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Figure 1. It is time to embrace MVImgNet! We introduce MVImgnet, a large-scale dataset of multi-view images, which is efficiently
collected by shooting videos of real-world objects. It enjoys 3D-aware signals from multi-view consistency, being a soft bridge between
2D and 3D vision. Through dense reconstruction on MVImgNet, we also present a large-scale real-world 3D object point cloud dataset —
MVPNet. Exterior: Examples of various multi-view images in MVImgNet (see Fig. 3 more intuitively). Interior: Instances of colorful
point clouds from MVPNet (see Fig. 7 more clearly) are assembled into a stereo sign of ‘MVImgNet’.

Abstract

Being data-driven is one of the most iconic properties
of deep learning algorithms. The birth of ImageNet [24]
drives a remarkable trend of ‘learning from large-scale
data’ in computer vision. Pretraining on ImageNet to ob-
tain rich universal representations has been manifested to
benefit various 2D visual tasks, and becomes a standard
in 2D vision. However, due to the laborious collection of
real-world 3D data, there is yet no generic dataset serv-
ing as a counterpart of ImageNet in 3D vision, thus how
such a dataset can impact the 3D community is unraveled.
To remedy this defect, we introduce MVImgNet, a large-
scale dataset of multi-view images, which is highly conve-
nient to gain by shooting videos of real-world objects in hu-
man daily life. It contains 6.5 million frames from 219,188
videos crossing objects from 238 classes, with rich annota-
tions of object masks, camera parameters, and point clouds.

The multi-view attribute endows our dataset with 3D-aware
signals, making it a soft bridge between 2D and 3D vision.

We conduct pilot studies for probing the potential of
MVImgNet on a variety of 3D and 2D visual tasks, includ-
ing radiance field reconstruction, multi-view stereo, and
view-consistent image understanding, where MVImgNet
demonstrates promising performance, remaining lots of
possibilities for future explorations.

Besides, via dense reconstruction on MVImgNet, a 3D
object point cloud dataset is derived, called MVPNet, cov-
ering 87,200 samples from 150 categories, with the class
label on each point cloud. Experiments show that MVP-
Net can benefit the real-world 3D object classification while
posing new challenges to point cloud understanding.

MVImgNet and MVPNet will be public, hoping to inspire
the broader vision community.
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1. Introduction

Being data-driven, also known as data-hungry, is one of
the most important attributes of deep learning algorithms.
By training on large-scale datasets, deep neural networks
are able to extract rich representations. In the past few
years, the computer vision community has witnessed the
bloom of such ‘learning from data’ regime [43,44,55], af-
ter the birth of ImageNet [24] — the pioneer of large-scale
real-world image datasets. Notably, pretraining on Ima-
geNet is well-proven to boost the model performance when
transferring the pretrained weights into not only high-level
[34,41,42,60,61] but also low-level visual tasks [15,57],
and becomes a de-facto standard in 2D. Recently, various
3D datasets [5,9,11,23,33, 96, ] are produced to facili-
tate 3D visual applications.

However, due to the non-trivial scanning and labori-
ous labeling of real-world 3D data (commonly organized
in point clouds or meshes), existing 3D datasets are ei-
ther synthetic or their scales are not comparable with Ima-
geNet [24]. Consequently, unlike in 2D vision where mod-
els are usually pretrained on ImageNet to gain universal rep-
resentation or commonsense knowledge, most of the current
methods in 3D area are directly trained and evaluated on
particular datasets for solving specific 3D visual tasks (e.g.,
NeRF dataset [64] and ShapeNet [! 1] for novel view syn-
thesis, ModelNet [96] and ScanObjectNN [88] for object
classification, KITTI [33] and ScanNet [23] for scene un-
derstanding). Here, two crucial and successive issues can be
induced: (1) There is still no generic dataset in 3D vision,
as a counterpart of ImageNet in 2D. (2) What benefit such a
dataset can endow to 3D community is yet unknown. In this
paper, we focus on investigating these two problems and set
two corresponding targets: Build the primary dataset, then
explore its effect through experiments.

Milestone 1 — Dataset:

For a clearer picture of the first goal, we start by carefully
revisiting existing 3D datasets as well as ImageNet [24].
i) 3D synthetic datasets [ 1,96] provide rich 3D CAD mod-
els. However, they lack real-world cues (e.g., context, oc-
clusions, noises), which are indispensable for model robust-
ness in practical applications. ScanObjectNN [88] extracts
real-world 3D objects from indoor scene data, but is limited
in scale. For 3D scene-level dataset [5, 10,23, 33, 37,81],
their scales are still constrained by the laborious scanning
and labeling (e.g., millions of points per scene). Addition-
ally, they contain specific inner-domain knowledge such as
a particularly intricate indoor room or outdoor driving con-
figurations, making it hard for general transfer learning.
ii) Although ImageNet [24] contains the most comprehen-
sive real-world objects, it only describes a 2D world that
misses 3D-aware signals. Since humans live in a 3D world,
3D consciousness is vitally important for realizing human-
like intelligence and solving real-life visual problems.

Based on the above review, our dataset is created from
a new insight — multi-view images, as a soft bridge be-
tween 2D and 3D. It lies several benefits to remedying the
aforementioned defects. Such data can be easily gained in
considerable sizes via shooting an object around different
views on common mobile devices with cameras (e.g., smart-
phones), which can be collected by crowd-sourcing in real
world. Moreover, the multi-view constraint can bring nat-
ural 3D visual signals (later experiments show that this not
only benefits 3D tasks but also 2D image understanding).
To this end, we build MVImgNet, containing 6.5 million
frames from 219,188 videos crossing real-life objects from
238 classes, with rich annotations of object masks, camera
parameters, and point clouds. You may take a glance at our
MVImgNet from Fig. 1.

Milestone 2 — Experimental Exploration:

Now facing the second goal of this paper, we attempt to
probe the power of our dataset by conducting some pilot
experiments. Leveraging the multi-view nature of the data,
we start by focusing on the view-based 3D reconstruction
task and demonstrate that pretraining on MVImgNet can not
only benefit the generalization ability of NeRF (Sec. 4.1),
but also data-efficient multi-view stereo (Sec. 4.2). More-
over, for image understanding, although humans can easily
recognize one object from different viewpoints, deep learn-
ing models can hardly do that robustly [26,38]. Considering
MVImgNet provides numerous images of a particular ob-
ject from different viewpoints, we verify that MVImgNet-
pretrained models are endowed with decent view consis-
tency in general image classification (supervised learning
in Sec. 5.1, self-supervised contrastive learning in Sec. 5.2)
and salient object detection (Sec. 5.3).

Bonus — A New 3D Point Cloud Dataset - MVPNet:

Through dense reconstruction on MVImgNet, a new 3D
object point cloud dataset is derived, called MVPNet,
which contains 87,200 point clouds with 150 categories,
with the class label on each point cloud (see Fig. 7). Exper-
iments show that MVPNet not only benefits the real-world
3D object classification task but also poses new challenges
and prospects to point cloud understanding (Sec. 6).

MVImgNet and MVPNet will be public, hoping to in-
spire the broader vision community.

2. Related Work

Single-view image datasets. = The MNIST database [1]
is one of the most pioneering datasets, composed of 70k
monochrome images of handwritten digits. The CIFAR10
and CIFAR100 datasets proposed by [54], respectively col-
lect 60k tiny color images (32x32) of various common
objects or animals in 10 and 100 classes. ImageNet [24]
is presented with a large scale, high accuracy, large di-
versity, and hierarchical structure, which provides oppor-
tunities for training deep neural networks. In detection
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and segmentation tasks, MSCOCO [58] is one of the most
popular datasets containing 328k images with rich anno-
tations. Some other datasets include PASCAL VOC [28],
Visual Genome [53], Cityscapes [22], MPII [4], etc. Al-
though these datasets facilitate the development of deep vi-
sual learning, they mainly serve for 2D single-view image
understanding, which limits their applications in 3D vision.

Video datasets. Another line is video datasets. Pi-
oneering works construct the HMDB-51 [56] and UCF-
101 [82] dataset. Afterward, the ActivityNet [8] and Ki-
netics [49] datasets are constructed of a larger scale and
variation, of which the latter has collected 650k video
clips that cover 700 classes. Besides, some datasets are
built for human pose estimation [48, 90] and object de-
tection/segmentation/tracking [69, 95, 112]. IEMOCAP [7]
provides video data for the task of multimodal emotion
recognition. MSVD [14] and MSR-VTT [103] annotate
videos with extra captions. Further, HowTo100M [63] pro-
poses a larger-scale one of 136 million samples from nar-
rated instructional videos. ActivityNet Captions [52] intro-
duces the task of dense-captioning events and constructs a
dataset with 20k videos. These datasets are primarily for
video understanding which is different from our objective.

3D datasets. As the applications in 3D vision attract in-
creasing attention, various 3D datasets are proposed. One
line of works focuses on indoor scenes [5, 10,23,47,78,81,
], where S3DIS [5] and ScanNet [23] are two of most
popular datasets. In addition, some works provide 3D ob-
ject point clouds for contextual object surface reconstruc-
tion [6,29]. 3D outdoor scenes are scanned via LiDAR sen-
sors [9, 33,37, 83] for autonomous driving. ShapeNet [ 1]
and ModelNet [96] are two object-centric datasets that pro-
vide rich 3D Computer-Aided Design (CAD) models for
shape analysis, followed by similar datasets [51, 98], which
are usually low-quality, untextured, and have a domain gap
with real-world objects. Another line of works [20,21, 68,
,89, ] advocate real 3D objects but are still limited in
scale. We close this gap by shooting multi-view images of
real-world objects, which capture the 3D awareness while
allowing a scalable collection.

Multi-view image datasets. Multi-view image data is re-
cently regarded as the source of 3D reconstruction or novel
view synthesis. Early works collect multi-view images of
real objects but only provide 3D models that are approx-
imated [99] or for only a few instances [20]. Henzler et
al. [45] contribute a larger video dataset to benchmark the
task of 3D reconstruction. Another concurrent dataset, Ob-
jectron [3], annotates 3D bounding boxes and ground planes
for all objects but lacks camera poses or point clouds for all
15k videos. GSO [27] gets clean 3D models with textures
via scanning common household items but includes only a
limited number of samples. Some works also construct syn-
thetic multi-view datasets [11,32, 86, R ]. Neverthe-
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Figure 2. The efficient data acquisition pipeline of MVImgNet.

less, these datasets have a small scale and category range for
special tasks, which limits the robust and generic learning
of 3D deep models. We construct a large-scale multi-view
image dataset — MVImgNet, which contains 219k videos
for real-world objects in a wide range of 238 categories.

Special discussions on CO3D [74]. Very recently,
CO3D extends [45] to 19k videos covering 50 object cat-
egories. Although we share a similar idea in the light of
object-centric multi-view data collections, our MVImgNet
enjoys conspicuously larger scales.

More importantly, we have fundamentally different mo-
tivations and insights. The primary motivation of CO3D is
exactly pre-set, which is to transfer the 3D reconstruction
training/evaluation from synthetic datasets into the real-
world setup. In contrast, MVImgNet examines existing 3D
datasets by re-walking the past development journey in the
2D domain. Concretely, through reflecting on how Ima-
geNet [24] demonstrates its generic impact on data-hungry
algorithms, we attempt to build a 3D counterpart of Ima-
geNet and choose multi-view images as a soft bridge be-
tween 2D and 3D. Instead of nailing down a special target,
we conduct a variety of pilot studies on how MVImgNet can
benefit miscellaneous visual tasks, aiming to inspire and re-
tain lots of possibilities for the broader vision community.

In the later experiments, our datasets indeed show
greater power than CO3D on different visual challenges.

3. The Basis — MVImgNet Dataset

As shown in Fig. 2, the whole data acquisition pipeline
of MVImgNet is highly efficient, which is illustrated below.

3.1. Raw Data Preparation

Building a large-scale dataset is always challenging, due
to not only the laborious data collection but also the non-
trivial annotation, which is especially critical for real-world
3D data [5, 10, 23]. Thanks to the rapid development of
mobile devices, shooting a video around an object in the
wild becomes highly convenient and accessible in our daily
life, which makes multi-view images be easily gained by
crowd-sourcing.

Composition setup. We set up some constraints on
the ratio. Depending on the category, each class is ini-
tially set with the different expected number of video cap-
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Annotation  Collected Valid GPU hours

Sparse 219,188 215,755 3,806.8
Segmentation 104,261 \ 2,316.9
Dense 98,899 87,200 25,122.4

Table 1. Data statistics, including collected amount, valid
amount after cleaning, and the GPU hours for processing.

Dataset ‘ Real ‘ # of objects ‘ # of categories ‘ Multi-view ‘ 3D-GT
ShapeNet [11] X 51k 55 render CAD model
ModelNet [96] X 12k 40 render CAD model
Choi et al. [20] v 2k 9 360° captured | RGB-D scan
Objectron [3] v 15k 9 limited 3D bbox, pcl
GoogleScan [27] v 2k NA 360° captured | RGB-D scan
Henzler et al. [45] v 2k 7 360° captured pel
ScanObjectNN [88] v 14k 15 limited pel
CO3D [74] v 19k 50 360° captured -
CO3D-pcl [74] v Sk 50 360° captured pel
MVImgNet (ours) v 220k 238 180° captured -
MVPNet (ours) v 87k 150 180° captured pel

Table 2. Comparison between our datasets and related ones. “pcl”
denotes point clouds, “bbox” means bounding boxes.

tures regarding their generality, e.g., the number of captures
for “bottles”, “bags” and “snacks” is planned to be around
2000, while the number of “chips”, “apples” and “guitars”
is set to about 1000. This setting is closer to real life.

Video capture. How to capture videos directly affect the
quality of our data, so we draw up the following require-
ments as guidance for the captured videos: 1) The length of
each video should be about 10 seconds. 2) The frames in
the video should not be blurred. 3) Each video should cap-
ture 180° or 360° view of the object as much as possible. 4)
The proportion of the object in the video should be above
15%. 5) Each video can only contain one class of principal
object. 6) The captured object should be stereoscopic.

Crowdsourcing. = We employ around 1000 normal col-
lectors from different professions (e.g., teacher, doctor, stu-
dent, cook, babysitter) and ages (20~50). Each of them is
asked to take several videos in their daily life, (i.e., denot-
ing diverse real-world environments) and upload them to
the backend. Meanwhile, about 200 new well-trained expert
data cleaners are responsible to review each submission and
assure it fulfills the aforementioned capture requirements,
when they may report some feedback or directly delete the
unqualified submissions. The whole procedure ensures both
the diversity and quality of the raw videos.

3.2. Data Processing

For each qualified video submission, we exploit an au-
tomatic process to obtain the common 2D and 3D annota-
tions, including object masks, camera intrinsic and extrin-
sic, depth maps, and point clouds.

Sparse reconstruction. Following the procedure of [64,
65], the sparse reconstruction aims to reconstruct the cam-
era intrinsic and extrinsic for each video, by applying the
COLMAP Structure-from-Motion (SfM) algorithm [75] on
a series of equal-time-interval chosen frames.

N ]

Figure 3. Some frames sampled from MVImgNet.

Foreground object segmentation. Each frame extracted
from the original video is fed to the CarveKit [70] for gener-
ating the binary foreground object mask, not only benefiting
the dense reconstruction but also contributing to the further
step of salient object detection (Sec. 5.3).

Dense reconstruction. With the sparse model output
from COLMAP SfM, we employ multi-view stereo [76] of
COLMAP to generate the dense depth and normal maps for
each frame. We extract the depths of an object using the
binary foreground masks, which are then back-projected
and fused according to the normal information, yielding a
densely reconstructed point cloud for each video. Finally,
the point cloud is manually cleaned by: 1) Delete the ob-
ject with obvious noisy or extremely sparse reconstruction.
2) Remove all backgrounds. The final derived 3D point
cloud dataset — MVPNet, is illustrated in Sec. 6.1.

3.3. Dataset Summary

Statistics. The statistics of MVImgNet are shown in
Tab. 1, and Tab. 2 compares our datasets with other alter-
natives. MVImgNet includes 238 object classes, from 6.5
million frames of 219,188 videos. Fig. 3 shows some sam-
ples of MVImgNet. The annotation comprehensively cov-
ers object masks, camera parameters, and point clouds.

Category. We leverage WordNet [66] taxonomy that
is used by ImageNet [24] to describe multi-hierarchy cat-
egories of objects and define 238 common classes. Un-
like ImageNet which contains various plants and animals
(nature-centric), the objects in our MVImgNet are found or
used in human daily life (human-centric), where 65 classes
overlap with ImageNet. The detailed category taxonomy,
per-category data distributions, and more sample visualiza-
tions of MVImgNet are illustrated in the supplementary ma-
terial.

4. 3D Reconstruction
4.1. Radiance Field Reconstruction

Pre-review. Recently, a series of generalizable Neu-
ral Radiance Fields (NeRF) variants [13, 87,93, 111] have
been proposed to reconstruct radiance field on-the-fly from
one/few-shot source views for novel view synthesis.
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Real-world 360° Objects [74]

Diffuse Synthetic 360° [80] | Realistic Synthetic 360° [64] | Real-world 360° Objects [74] .
Method ‘ PSNR{ SSIM{ LPIPS| | PSNRT SSIM{ LPIPS| | PSNRT SSIM{ LPIPS) Where (o pretrain | PSNRY SSIM{ _ LPIPS|
Train from scratch 3717 0990 0017 | 2549 0916 0100 | 22.18 0714 0365 o [Ne]t—sma ’ ;j‘gé g:zé gg? z
MVImgNet-pretrained | 37.66 0990 0014 | 2726 0930 0071 | 24.67 0740  0.310 MVImaNet e o o

Table 3. NeRF quantitative results on three different levels of test sets.
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Figure 4. NeRF qualitative comparison of train-from-
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]-pretrained IBRNet and MVImgNet-

What can MVImgNet do? Training NeRFs that can gen-
eralize to unseen objects requires learning 3D priors from
a huge amount of multi-view images. Existing state-of-
the-arts either resort to learning on large-scale synthetic
data [13, 87, ], or adopt a mixed use of synthetic data
and a small self-collected real dataset [93]. However, the
synthetic data introduces a big domain gap with real-world
objects, only a few real scenes cannot remedy this defect.
We argue that: our MVImgNet perfectly fits the huge data
demand of learning-based generalizable NeRF methods.

To verify this, we choose IBRNet [93] as the baseline
and conduct an empirical study. We pretrain IBRNet on
the full MVImgNet dataset then finetune on the training
datasets used in IBRNet [93] for a few iterations, and com-
pare with the original train-from-scratch IBRNet model in
terms of generalization capability (i.e., generalizing to un-
seen scenes with only few-shot inputs). For fairness, we
evaluate all methods under the same protocol of IBRNet.

Here comes a challenge about how to evaluate the gener-
alization ability of NeRFs, since there is no official bench-
mark for this. To this end, we employ three different third-
party object-centric datasets to form the test set. 1) The
diffuse synthetic 360° object dataset [80] which contains
4 Lambertian objects. 2) The realistic synthetic 360° ob-
ject dataset [64] which consists of 8 realistically fabricated
objects. 3) The real-world 360° object dataset [74] which
includes 88 real-world scenes from different lighting condi-
tions. To summarize, the whole test set comprises 100 ob-
jects from 56 distinct categories, ranging from the synthetic
domain to the real-world domain, which is considered to be
an impartial evaluation set for generalization ability.

The quantitative and qualitative results are respectively
shown in Tab. 3 and Fig. 4. Evidently, pretraining on
MVImgNet improves the generalization ability of the model
by a large margin. Moreover, we perform the same pretrain-
ing on CO3D [74] and MVImgNet-small (a random subset

Table 4. NeRF quantitative comparison with CO3D [

25.0 —
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Figure 5. PSNR of IBRNet pretrained by a different number of
MVImgNet data (higher is better).

of MVImgNet, which owns the same scale as CO3D). As
shown in Tab. 4 and Fig. 4, MVImgNet shows greater power
than CO3D [74]. The implementation details can be found
in the supplementary material.

More data, more power. Fig. 5 shows that an apparent
rising trend of generalization metrics can be observed with
the increase of training data.

4.2. Multi-view Stereo

Pre-review.  Multi-view Stereo (MVS) [30] is a classi-
cal task in 3D computer vision, with the goal of recon-
structing 3D geometry from multi-view images. Conven-
tional methods [31,46,77, ] reconstruct 3D geometry by
finding the patches matched with different images and es-
timating the depth according to the extrinsic camera. In
recent years, deep learning methods are introduced into
MYVS to solve the issues such as weak textures, and non-
laplacian spheres. Two popular end-to-end methods MVS-
Net [109] and R-MVSNet [110] propose to encode the
multi-view images and build a cost volume for predicting
depth maps. Under the supervision of large-scale RGB-D
datasets [2], they outperform conventional patch-matched-
based approaches. However, these methods require massive
amounts of RGB-D data, which is always difficult to ac-
quire. This drives the emergence of self-supervised MVS
methods [12,25,102, 107].

What can MVImgNet do? We demonstrate that our
MVImgNet is capable of benefiting the data-efficient MVS
with limited training examples, which is practically mean-
ingful considering MVS always requires the burdensome
collection of RGB-D data.

We pretrain a self-supervised MVS method, JDACS
[102], on MVImgNet. Our implementation follows the
original settings of JDACS. Then, we select DTU [2] dataset
with 79 training samples and 22 test samples. We per-
form the data-efficient evaluation with limited training data,
where the MVImgNet-pretrained MVSNet is finetuned on
5%, 15%, and 25% of DTU training samples, and eval-
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Ratio ‘ 2mm T 4mm T 8mm T

5% 48.61/50.10 65.18/67.97 75.69/78.58
15% | 54.74/54.68 70.96/72.04 80.32/81.73
25% | 57.29/58.63 74.41/7520 83.68/84.28

Table 5. MVS depth map accuracy on DTU evaluation set under
different ratios of DTU training samples, in terms of training
from scratch / MVImgNet-pretrained (higher is better).

Where to pretrain | 2mm t  4mm?t  8mm 1

CO3D 46.18 66.72 78.39
MVImgNet-small | 47.73 66.53 78.15
MVImgNet 50.10 67.97  78.58

Table 6. MVS depth map accuracy comparison with CO3D [74]
on DTU evaluation set. Pretrain on MVImgNet, MVImgNet-small
or CO3D, and finetune using 5% of DTU training samples.

uated on the DTU test set. Tab. 5 reports the accuracy
given different thresholds of the error between the pre-
dicted and ground truth depth map, which indicates that the
MVImgNet-pretrained model is capable of improving the
model trained from scratch by a large margin under the data-
efficient setup. Furthermore, we perform pretraining using
CO3D [74] and MVImgNet-small. Tab. 6 indicates that our
MVImgNet is stronger than CO3D, and MVImgNet-small
shows comparable power as CO3D. For more implementa-
tion details, please see the supplementary material.

We advocate benchmarking NeRF and MVS methods
with the help of pretraining on MVImgNet.

5. View-consistent Image Understanding
5.1. View-consistent Image Classification

Pre-review. As indicated by Dong et al. [20], although
humans can easily recognize one object from different
views, deep learning models can hardly do that robustly.
MVImgNet provides numerous images from different view-
points, so we hope to enhance the model’s view consistency
with the help of MVImgNet, which is significantly impor-
tant for realizing human-like intelligence.

What can MVImgNet do? One naive approach is to
finetune the ImageNet-pretrained ResNet-50 [44] on our
MVImgNet. However, such an approach will be problem-
atic due to the categories of two datasets are very distinct,
which may cause catastrophic forgetting issues [50].

For this reason, we create a new training set, namely
MVI-Mix, by mixing the original ImageNet data with
MVImgNet. Specifically, we randomly sample 5 consec-
utive frames of each video in MVImgNet, and mix the
multi-view images with original ImageNet data. We also
build another two artificial training sets, namely MVI-Gap
and MVI-Aug, that only differ MVI-Mix with image views.
MVI-Gap samples the 5 non-consecutive frames that have
much larger view differences. MVI-Aug samples 1 frame
from each video of MVI-Mix and applies 4 different data
augmentations (i.e., random color jittering, grid mask, ro-

Dataset Confidence Var ~ Accuracy
ImageNet-only 0.207 53.09%
MVI-Aug 0.105 71.48%
MVI-Gap 0.103 77.23%
MVI-Mix 0.102 77.31%

Table 7.  View-consistent image classification results on
MVImgNet test set using fully-supervised ResNet-50 [44].
Adding MVImgNet for training improves the view consistency
(smaller Var and higher Acc indicate better view consistency).

‘ Train: CO3DI-Mix Train: MVI-Mix
N Var: 0.104 Var: 0.155 (+0.051)
Test: CO3D Ace: 9125% Acc: 84.83% (-6.42% )

Var: 0.188 (+0.086) Var: 0.102

TestMVImgNet |\ . 5703 (-19.38% ) Test: 77.31%

Table 8. View-consistent image classification comparison with
CO3D [74]. The performance drops when train on CO3DI-Mix
and test on MVImgNet (blue number) are much larger than the op-
posite (red number), which means that MVI-Mix pretrained model
is more robust to multiview consistency than CO3DI-Mix pre-
trained model.

tation and erase, respectively) to it, which aims to differ-
entiate the multi-view augmentation from the normal data
augmentations. We compare the variance of the softmax
confidence and the accuracy on MVImgNet fest set for ex-
amining the view consistency. As illustrated in Tab. 7,
adding our MVImgNet data for training can effectively im-
prove the model’s view consistency and accuracy. The test
dataset used for all experiments is MVImgNet test dataset.
In addition to using the convolution-based network (i.e.,
ResNet-50), we also apply the Transformer-based architec-
ture, DeiT-Tiny [85]. The results are 48.76% accuracy and
0.225 Var on ImageNet-only, VS 0.122 Var (0.103]) and
73.88% (25.1271) accuracy on MVI-Mix. This leads to a
unanimous conclusion.

We further construct CO3DI-Mix (corresponding to
MVI-Mix) as the mixer of CO3D [74] & ImageNet under
the same ratio of MVImgNet & ImageNet in MVI-Mix. As
illustrated in Tab. 8, MVImgNet brings more benefits than
CO3D for view-consistent image recognition.

5.2. View-consistent Contrastive Learning

Pre-review. Contrastive Learning (CL) is one mainstream
of self-supervised training techniques [16—19, 35, 40, 84].
One key factor of CL is the construction of positive/negative
pairs, e.g., MoCo-v2 [17] treats an image with different aug-
mentations, a.k.a. views, as the positive pair.

What can MVImgNet do? One natural question is: can
the viewpoints of MVImgNet serve as the positive pairs
for CL? To answer this question, we finetune the off-the-
shelf ImageNet-pretrained MoCo-v2 on MVImgNet. For
each iteration, we randomly sample two frames from the
same video as the positive pair and apply the original data
augmentations used in MoCo-v2 [17]. Meanwhile, the
frames from other videos will be treated as their negatives.

9155



Training scheme  Confidence Var ~ Accuracy
wi/o finetune 0.098 70.26%
w/ finetune 0.086 71.22%

Table 9. View-consistency classification results under the self-
supervised contrastive learning regime on MVImgNet test set.
Finetuning MoCo-v2 [17] on MVImgNet improves the view
consistency.

Frame U2Net Ori.

MVImgNet FineT.

U2Net Ori. MVImgNet FineT.

Figure 6. Qualitative comparison between MVImgNet-finetuned
U2Net [73] and original U2Net for salient object detection (SOD).
Left: finetuning on MVImgNet improves the performance on a
hard view. Right: finetuning on MVImgNet improves the perfor-
mance on two consecutive hard views.

The MVImgNet-finetuned model is finally evaluated on the
MVImgNet test dataset for examining the view consistency,
where we compare the variance and mean of the softmax
confidence and the accuracy. As Tab. 9 shows, finetuning
on MVImgNet with CL can also improve both the model’s
view consistency and accuracy. More implementation de-
tails of view-consistent image classification is described in
the supplementary material.

In the future, it is highly recommended to regard view-
consistency as a criterion for evaluating the image recog-
nition task, and utilize MVImgNet to pretrain the models.

5.3. View-consistent SOD

Pre-review. Salient Object Detection (SOD) aims to seg-
ment the most visually prominent objects in an image. Al-
though remarkable progress has been made recently, it re-
mains lots of challenges.

What can MVImgNet do? We test a state-of-the-art SOD
model U2Net [73] on our MVImgNet. As Fig. 6 shows,
U2Net failed to segment “hard” views, even though some
views can be segmented with few flaws. Despite such a dis-
appointment, the inconsistent predictions of different views
caught our attention: can we improve the SOD models with
multi-view consistency?

We propose to leverage the multi-view consistency to
improve SOD with the help of optical flows. Specifically,
given two consecutive frames, we first calculate their opti-
cal flow and warp the flow to the segmentation mask of one
of the frames. Then, a consistency loss can be calculated
between the warped mask and the mask of another frame.
For ease of implementation, we directly finetune U2Net on
our MVImgNet. To prevent the catastrophic forgetting is-
sue [50], in addition to the MVImgNet, we also use the
original training data DUTS-TR [92]. For the “hard” views

W& '

Figure 7. Some 3D point clouds sampled from MVPNet.
(IoU < 0.7) on our MVImgNet test set, the model finetuned
on our MVImgNet can bring a 4.1% IoU improvement (see
Fig. 6 for qualitative comparison). The implementation de-
tails of view-consistent SOD can be found in the supple-
mentary material.

6. MVPNet for 3D Understanding
6.1. MVPNet Dataset

Derived from the dense reconstruction on MVImgNet (as
mentioned in Sec. 3.2), a new large-scale real-world 3D ob-
ject point cloud dataset — MVPNet, is born, which contains
87,200 point clouds with 150 categories. Fig. 7 shows some
examples of MVPNet. As listed in Tab. 2, compared with
existing 3D object datasets, our MVPNet contains a con-
spicuously richer amount of real-world object point clouds,
with abundant categories covering many common objects in
the real life. The detailed category taxonomy per-category
data distributions of MVPNet are illustrated in the supple-
mentary material.

6.2. 3D Point Cloud Classification

In this work, we focus on point cloud classification. We
believe that future works may also utilize our dataset to help
much more 3D understanding tasks such as indoor-scene
parsing, outdoor-environment perception, pose estimation,
and robotics manipulation.

Pre-review. We advocate paying more attention to real-
world setup, which is more feasible for real applications.
ScanObjectNN [89] has been manifested as the most chal-
lenging point cloud classification benchmark so far, so we
choose it for the major comparison with our MVPNet.
What can MVPNet do?  We show that pretraining on
MVPNet is able to aid the performance of real-world point
cloud classification [36,39,62,71,72,94,97,105, 106]. We
pretrain several models on MVPNet, and finetune them on
ScanObjectNN.

Two settings are considered for evaluation. First is
PB_T50_RS in ScanObjectNN with small perturbation,
translation and rotation on point cloud. Another is adding
heavy rotation on PB_T50_RS, to create a more challenging
setting. The results are shown in Tab. 10, where pretraining
on MVPNet is able to increase the classification accuracy
under most circumstances.
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Add Random Rotation
Method from scratch ‘ pretrained

‘ PB_T50 RS
PointNet [71] 60.57/55.20 | 64.25/59.29

from scratch ‘ pretrained

PointNet++ [72] | 76.50/73.42 | 78.76/76.54 || 78.80/75.70 | 80.22/76.91

70.63/67.28 | 67.73/64.12
DGCNN [94] 80.50/78.45 | 80.42/78.20 || 79.44/76.24 | 82.36/80.08
PointMLP [62] 83.69/82.54 | 84.87/83.71 || 85.64/84.14 | 85.98/84.38
CurveNet [97] 73.96/69.96 | 78.99/76.59 || 74.27/69.43 | 83.68/81.17
GDANet [106] 80.33/79.14 | 83.59/82.29 || 79.01/7591 | 83.90/82.51
PAConv [105] 70.91/65.70 | 76.21/72.47 || 72.88/68.60 | 76.91/73.45
PCT [36] 81.32/79.17 | 82.08/80.41 || 77.46/73.64 | 84.20/81.94
PointMAE [67] ‘ 83.17/80.75 ‘ 86.19/ 84.60 H 77.34/73.52 ‘ 84.13/81.92

Table 10. ScanObjectNN real-world point cloud classifica-
tion results. The comparison is between the train-from-scratch
model and MVPNet pretrained model. The metric is overall /
average accuracy.

PB_T50_RS
Method PreTr. on MVPNet ‘ PreTr. on MVPNet-small ‘ PreTr. on CO3D
PointNet++ 78.90/717.11 79.00/76.78 78.79/71.20
CurveNet 83.68/81.17 73.92/68.92 73.78 1 69.62
PointMAE ‘ 84.13/81.92 ‘ 81.85/79.25 ‘ 81.40/78.87

Table 11. ScanObjectNN real-world point cloud classifica-
tion comparison with CO3D [74]. Pretrain on MVImgNet,
MVImgNet-small or CO3D, and finetune on ScanObjectNN. The
metric is overall / average accuracy.

6.3. Self-supervised Point Cloud Pretraining

Pre-review. Self-supervised learning has been exploited
for 3D object point cloud understanding [59,67,91, ].

What can MVPNet do?  In Tab. 10, PointMAE [67]
pretrained on our MVPNet outperforms the state-of-the-
art methods when finetuned on ScanObjectNN, proving the
benefit of MVPNet on the self-supervised learning regime
for real-world point cloud classification. Tab. 11 also shows
that pretraining on MVPNet is more powerful than CO3D
[74] for real-world point cloud classification.

6.4. MVPNet Benchmark Challenge

We present the MVPNet benchmark challenge for real-
world point cloud classification, which contains 69,760
training and 17,440 testing samples. The results of various
methods are shown in Tab. 12.

MYVPNet is more challenging than ScanObjectNN. We
firstly train models on ScanObjectNN, then conduct the test
on MVPNet, which is concluded in Tab. 13. On the oppo-
site, we also train on MVPNet and test on ScanObjectNN,
which is listed in Tab. 14. Comparing Tab. 13 and Tab. 14,
the accuracy drops are significantly larger when training on
ScanObjectNN and testing on MVPNet, which verifies the
greater challenge of our MVPNet. All the experiments in
3D understanding strictly follow the original settings of the
selected backbone networks.

MYVPNet is suggested for investigating 3D point cloud
understanding in the future.

7. Conclusion

We have introduced MVImgNet, a large-scale dataset of
multi-view images, which is efficiently collected by shoot-

Method \ Overall / Average Accuracy
PointNet [71] 70.72 / 54.46
PointNet++ [72] 79.15/58.24
DGCNN [94] 86.49/63.98
PointMLP [62] 88.89/73.64
CurveNet [97] 88.88/75.37
GDANet [106] 89.54/68.41
PAConv [105] 83.35/59.13
PCT [36] 91.49/75.41

Table 12. Quantitative results on our new MVPNet benchmark
for real-world point cloud classification.

train: MVPNet train: ScanObjectNN
Method test: MVPNet test: MVPNet

PointNet++ [72] | 79.15/58.24 | 15.13 (-64.02)/7.96 (-50.28)
CurveNet [07] | 88.88/75.37 | 46.95 (-41.93)/28.24 (-47.13)

Table 13. Quantitative comparison while training on ScanOb-
jectNN, testing on MVPNet. The evaluation metric is overall /
average accuracy.

train: ScanObjectNN train: MVPNet
Method test: ScanObjectNN test: ScanObjectNN
PointNet++ [72] 76.50/73.42 40.35 (-36.15) / 33.59 (-39.83)
CurveNet [97] 73.96 /1 69.96 51.84 (-22.12) / 46.27 (-23.69)

Table 14. Quantitative comparison while training on MVPNet,
testing on ScanObjectNN. The evaluation metric is overall / av-
erage accuracy.

ing videos of real-world objects. The multi-view nature
endows our dataset with 3D-aware visual signals, making
MVImgNet a soft bridge to link 2D and 3D vision. To probe
the power of MVImgNet, we conduct a host of pilot exper-
iments on various visual tasks, including radiance field re-
construction, multi-view stereo, and view-consistent image
understanding, where MVImgNet demonstrates promising
effectiveness, expecting more future explorations. As a
bonus of MVImgNet, a point cloud dataset — MVPNet is
derived. Experiments show MVPNet can benefit real-world
3D object classification. As a broader impact on society,
our datasets delineates a world — that is closer to a colorful
and vivid real 3D world — where we human lives.
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