
Distribution Shift Inversion for Out-of-Distribution Prediction

Runpeng Yu Songhua Liu Xingyi Yang Xinchao Wang:

National University of Singapore
{r.yu,songhua.liu,xyang}@u.nus.edu xinchao@nus.edu.sg

Figure 1. Transformed OoD samples from PACS dataset. Odd rows show the original OoD images, and even rows show their transformation
results to the source distribution, obtained by the proposed DSI. Please zoom in for better visualization.

Abstract
Machine learning society has witnessed the emergence

of a myriad of Out-of-Distribution (OoD) algorithms, which
address the distribution shift between the training and the
testing distribution by searching for a unified predictor or
invariant feature representation. However, the task of di-
rectly mitigating the distribution shift in the unseen testing
set is rarely investigated, due to the unavailability of the
testing distribution during the training phase and thus the
impossibility of training a distribution translator mapping
between the training and testing distribution. In this pa-
per, we explore how to bypass the requirement of testing
distribution for distribution translator training and make
the distribution translation useful for OoD prediction. We
propose a portable Distribution Shift Inversion (DSI) algo-
rithm, in which, before being fed into the prediction model,
the OoD testing samples are first linearly combined with ad-
ditional Gaussian noise and then transferred back towards
the training distribution using a diffusion model trained only
on the source distribution. Theoretical analysis reveals the
feasibility of our method. Experimental results, on both
multiple-domain generalization datasets and single-domain
generalization datasets, show that our method provides a
general performance gain when plugged into a wide range
of commonly used OoD algorithms. Our code is available at
https://github.com/yu-rp/Distribution-Shift-Iverson.

1. Introduction
The ubiquity of the distribution shift between the training

and testing data in the real-world application of machine
†Corresponding author.

learning systems induces the study of Out-of-Distribution
(OoD) generalization (or domain generalization). [18, 64,
71, 79] Within the scope of OoD generalization, machine
learning algorithms are required to generalize from the seen
training domain to the unseen testing domain without the
independent and identically distributed assumption. The
bulk of the OoD algorithms in previous literature focuses
on promoting the generalization capability of the machine
learning models themselves by utilizing the domain invariant
feature [2, 13, 36], context-based data augmentation [47,
74], distributionally robust optimization [59], subnetwork
searching [81], neural network calibration [70], etc.

In this work, orthogonal to enhancing the generalization
capability of the model, we consider a novel pathway to
OoD prediction. On the way, the testing(target) distribution
is explicitly transformed towards the training(source) dis-
tribution to straightforwardly mitigate the distribution shift
between the testing and the training distribution. Therein,
the OoD prediction can be regarded as a two-step procedure,
(1) transferring testing samples back towards training dis-
tribution, and (2) drawing prediction. The second step can
be implemented by any OoD prediction algorithm. In this
paper, we concentrate on the exploration of the first step, the
distribution transformation.

Unlike previous works on distribution translation and do-
main transformation, in which certain target distribution is
accessible during the training phase, here the target distri-
bution is arbitrary and unavailable during the training. We
term this new task as Unseen Distribution Transformation
(UDT), in which a domain translator is trained on the source
distribution and works to transform unseen target distribu-
tion towards the source distribution. The uniqueness, as well
as the superiority, of UDT is listed as followings.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Using a Diffusion Model to solve the one-dimensional
UDT. OoD samples are transformed to the source distribution with
limited failure of label preservation.

• UDT puts no requirements on the data from both source
and testing distribution like previous works do. This is
practically valuable, because the real-world testing dis-
tributions are uncountable and dynamically changing.

• UDT is able to transform various distributions using
only one model. However, the previous distribution
translator works for the translation between certain
source and target distributions. With a different source-
target pair, a new translator is required.

• Considering the application of UDT in OoD prediction,
it is free from the extra assumptions commonly used by
the OoD generalization algorithms, such as the multi-
training domain assumption and the various forms of
the domain invariant assumption.

Despite the advantages, the unavailability of the testing
distribution poses new difficulty. Releasing this constraint,
the idea of distribution alignment is well established in do-
main adaptation (DA). Wherein, a distribution translator is
trained with the (pixel, feature, and semantic level) cycle
consistency loss [23, 38, 82]. However, the training of such
distribution transfer modules necessitates the testing distribu-
tion, which is unsuitable under the setting of OoD prediction
and makes the transplant of the methods in DA to OoD even
impossible.

To circumvent the requirement of testing distribution dur-
ing training time, we propose a novel method, named Distri-
bution Shift Inversion (DSI). Instead of using a model trans-
ferring from testing distribution to training distribution, an
unconditional generative model, trained only on the source
distribution, is used, which transfers data from a reference
noise distribution to the source distribution. The method
operates in two successive parts. First, the OoD target dis-
tribution is transferred to the neighborhood of the noise dis-
tribution and aligned with the input of the generative model,
thereafter we refer to this process as the forward transforma-
tion. The crux of this step is designing to what degree the
target distribution is aligned to the noise distribution. In our
implementation, the forward transformation is conducted by
linearly combining the OoD samples and random noise with

the weights controlling the alignment.Then, in the second
step, the outcome of the first step is transferred towards the
source distribution by a generative model, thereafter we refer
to this process as the backward transformation. In this paper,
the generative model is chosen to be the diffusion model [21].
The superiority of the diffusion model is that its input is the
linear combination of the source sample and the noise with
varying magnitude, which is in accord with our design of the
forward transformation and naturally allows strength control.
Comparatively, VAE [28] and GAN [16] have a fixed level
of noise in their input, which makes the forward transfor-
mation strength control indirect. Our theoretical analyses
of the diffusion model also show the feasibility of using the
diffusion model for UDT.

Illustrative Example. A one-dimensional example is
shown in Fig. 2.The example considers a binary classifica-
tion problem, in which, given label, the conditional distribu-
tions of the samples are Gaussian in both the source and the
testing domain. The testing distribution is constructed to be
OoD and located in the region where the source distribution
has a low density. The diffusion model is trained only on the
source distribution. Passing through the noise space align-
ment and diffusion model transformation, the OoD samples
are transformed to the source distribution with limited failure
of label preservation.

Transformed Images. Fig. 1 shows some transformation
results of OoD images towards the source distribution. The
observation is twofold. (1) The distribution (here is the
style) of the images is successfully transformed. All of the
transferred images can be correctly classified by the ERM
model trained on the source domain. (2) The transformed
images are correlated to the original images. Some structural
and color characteristics are mutually shared between them.
This indicates that the diffusion model has extracted some
low-level information and is capable to preserve it during
the transformation. We would like to highlight again that,
during the training, the diffusion model is isolated from the
testing domain.

Our contributions are therefore summarized as:
• We put forward the unseen distribution transformation

(UDT) and study its application to OoD prediction.
• We offer theoretical analyses of the feasibility of UDT.
• we propose DSI, a sample adaptive distribution trans-

formation algorithm for efficient distribution adaptation
and semantic information preservation.

• We perform extensive experiments to demonstrate that
our method is suitable for various OoD algorithms to
achieve performance gain on diversified OoD bench-
marks. On average, adding in our method produces
2.26% accuracy gain on multi-training domain general-
ization datasets and 2.28% on single-training domain
generalization datasets.
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2. Related Work

2.1. Out-of-Distribution Generalization

To achieve OoD generalization, diverse methods have
been proposed.

Causal inference methods extract the invariant feature
among training domains and build up a unified predictor for
all domains. For example, CNBB [19] down-weights the
samples which introduce big changes to the feature space by
evaluating the causal effect of each sample; ICP [51] find the
subset of features satisfying the property that the conditional
probability of the target given this set of features is invariant
among the domains; IRM [2] regularizes the ERM loss with
the norm of the gradient of loss corresponding to the latent
features; IB-IRM [1] extends the IRM to the case, where the
invariant features are only partially informative, by adding
an extra entropy loss term of the latent feature.

Context-based data augmentation methods enrich the
training feature space by linear interpolation between the
features of inter-domain and intra-domain samples [74]; or
combining the normalized feature of one sample with the
mean and variance of the feature of another sample [47].

Distributional Robust Optimization method, like Group-
DRO [59], theoretically formulates the OoD generalization
as a min-max optimization and practically up-weights the
domains with large losses in an online learning style to guar-
antee the model fit on all domains.

Feature alignment methods learn a unified feature rep-
resentation among all training domains with the assump-
tion that this representation is shared by the testing domain
data. For example, DANN [13] and CDANN [36] align the
marginal and conditional feature distribution by domain ad-
versarial training, respectively; CORAL [67] matches the co-
variance of the features in every training domain; MASF [11]
proposes model-agnostic episodic learning to regularize the
semantic structure of the feature space; using the contrastive
learning as the regularization term, SelfReg [27] minimizes
the distance between the features of the samples within the
sample class; CAD and ConCAD [58] minimize the mutual
information between the feature and domain variable as well
as the negative mutual information between the feature of
original samples and the feature of augmented samples.

Context feature separation methods recognize the context
feature by an extra context discriminator and disentangle
them from the category feature by orthogonality penalty [4].

Gradient manipulation methods are designed based on
the intuitions that (1) to train a unified predictor, only the
gradient common across all domains should be used; or the
intuition that (2) the spurious correlation, which leads to
larger gradients, is easier to be fitted to and prevent the algo-
rithm from learning other features. For example, IGA [30]
and SD [52] penalize the variance of the gradients and the
l2 norm of the logits, respectively; RSC [25] only takes

the samples whose gradients are small into consideration;
MLDG [34] updates the parameters only when there are
performance gains in two separated parts of the training
dataset; ANDMask [50] and its ReLU-smoothed version
SANDMask [63] only update the parameter whose gradients
in most of the domains have the same sign.

Different from the previous works, DSI tackles the OoD
generalization problem by test time sample adaption. Instead
of increasing the OoD generalization ability of the model,
DSI aims to mitigate the distribution shift of the testing sam-
ples by shifting them back towards the source distribution.
Though input enhancing is investigated in dataset distilla-
tion [39] and domain adaptation [23, 38, 82], we are the first
to test this idea in OoD generalization. Besides its novelty,
DSI is orthogonal to the previous algorithms, which allows
it to be portably used as a common technique for OoD tasks.

2.2. Diffusion Model

Neural network reuse has drawn recent interest [75–78].
In this work, we consider reusing pre-trained diffusion mod-
els. With promising performance and theoretical explanation,
the diffusion model has been intensively investigated in the
field of time series generalization/imputation/prediction [29,
32, 56, 68], image generalization/editing/inpainting [3, 6–
8, 41, 44, 54, 61], text generalization/modeling [35, 80],
text2image generalization [17, 48, 55, 60], text2speech gen-
eralization [53], video generalization [22], graph general-
ization [24, 73], 3D point cloud generalization [42, 43, 83].
Besides, these generation tasks, diffusion model conduces
to the downstream tasks such as image segmenting [5], test-
ing time sample adaptation for corrupted images [14], and
adversarial attack defense [49]. In DSI, we explore a new
application of the diffusion model in which it enhances the
OoD prediction by transferring the OoD samples towards
the source distribution.

2.3. Prediction Confidence Estimation

In DSI, the prediction confidence score is used for se-
lecting poorly predicted samples and achieving an adaptive
distribution shift inversion at the sample level. By satisfy-
ing the partial order relationship of uncertainty, commonly
used loss functions, such as softmax cross entropy, are suit-
able confidence metrics. [31] Other softmax-based scores,
such as the maximum class probability [15, 20], true class
probability [10] and the KL-divergence between the soft-
max distribution and the uniform distribution [20] are also
widely used. Based on the Bayesian method, Monte Carlo
dropout [12], use the standard uncertainty criteria (e.g., vari-
ance, entropy) of the stochastic network predictions as the
confidence score. Taking a modified nearest-neighbor classi-
fier as the reference, trust score [26] uses a minimal distance
ratio as the confidence score. We note that measurements
in the field of OoD detection [37, 40, 46, 57, 62] and sample
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difficulty estimation may also serve as proper filtering met-
rics for DSI. But, in this paper, we prefer to establish a new
OoD prediction framework and leave the discovery of the
potential filtering metrics as future work.

3. Preliminary
The task of sampling an instance x of a random vari-

able X P Rd with distribution ppxq is generally intractable
due to the fact that ppxq is complex or unknown. Diffusion
model, such as ScoreFlow [66] and DDPM [21], first sam-
ples from an simple distribution ρpxq and then iteratively
transforms sample x to makes its distribution consistent with
ppxq.

Under the continuous time setting, diffusion model for-
mulates the forward transformation from ppxq to ρpxq as a
stochastic process txtu

T
t“0 following the Stochastic Differ-

ential Equation (SDE)

dx “ fpx, tqdt` gptqdw, (1)

where fp¨, tq : Rd Ñ Rd is named drift coefficient,
gptq P R is named diffusion coefficient, and w is the Wiener
process whose derivative dw is characterized by a standard
Gaussian random variable (white Gaussian noise). The cor-
responding marginal distribution ptpxq at time t satisfies
p0pxq “ ppxq and pT pxq « ρpxq. To sample from ppxq,
the diffusion model first samples from ρpxq and then trans-
forms x backward according to the inverse SDE associated
with Eq. (1)

dx “ rfpx, tq ´ g2ptq∇x log ptpxqsdt` gptqdw̄, (2)

where dt is the negative time flow, evolving from t “ T
to t “ 0, and w̄ is the Wiener process in the inverse time
direction whose derivative dw̄ is again a standard Gaussian
random variable because of the Gaussian increment charac-
terization of Wiener process. In Eq. (2), ∇x log ptpxq is the
unknown score function of x at time t, which is estimated by
a neural network sθpx, tq with the weighted score matching
loss

JSM pθ;λp¨qq

“
1

2

ż T

0

Eptpxqrλptq||∇x log ptpxq ´ sθpx, tq||22sdt.

(3)

4. Unseen Distribution Transformation
First, we motivate our method by analyzing why the dif-

fusion model helps promote the OoD generalization.
Here, we proof that, by feeding a linear combination

of the OoD samples and the standard Gaussian noise to a
diffusion model, the OoD samples can be transformed to the
ID samples.

Theorem 1. Given a diffusion model trained on the source
distribution ppxq,let pt denote the distribution at time t in
the forward transformation, let p̄pxq denote the output dis-
tribution when the input of the backward process is standard
Gaussian noise ϵ whose distribution is denoted by ρpxq, let
ωpxq denote the output distribution when the input of back-
ward process is a convex combination p1´αqX 1 `αϵ, where
random variable X 1 is sampled following the target distribu-
tion qpxq and α P p0, 1q. Under some regularity conditions
detailed in Appendix, we have

KLpp||ωq ď JSM `KLppT ||ρq ` Fpαq (4)

Theorem 1 proves that the testing distribution can be
transformed to the source distribution and the convergence
is controlled by α. The first terms in the inequality are intro-
duced by the pretrained diffusion model. The loss term JSM

is small after sufficient training and can be reduced if the
training procedure is further optimized. The KL-divergence
term KLppT ||ρq indicates the distance between the real dis-
tribution achieved by the forward transformation and the
manually chosen standard Gaussian distribution, which is
monotonically decreasing as the T goes larger and converges
to 0 as the T is sufficient large. The third term (detailed in
Appendix) is introduced by the distribution of the OOD test-
ing samples, which is controlled by α and converges to 0 as
α goes to 1.

4.1. Implementation

In this part, we describe DSI to realize the idea of shifting
testing image towards the training distribution to boost the
OoD generalization. The entire workflow is illustrated in
Fig. 3.

In the previous analysis, by constructing a linear combina-
tion of the OoD input and the noise, the alignment between
the testing and the training distributions is converted to an
alignment problem in the noise space. To be consistent with
the diffusion model literature, we rewrite the linear combi-
nation as x̂ “ βx ` αϵ. By adjusting the coefficients α, β
and the starting time s, the distance between the distribution
of x̂ (i.e., wpx̂q) and the input distribution of the diffusion
model (during the training time) at time s (i.e., pspxq) is
controlled. To better match wpx̂q to pspxq, utilizing the com-
mon practice [21, 65] that xs is a designed to be a linear
combination of x and Gaussian noise, we keep s as a hy-
perparameter and calculate α and β from s. Conditioned
on the diffusion model, the maps from s to α and β vary.
Taking DDPM as an example, the calculations can be writ-
ten as α “

a

1 ´
śs

l“1p1 ´ σlq and β “
a

śs
l“1p1 ´ σlq,

where σl is the standard deviation of the noise in the forward
process at time l.

Next, we look into the schedule of starting time s. Two
factors are taken into consideration. First is the time effi-
ciency. The generation of the diffusion model requires an
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Figure 3. Illustrative example of DSI finished in two iterations. In the first iteration, insufficient transformation leads to wrong prediction with
low confidence. Our algorithm rejects the prediction and continues the second iteration. In the second iteration, with proper transformation,
the correct prediction is drawn and accepted. Then, the algorithm finished.

iterative sampling in which the total sampling steps (thus the
sampling time) are controlled by the starting time s. Though
providing more sufficient distribution transformation, us-
ing a large s is time-consuming and inappropriate for the
online testing environment. [9, 72] Second is the sample
differences. As discovered in image editing [45] using the
diffusion model, the starting time controls the faithfulness
and reality of the generated images. Analogically, in using
the diffusion model to transfer the OoD data, s is a controller
of the degree of distribution transformation and the preserva-
tion of semantic information, which are both crucial to OoD
prediction. In practice, the distance from different samples
to the training distribution is different and the difficulty of
the semantic label preservation varies among the samples,
which makes a uniform starting time schedule improper.

Thus, in DSI, a sample adaptive schedule of the starting
time index is used, in which s increases gradually. Specif-
ically, given a predefined starting time sequence tslu

L
l“0,

where s0 ă s1 ă ¨ ¨ ¨ ă sL, for each OoD sample x, DSI
begins with the smallest s0, uses the diffusion model to
transfer the combination x̂, and lets the predictor output the
prediction result h together with the confidence score c of
the prediction. If the c is greater than a predefined threshold
k, the prediction is accepted. Otherwise, DSI rejects the pre-
diction, move to the next time index, and repeats the above
procedure (transfer, prediction, and then using confidence
score to make a judgment). If the prediction confidence
score still does not meet the threshold at time index sL, the
last prediction is accepted. By doing so, DSI allocates a
small starting time index to the samples close to the source
distribution and a larger one to the samples far from the

Algorithm 1 Distribution Shift Inversion

Input: Predictor: f , Diffusion Models: tgmuMm“1, Func-
tion for calculating α and β: ϕ, Ensemble function: ξ,
Confidence score function: ψ

Input: Starting time series: tslu
L
l“0, Threshold: k

Input: OoD sample: x
1: h0 Ð fpxq Ź Draw prediction from original sample
2: for l in 1, ¨ ¨ ¨ , L do
3: α, β Ð ϕptlq
4: x̂ Ð βx` αϵ
5: for m in 1, ¨ ¨ ¨ ,M do
6: x̃ Ð gmpx̂q Ź Transfer
7: hm Ð fpx̃q

8: end for
9: h Ð ξph0, ¨ ¨ ¨ , hM q Ź Ensemble

10: if ψphq ą k then Ź Confidence Filtering
11: break
12: end if
13: end for
14: output prediction h Ź Accept the last prediction

source distribution. Thus, this adaptation procedure avoids
the use of a uniformly small time step which causes some
samples to not be fully transferred, or a uniformly large time
steps to cause the diffusion model to take too long to proceed.
In our experiments, we use the maximum class probability
as the confidence score and set the confidence threshold as
hyperparameter.

Usually, under the setting of OoD prediction, multiple
training domains are available. The majority of the OoD
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Dataset PACS OfficeHome

Testing Domain A C P S Average A C P R Average

ERM 76.24˘0.44 67.90˘0.64 94.47˘0.44 60.32˘0.85 74.73˘0.59 60.81˘0.51 54.17˘0.17 74.80˘0.35 76.11˘0.40 66.47˘0.36
ERM* 78.52˘0.81 70.90˘0.76 95.80˘0.16 67.97˘0.68 78.30˘0.60 61.15˘0.56 55.96˘0.76 75.55˘0.23 76.56˘0.29 67.31˘0.46
ANDMask [50] 67.35˘0.51 63.22˘2.23 93.98˘0.26 60.35˘1.05 71.23˘1.01 60.84˘0.60 55.73˘0.60 73.80˘0.44 75.88˘0.08 66.56˘0.43
ANDMask* 69.43˘0.40 68.23˘2.29 94.99˘0.24 69.63˘0.57 75.57˘0.88 61.18˘0.65 56.80˘0.41 74.35˘0.40 76.40˘0.54 67.18˘0.50
CAD [58] 75.42˘0.51 68.20˘0.64 95.02˘0.55 59.77˘2.14 74.60˘0.96 60.71˘0.64 53.39˘0.18 74.41˘0.29 75.36˘0.39 65.97˘0.38
CAD* 76.11˘0.81 71.81˘0.59 96.09˘0.16 69.56˘1.69 78.39˘0.81 61.04˘0.63 55.08˘0.44 75.20˘0.29 76.14˘0.28 66.87˘0.41
CondCAD [58] 75.55˘0.38 67.77˘0.50 95.57˘0.12 59.99˘1.90 74.72˘0.73 60.74˘0.37 55.27˘0.83 74.64˘0.26 75.42˘0.20 66.52˘0.42
CondCAD* 77.12˘0.36 71.61˘0.37 96.03˘0.09 69.79˘1.96 78.64˘0.70 61.15˘0.28 56.09˘0.58 75.52˘0.41 76.43˘0.17 67.30˘0.36
GroupDRO [59] 69.56˘1.01 63.77˘3.74 93.16˘0.77 64.16˘1.78 72.66˘1.83 60.32˘0.26 53.12˘0.64 71.61˘0.66 75.68˘0.21 65.18˘0.44
GroupDRO* 71.61˘0.81 67.45˘2.75 93.78˘0.40 71.88˘1.02 76.18˘1.25 60.73˘0.26 55.83˘0.79 73.01˘0.92 76.14˘0.18 66.43˘0.54
IB ERM [1] 77.18˘0.20 69.76˘0.24 94.82˘0.80 61.26˘0.58 75.76˘0.46 58.30˘0.78 54.39˘0.10 70.36˘0.05 72.02˘0.44 63.77˘0.34
IB ERM* 79.07˘0.20 71.88˘0.44 95.83˘0.30 69.95˘0.88 79.18˘0.46 58.66˘0.81 55.66˘0.39 71.29˘0.01 72.90˘0.34 64.63˘0.39
IB IRM [1] 75.26˘1.09 67.77˘0.97 94.76˘0.45 60.25˘2.40 74.51˘1.23 58.01˘0.44 52.60˘1.00 72.75˘0.60 74.90˘0.65 64.57˘0.67
IB IRM* 77.31˘1.08 70.70˘0.63 95.96˘0.12 68.03˘1.67 78.00˘0.88 58.37˘0.39 53.68˘0.44 72.95˘0.84 75.55˘0.79 65.14˘0.62
Mixup [74] 71.29˘0.49 66.11˘2.32 94.08˘0.47 64.81˘2.88 74.07˘1.54 61.46˘0.20 55.83˘0.65 74.06˘0.44 76.73˘0.41 67.02˘0.43
Mixup* 73.18˘0.17 69.63˘2.35 94.56˘0.40 71.45˘2.74 77.21˘1.42 62.25˘0.31 57.85˘0.85 75.10˘0.40 77.21˘0.26 68.10˘0.46
SANDMask [63] 67.35˘0.51 62.50˘3.85 94.17˘0.62 64.58˘0.58 72.15˘1.39 61.78˘0.36 55.24˘0.12 73.34˘0.40 75.68˘0.37 66.51˘0.31
SANDMask* 69.43˘0.40 67.42˘2.96 94.73˘0.42 72.66˘0.63 76.06˘1.10 62.14˘0.35 56.58˘0.28 73.50˘0.23 76.27˘0.29 67.12˘0.29
SelfReg [27] 76.86˘0.08 68.62˘0.74 96.09˘0.14 61.39˘0.81 75.74˘0.44 62.50˘0.76 56.09˘0.23 75.52˘0.38 75.75˘0.24 67.47˘0.40
SelfReg* 78.61˘0.41 71.55˘0.74 96.39˘0.21 71.19˘0.21 79.44˘0.39 62.90˘0.82 57.52˘0.14 76.37˘0.37 76.79˘0.20 68.40˘0.38

Average Gain 1.83˘0.43 3.55˘0.85 0.80˘0.34 8.52˘1.06 3.68˘0.67 0.41˘0.13 1.52˘0.52 0.75˘0.35 0.69˘0.21 0.84˘0.30

Table 1. The average accuracy ˘ the standard deviation of base algorithms w/o our method on PACS and OfficeHome datasets. The
performance is generally boosted when our method is plugged in, whichever base algorithm is used.

prediction algorithms are based on this multiple-training do-
main assumption to extract stable features and establish a
uniform predictor. Consistent with this common setting, for
the multiple training domain problem, we use a unified pre-
dictor f trained on all available training domains. However,
a mixture of multiple distributions increases the difficulty
of training for the diffusion model, which leads to a slower
convergence and domain collapse (only generating samples
from easy domains). Given consideration to these undesired
phenomena, for the multiple training domain problem, we
train individual diffusion model gm, where m “ 1, ¨ ¨ ¨ ,M
is the training domain index, on each training domain, use
every gm to transfer the OoD sample, and then obtain the
prediction hm from every transferred sample using f . Fi-
nally, we ensemble the predictions thmuMm“1 together to get
the overall prediction. In our experiments, the ensemble is
conducted by averaging the logits (the inputs of the softmax
layer) in the predictor neural network.

The overall framework of DSI is shown in Algorithm 1.

5. Experiments
Datasets. In the main text, experiments on the follow-

ing datasets are reported. More experiments can be found
in supplementary materials. (1) PACS [33] contains 999,1
colored images from 7 classes and 4 domains (art painting,
cartoon, photo, and sketch); (2) Office-Home [69] contains
around 15,500 images from 65 different classes and 4 do-
mains (artistic, clip art, product, and real-world).

Base Methods. Based on the taxonomy in Sec. 2, we
select one (or two) up-to-date or representative algorithm(s)
from each category as the base methods in the experiments
with multiple training domains. For experiments with a

single training domain, we adjust the list of base methods
by only choosing the algorithms without multi-domain as-
sumption. For each experimental configuration (dataset and
training-testing split), the hyperparameters of each algorithm
are optimized based on the performance metric on the test-
ing set over 10 random searches. The searching regions
are reported in supplementary materials. Fixing the optimal
hyperparameters, we repeat the experimental pipeline three
times and report the average results together with the stan-
dard deviations to alleviate the influence of the lucky weight
initialization and dataset split.

In Tabs. 1 and 2, we use [algorithm]* to indicate the
use of DSI, the green cells to indicate our method improves
the base method, and the green cells with text in bold to
indicate our method improves the base method with non-
overlapped confidence interval.

5.1. Multi-training Domain Generalization

The experiments for multi-training domain generalization
are conducted on PACS and OfficeHome. For each dataset,
one domain is left as the testing domain and the other three
are used for training. The performance comparison of base
methods with and without our method are listed in Tab. 1.
Our method generally enhances the OoD prediction of all
types of base methods by 3.68% on PACS and 0.84% on
OfficeHome, which indicates DSI successfully closes the dis-
tance between the OoD samples and the training distribution.
The significance of the improvements varies among differ-
ent leave-one-out settings, because the accuracy of the base
methods varies. When the accuracy of the base method is low
(e.g., the average accuracy of the base methods is 61.88% for
S of PACS), more (8.22%) improvement is achieved. When
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(a) Testing Domain: Art
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(b) Testing Domain: Cartoon
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(c) Testing Domain: Photo
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(d) Testing Domain: Sketch
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(e) Testing Domain: Art
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(f) Testing Domain: Cartoon
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(g) Testing Domain: Photo
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(h) Testing Domain: Sketch

Figure 4. The percentage of correct prediction when using our method among the samples which are correctly predicted by the base method
(in Fig. 4a to Fig. 4d), or wrongly predicted by the base method (in Fig. 4e to Fig. 4h). The plot is separately drawn for each leave-one-out
setting and each class.

the accuracy of the base method is high (e.g., the average
accuracy of the base methods is 94.61% for P of PACS), the
absolute value of the improvement is less (0.89%). We also
notice that the rise in performance on OfficeHome dataset is
less than the PACS, which can be attributed to that the larger
number of classes in OfficeHome increases the hardness of
the semantic label preservation of our method.

We further analyze whether the performance gain depends
on a certain class or domain. We count, for each class in
each testing domain, (1) the number of samples correctly
predicted by both the base methods and the base methods
with DSI(# Both Correct), (2) the number of samples cor-
rectly predicted by the base methods with DSI but wrongly
predicted by base methods (#Only Ours Correct), (3) the
number of samples correctly predicted by the base methods
(# Base Correct), and (4) the number of samples wrongly
predicted by the base methods (# Base Wrong). Fig. 4
shows the preservation ratio calculated by # Both Correct

# Base Correct

and the correction ratio calculated by # Only Ours Correct
# Base Wrong .

The preservation ratio indicates the percentage of the cor-
rect predictions that are still correct when our method is
used. The correction ratio indicates the percentage of the
wrong predictions that are corrected when our method is
used. Averaging over testing domains and classes, 94.52%
of the correct predictions are still correct when our method
is used. The highest preservation ratio is 95.95% appear-
ing when photo is the testing domain. Among the testing
domains and the classes, our method can at least correct
8.57% wrong predictions and averagely 28.17%. These re-
sults prove the general effectiveness of our methods across
different domains and classes.
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Figure 5. Accuracy v.s. Starting Time s on PACS dataset with the
testing domain of “Cartoon”.

5.2. Single-training Domain Generalization

To cover the harder single training domain generaliza-
tion, we do experiments on PACS datasets in which we use
each domain as the training domain and test on the other
three. The performance comparison of base methods with
and without our method on the dataset with single training
domains are listed in Tab. 2. With our method, irrelevant to
the training and testing domain, general performance gains
are achieved and the average performance gain is 2.42%.

5.3. Discussion on the starting time s

Transforming the distribution closer to the source distribu-
tion increases the confidence of the prediction based on the
transformed image. On the other hand, the well-preserved
label information guarantees the prediction of the generated
image has the same label as its origin. However, increasing
s to get further distribution transformation will destroy the
label information, contrarily, decreasing s to preserve the
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Dataset PACS

Training Domain A C P S

Testing Domain C P S A P S A C S A C P

ERM 55.37˘0.32 97.92˘0.05 42.84˘1.68|55.63˘0.26 83.43˘0.32 57.42˘2.27|64.84˘1.02 28.26˘3.86 23.24˘4.88|15.82˘1.33 14.26˘0.70 12.66˘0.49
ERM* 57.58˘0.26 97.90˘0.03 48.54˘1.12|57.03˘0.44 83.98˘0.56 63.74˘2.00|65.92˘0.37 32.75˘3.78 25.68˘4.78|16.41˘1.51 16.80˘0.76 12.92˘0.20
CORAL 56.35˘2.63 96.68˘0.63 42.32˘2.60|55.47˘0.52 84.15˘0.70 57.81˘1.65|62.04˘0.74 32.16˘5.84 26.33˘8.46|15.27˘0.68 15.76˘1.16 11.65˘0.81
CORAL* 58.76˘2.96 96.84˘0.53 47.56˘1.16|56.87˘0.09 84.38˘0.83 64.65˘2.01|63.90˘1.01 35.97˘4.80 29.23˘7.99|15.98˘0.66 16.50˘1.04 12.27˘0.92
RSC 55.21˘0.28 98.18˘0.17 44.66˘1.69|54.36˘1.06 83.79˘0.62 59.41˘2.33|63.05˘0.96 31.61˘6.75 24.90˘5.12|16.57˘0.59 16.37˘0.26 13.77˘1.92
RSC* 57.39˘0.45 98.24˘0.15 50.39˘1.25|55.70˘0.74 83.95˘0.56 65.98˘1.60|64.13˘1.64 35.29˘5.77 28.22˘4.87|17.68˘0.68 17.45˘0.69 14.49˘1.88
SagNet 56.41˘0.47 97.95˘0.08 46.81˘3.33|58.82˘1.18 86.95˘0.79 57.91˘2.62|67.32˘0.99 41.76˘2.35 35.77˘2.48|15.76˘0.91 14.23˘2.45 16.76˘1.51
SagNet* 58.85˘0.51 97.96˘0.08 53.48˘3.30|59.51˘1.40 87.14˘0.97 64.71˘3.50|67.74˘0.75 44.34˘2.00 38.64˘1.84|18.03˘0.67 15.95˘2.17 18.26˘1.90

Average Gain 2.31˘0.12 0.05˘0.07 5.83˘0.52| 1.20˘0.30 0.28˘0.16 6.63˘0.21| 1.11˘0.51 3.64˘0.69 2.88˘0.31| 1.17˘0.67 1.52˘0.68 0.77˘0.45

Table 2. The average accuracy ˘ the standard deviation of base algorithms w/o our method on PACS datasets with single training domain
setting. The performance is generally boosted when our method is plugged in, whichever base algorithm used.
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(b) Accuracy v.s. Threshold

Figure 6. Discussion about the influence of hyperparameters: En-
semble set (Fig. 6a) and Threshold (Fig. 6b) on the PACS dataset
with the testing domain of “Cartoon”. The y-axis label of Fig. 6a
indicates the components of the ensemble set with the correspond-
ing accuracy’s show on the right. The row of “C” corresponds to
the setting using the original testing images alone. The areas be-
low(above) correspond to the ensembles with(without) the original
testing images.

label information will limit the distribution transformation.
Thus, an optimal s exists for each algorithm. (see Fig. 5)

5.4. Discussions on hyperparameters

Ensemble. We analyze whether only transforming the
testing domain data to a subset of the training domains in-
fluences the performance gain or not. Fig. 6a shows the
accuracy with different ensemble sets on PACS with the
multi-training domain setting and Cartoon is the testing do-
main. Each row corresponds to one kind of ensemble. For
example, row “C” shows the accuracy when the prediction
is only based on the original testing image, which is the ac-
curacy of the base methods; row “C,A” shows the accuracy
when the prediction based on the original testing image and

prediction based on the image transformed towards the do-
main Art are considered together. As shown from the figure,
including more components in the ensemble set increases
the average performance and reduces its variance; ensembles
without the original prediction can perform comparably with
the base method; the ensembles with the original predic-
tion and any (one, two, or all) of the predictions based on
the transformed image is statistically better than the base
methods.

Confidence Threshold. We analyze the influence of the
confidence threshold k, and the performance with varying k
are shown in 6b. Base methods are special cases when k “ 0,
their performances are shown along the red vertical line
Though tuning k enlarges the performance gain, when k ą 0,
our method is activated and there are always performance
improvements.

6. Conclusion
In this paper, we investigate a novel task, termed un-

seen distribution transformation, which aims at transforming
the unseen distribution towards the seen distribution. We
frame the first solution to unseen distribution transformation,
in which the unseen distribution is first linearly combined
with the Gaussian noise and then transformed by a diffusion
model trained on the seen domain. By solving this task, we
provide a new perspective for addressing the OoD predic-
tion task by first closing the distance between the testing
domain and the training domain and then drawing prediction.
We propose the portable DSI, which conducts sample adap-
tive unseen distribution transformation to enhance the OoD
prediction algorithms. Experimental results show that our
method results in general performance gains when inserted
into various types of base methods under multi-training and
single-training domain generalization problems.
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José F. Núñez, and Jordi Luque. Input complexity and out-of-
distribution detection with likelihood-based generative mod-
els. In ICLR, 2020. 3

[63] Soroosh Shahtalebi, Jean-Christophe Gagnon-Audet, Touraj
Laleh, Mojtaba Faramarzi, Kartik Ahuja, and Irina Rish.
Sand-mask: An enhanced gradient masking strategy for
the discovery of invariances in domain generalization.
arXiv:2106.02266, 2021. 3, 6

[64] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Ren-
zhe Xu, Han Yu, and Peng Cui. Towards out-of-distribution
generalization: A survey. CoRR, 2021. 1

[65] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. In ICLR, 2021. 4

[66] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon.
Maximum likelihood training of score-based diffusion models.
In NIPS, 2021. 4

[67] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frus-
tratingly easy domain adaptation. In Dale Schuurmans and
Michael P. Wellman, editors, AAAI, 2016. 3

[68] Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Er-
mon. CSDI: conditional score-based diffusion models for
probabilistic time series imputation. In NeurIPS, 2021. 3

3601



[69] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In CVPR, 2017. 6

[70] Yoav Wald, Amir Feder, Daniel Greenfeld, and Uri Shalit.
On calibration and out-of-domain generalization. In NeurIPS,
2021. 1

[71] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang,
and Tao Qin. Generalizing to unseen domains: A survey on
domain generalization. In IJCAI, 2021. 1

[72] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling
the generative learning trilemma with denoising diffusion
gans. In ICLR, 2022. 5

[73] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano
Ermon, and Jian Tang. Geodiff: A geometric diffusion model
for molecular conformation generation. In ICLR, 2022. 3

[74] Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu
Ren. Improve unsupervised domain adaptation with mixup
training. arXiv:2001.00677, 2020. 1, 3, 6

[75] Xingyi Yang, Jingwen Ye, and Xinchao Wang. Factorizing
knowledge in neural networks. In ECCV, 2022. 3

[76] Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang.
Diffusion probabilistic model made slim. CVPR, 2023. 3

[77] Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, and
Xinchao Wang. Deep model reassembly. NeurIPS, 2022. 3

[78] Jingwen Ye, Songhua Liu, and Xinchao Wang. Partial net-
work cloning. CVPR, 2023. 3

[79] Nanyang Ye, Kaican Li, Lanqing Hong, Haoyue Bai, Yiting
Chen, Fengwei Zhou, and Zhenguo Li. Ood-bench: Bench-
marking and understanding out-of-distribution generalization
datasets and algorithms. arXiv:2106.03721, 2021. 1

[80] Peiyu Yu, Sirui Xie, Xiaojian Ma, Baoxiong Jia, Bo Pang,
Ruiqi Gao, Yixin Zhu, Song-Chun Zhu, and Ying Nian Wu.
Latent diffusion energy-based model for interpretable text
modelling. In ICML, 2022. 3

[81] Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, and
Aaron C. Courville. Can subnetwork structure be the key to
out-of-distribution generalization? In ICML, 2021. 1

[82] Sicheng Zhao, Bo Li, Xiangyu Yue, Yang Gu, Pengfei Xu,
Runbo Hu, Hua Chai, and Kurt Keutzer. Multi-source domain
adaptation for semantic segmentation. In NeurIPS, 2019. 2, 3

[83] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation
and completion through point-voxel diffusion. In ICCV, 2021.
3

3602


