Da,Mb|Db) = Simcosθ(Ga,Gb) (9)

where Simcos(·) is the cosine similarity, Ga and Gb are the
corresponding local model sets ofMa(Da) andMb(Db).

For evaluating the transferable module quality on trans-
ferability to other networks other than the target network, it
is in the supplementary.

4.2. Experimental Results

4.2.1 Overall Performance

Table 1 shows overall performance of partial network
cloning on MNIST, CIFAR-10, CIFAR-100 and Tiny-
ImageNet datasets, where the target network and the source
network are set to be the same architecture and the num-
ber of search steps R is also listed. We compare the pro-
posed partial network cloning (‘PNC’) with the baseline
‘Pre-trained’ original networks ( Acc onMs andMt), the
ensemble network of the source and the target (‘Direct En-
semble’), the networks scratch trained on the set including
the original and the target (‘Joint + Full set’), the continual-
learned network with some regularization item (‘Contin-
ual’) and the continual-learned network with KD loss from
the source network (‘Continual+KD’). Specially, we com-
pare the proposed ‘PNC’ with ‘PNC-F’, where ‘PNC-F’
is the afterward all-parameter-tuned version of ‘PNC’ on
the to-be-cloned dataset. And we also give the compar-
isons on the small-scale functionality addition (‘-S’, 20% of
the source functionalities are transferred), and middle-scale
functionality addition (‘-S’, 60% of the source functionali-
ties are transferred).

From Table 1, several observations are obtained. Firstly,
the proposed PNC is capable of dealing with various
datasets and network architectures and its effectiveness has
been proved on four datasets and on different network ar-
chitectures. Secondly, the full setting PNC gives the best
solution to the new functionality addition task, our full set-
ting (‘PNC(full)’) outperforms almost all of the other meth-
ods. Thirdly, PNC shows better performance when cloning
smaller functionality (‘Avg.-S’ vs ‘Avg.-M’), and it is prac-
tical in use when the most related network is chosen as the
target and minor functionality is added with the proposed
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Table 1. Overall performance on partial network cloning on MNIST, CIFAR10, CIFAR100 and Tiny-ImageNet datasets. We report the
accuracies to evaluate the performance, including the comparison with the other functional addition methods and the ablation study. We
choose ‘Continual+KD’ as baseline and mark the accuracy promotion in blue, accuracy drop in red.

Acc on MNIST (LeNet5, #3 Steps) Acc on CIFAR-10 (ResNet-18, #5 Steps)
Method Ori.-S Tar.-S Avg.-S Ori.-M Tar.-M Avg.-M Ori.-S Tar.-S Avg.-S Ori.-M Tar.-M Avg.-M

Pre-trained 99.7 99.5 99.7 99.7 99.5 99.6 95.9 97.2 96.1 95.9 97.6 96.5
Joint+Full Set 99.8 98.3 99.6 99.7 99.3 99.5 95.2 96.8 95.5 94.4 95.1 94.7
Continual 83.4-10.1 100.0+17.3 86.2-5.5 65.1-27.9 98.8+16.8 77.7-11.2 67.7+2.8 97.2+2.6 75.3-14.8 92.8+18.7 78.2+16.6 87.3-2.1

Direct Ensemble 94.6+1.1 56.1-26.4 88.2-3.5 94.6+1.6 81.9-0.1 89.8+0.9 90.5+25.6 39.3-55.3 82.0+12.1 90.5+16.4 43.8-17.8 73.0+3.6

Continual+KD 93.5 82.7 91.7 93.0 82.0 88.9 64.9 94.6 69.9 74.1 61.6 69.4

PNC-F (w/o Local) 87.7-5.8 100.0+17.3 90.0-1.7 90.9-2.1 98.2+16.2 93.6+4.7 88.6+23.7 97.3+2.7 90.1+20.2 85.5+11.4 95.8+34.2 89.4+20.0

PNC-F (w/o Insert) 86.9-6.6 100.0+17.3 89.1-2.6 90.4-2.6 97.7+15.7 93.1+4.2 86.1+21.2 96.8+2.2 87.9+18.0 86.0+11.9 96.2+34.6 89.8+30.4

PNC-F (full) 88.5-5.0 99.7+17.0 90.4-2.6 91.1-1.9 98.8+16.8 94.0+5.1 83.0+18.1 96.5+1.9 85.3+15.4 85.4+11.3 95.5+33.9 89.2+19.8

PNC (w/o Local) 93.6+0.1 96.2+13.5 94.0+2.3 92.9-0.1 94.0+12.0 93.3+4.4 90.5+25.6 93.9-0.7 91.7+21.8 87.1+13.0 94.6+33.1 89.9+29.8

PNC (w/o Insert) 92.8-0.7 99.5+16.8 93.9+2.2 91.9-1.1 97.3+15.3 93.9+5.0 89.5+24.6 94.4-0.2 90.3+20.4 89.2+15.1 94.7+33.2 91.3+21.9

PNC (Ours, full) 96.4+2.9 99.7+17.0 97.0+5.3 96.2+3.2 97.815.8 96.8+7.9 94.9+30.0 95.5+0.9 95.0+25.1 93.7+19.6 94.5+32.9 94.0+24.6

Acc on CIFAR-100 (ResNet-50, #5 Steps) Acc on Tiny-ImageNet ( ResNet-18, #5 Steps)
Method Ori.-S Tar.-S Avg.-S Ori.-M Tar.-M Avg.-M Ori.-S Tar.-S Avg.-S Ori.-M Tar.-M Avg.-M

Pre-trained 80.0 80.3 80.1 80.0 77.2 79.0 71.3 67.6 70.7 71.3 68.9 70.4
Joint+Full Set 78.0 74.9 77.5 76.3 77.9 76.9 63.1 60.8 62.7 63.7 61.6 62.9
Direct Ensemble 59.3-6.2 46.4-26.3 57.2-9.6 56.0-18.4 46.4-26.6 52.4-21.5 58.0+0.8 35.9-20.5 54.3-2.8 50.6-9.3 30.2-27.9 43.0-16.3

Continual 52.3-13.2 79.4+6.7 56.8-9.9 58.8-15.6 78.0+5.0 66.0-7.9 54.6-2.6 70.1+13.7 57.2+0.1 55.9-4.0 64.9+6.8 59.3+0.1

Continual + KD 65.5 72.7 66.7 74.4 73.0 73.9 57.2 56.4 57.1 59.9 58.1 59.2

PNC (w/o Local) 72.2+6.7 70.4-2.3 71.9+5.2 75.7+1.3 68.3-4.7 72.9-1.0 65.6+8.4 52.5-3.9 63.4+6.4 56.4-3.5 55.9-2.2 56.2-3.0

PNC (w/o Insert) 63.2-2.3 76.1+3.4 65.4-1.3 66.1-8.3 76.0+3.0 69.8-4.1 60.7+3.5 63.5+7.1 61.2+4.1 58.8-1.1 60.9+2.8 59.6+0.4

PNC (Ours, full) 76.7+11.2 74.9+2.2 76.4+9.7 76.9+2.5 76.5+3.5 76.8+2.9 63.2+6.0 60.7+4.3 62.8+5.7 63.5+3.6 60.4+2.3 62.3+3.1

Figure 3. The performance on partial network cloning with differ-
ent scales of the transferable module.

PNC. Finally, fully fine-tuning all the parameters of Mc

after PNC doesn’t bring any benefits (‘PNC’ vs ‘PNC-F’),
since fine-tuning with the to-be-cloned dataset would bring
bias on the new functionality.

4.2.2 More Analysis of the Transferable Module

How does the scale of the transferable module influence
the cloning performance? The transferable module can be
denoted asMf ←M ·W [R:L]

s . And the scale of the trans-
ferable module is influenced by two factors, which are the
selection function M and the position parameters R. We
explore the influence of the scale on the CIFAR-10, with
the same setting from Table 1 of cloning small functional-
ity. The selection function M is directly controlled by the

masking rate c/|W | (0 ≤ l < L, defined in Eq. 5), where
larger cl makes larger transferable modules, shown in Fig. 3
(left). As can be observed from the figure, the accuracy
of the original functionality (‘Ori. Acc’) slightly decreases
with larger Mf . While larger Mf doesn’t ensure higher
accuracy of the to-be-cloned function (‘Tar. Acc’, first in-
crease and then drop), indicating that the appropriate local-
ization strategy on the source instead of inserting the whole
source network benefits a lot.

The position parameter R (0 ≤ l < L) is learned in
the insertion process, here we show the performance for
R = 1 ∼ 4, which further shows the validation of our selec-
tion strategy. Bigger R makes smaller transferable modules,
the accuracy based on which is shown in Fig. 3 (right). The
accuracy on the to-be-cloned set (‘Tar. Acc’) doesn’t largely
influenced by it, while it does influence the accuracy on the
original set (‘Ori. Acc’) a lot. Notably, R = 2 is the po-
sition learned in the insertion process, which shows to the
best according to the average accuracy (‘Avg. Acc’).

Has the transferable module been explicitly local-
ized? For evaluating the quality of the transferable mod-
ule on whether the learned localization strategy Local(·)
has successfully selected the explicit part for the to-be-
cloned functionality or not, we compute the similarity ma-
trix for the source network and the transferable module,
which is displayed in Fig. 4. The comparison is conducted
on the MNIST dataset, which is split into 10 sub-datasets
(D0 ∼ D9, according to the label) and each time we lo-
calize one-label functionality from the source, thus obtain-
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Figure 4. The similarity matrix maps computed on the source net-
work and on the transferable modules on MNIST dataset. Deeper
color indicates higher similarity.

Table 2. The cloning performance evaluation on heterogeneous
model pairs on CIFAR-10 and CIFAR-100 datasets.

Source Acc. on Mc

(Target) Dataset Method Ori. Acc Tar. Acc Avg. Acc

ResNet-18 CIFAR10 Pre-train 88.1 95.9 -
/ CIFAR10 Continual 75.3 92.8 78.2

(CNN) CIFAR10 PNC 86.9 90.3 87.5

ResNet-18 CIFAR10 Pre-train 92.6 95.9 -
/ CIFAR10 Continual 85.0 96.7 87.0

(ResNetC-20) CIFAR10 PNC 92.1 93.5 92.3

ResNet-18 CIFAR100 Pre-train 72.9 78.1 -
/ CIFAR100 Continual 66.7 79.9 68.9

(MobileNetV2) CIFAR100 PNC 70.8 76.1 71.7

ResNet-18 CIFAR100 Pre-train 74.8 78.1 -
/ CIFAR100 Continual 63.8 82.3 66.9

(ShuffleNetV2) CIFAR100 PNC 72.9 77.1 73.6

ing 10 transferable modules (M0
f ∼ M9

f ). For the source
network, we compute Sim(Ms|Di,Ms|Dj) for each sub-
dataset pair. It could be observed from Fig. 4 (left) that each
functionality learned from each sub-dataset are more or less
related, showing the importance of the localization process
to extract local functionality from the rest. For the transfer-
able module, we compute Sim(Ms|Dj ,Mi

f |Di) . Fig. 4
(right) shows that the transferable module has high similar-
ity with the source network on the to-be-cloned sub-dataset,
and its relation with the rest sub-dataset is weakened (Non-
diagonal regions are marked in lighter color than the matrix
map of the source network). Thus, the conclusion can be
drawn that the transferable module successfully models the
locality performance on the to-be-cloned task set, proving
the correctness of the learned Local(·).

4.2.3 Cloning between Heterogeneous Models

Here we evaluate the effectiveness of the proposed PNC
between heterogeneous models. The experiments are con-
ducted on the CIFAR-10 and CIFAR-100 datasets, where
20% of the functionalities are cloned from the source net-
work to the target network. The results are depicted in Ta-
ble 2. In the figure, we compare our PNC with the origi-

Table 3. Comparative experimental results on incremental learning
CIFAR-100 dataset.

Method Description s = 5 s = 10 s = 20 s = 50

LwF [19] Regularization 29.5 40.4 47.6 52.9
iCaRL [29] Rehearsal 57.8 60.5 62.0 61.8
EEIL [2] Rehearsal 63.4 63.6 63.7 60.8
BiC [44] Architecture 60.1 60.4 68.9 70.2
PNC(ours) Architecture 71.5 73.6 75.2 74.2

nal pre-trained models and the network trained in continual
learning setting. As can be seen in the figure, cloning shows
superiority between similar architectures of the source and
target pair (‘ResNet-18 (ResNetC-20)’ has higher accura-
cies than ‘ResNet-18 (CNN)’).

4.2.4 Comparing with Incremental Learning

The proposed partial network cloning framework can be
also conducted to tackle incremental learning task. The
comparisons are made on the CIFAR-100 dataset when us-
ing ResNet-18 as the base network. We pre-train the target
network with the first 50 classes and continually add the rest
from the source network with different class-incremental
step s. The comparative results with some classic incre-
mental learning methods are displayed in Table 3, where
we compare PNC with the regularization- rehearsal- and the
architecture- based continual learning methods, and show
its superior in classification performance. More insight
analysis and comparison with incremental learning are in-
cluded in the supplementary.

5. Conclusion
In this work, we study a new knowledge-transfer task,

termed as Partial Network Cloning (PNC), which clones a
module of parameters from the source network and inserts
it to the target in a copy-and-paste manner. Unlike prior
knowledge-transfer settings the rely on updating parame-
ters of the target network, our approach preserves the pa-
rameters extracted from the source and those of the target
unchanged. Towards solving PNC, we introduce an effec-
tive learning scheme that jointly conducts localizing and in-
sertion, where the two steps reinforce each other. We show
on several datasets that our method yields encouraging re-
sults on both the accuracy and locality metrics, which con-
sistently outperform the results from other settings.
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