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Abstract

Visible-infrared recognition (VI recognition) is a chal-
lenging task due to the enormous visual difference across
heterogeneous images. Most existing works achieve promis-
ing results by transfer learning, such as pretraining on
the ImageNet, based on advanced neural architectures like
ResNet and ViT. However, such methods ignore the neg-
ative influence of the pretrained colour prior knowledge,
as well as their heavy computational burden makes them
hard to deploy in actual scenarios with limited resources.
In this paper, we propose a novel task-oriented pretrained
lightweight neural network (TOPLight) for VI recognition.
Specifically, the TOPLight method simulates the domain
conflict and sample variations with the proposed fake do-
main loss in the pretraining stage, which guides the network
to learn how to handle those difficulties, such that a more
general modality-shared feature representation is learned
for the heterogeneous images. Moreover, an effective fine-
grained dependency reconstruction module (FDR) is devel-
oped to discover substantial pattern dependencies shared
in two modalities. Extensive experiments on VI person re-
identification and VI face recognition datasets demonstrate
the superiority of the proposed TOPLight, which signifi-
cantly outperforms the current state of the arts while de-
manding fewer computational resources.

1. Introduction
Identity recognition technologies have provided numer-

ous reliable solutions for monitoring systems, which strive
to match the face (face recognition [6, 7]) or pedestrian
(person re-identification [42]) images of the same identity.
However, the majority of previous efforts only consider vis-
ible images. In real-life practice, many surveillance cam-
eras can switch to infrared imaging mode at night. Thus,
the essential cross-modality visible-infrared recognition (VI
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Figure 1. (a) The task-oriented pretraining strategy; (b) Per-
formance comparison of the standard ImageNet-1k pretraining
scheme (SP) and the proposed task-oriented pretraining scheme
(TOP) on the SYSU-MM01 dataset [35] (All-Search mode).

recognition) technology has been developed to match the
visible and infrared photographs of the same people.

Recently, visible-infrared person re-identification (VI-
ReID) [26, 38] and visible-infrared face recognition [8, 13,
44] have been widely studied. The key issue is identi-
fying the modality-shared patterns. To this end, several
works [29, 30] use generative adversarial networks (GANs)
to implement cross-modality alignment at the pixel and fea-
ture levels. Others [4, 26, 38] design the dual-path feature
extraction network, coupled with inter-feature constraints,
to close the embedding space of two modalities. However,
these methods utilize at least one pretrained ResNet-50 [12]
backbone to extract solid features, which makes them un-
suitable for edge monitoring devices. Recent works [4, 38]
employ auxiliary models (e.g., pose estimation, graph rea-
soning) to relieve the modality discrepancy, which enhances
the performance on academic benchmarks but reduces the
real-time inference speed. Compared with conventional
deep networks (e.g., ResNet, ViT), lightweight networks
[11,15,24] can extract basal features rapidly. In VI recogni-
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tion tasks, however, the vast modality discrepancy renders
the performance of lightweight networks significantly infe-
rior to that of conventional deep networks. The main rea-
son is that lightweight networks lack the ability to identify
modality-shared patterns from heterogeneous images.

To address this issue, we present an effective task-
oriented pretraining (TOP) strategy. As shown in Fig. 1(a),
we first train a lightweight network on the ImageNet-1k
dataset to learn vision prior knowledge. After that, the
trained network is transformed into the dual-path network
and further trained by using task-oriented data augmenta-
tions, identity consistency loss and fake domain loss on
the ImageNet-mini dataset [18]. The task-oriented pretrain-
ing (TOP) strategy simulates the sample differences in VI
scenes and teaches the network how to represent and em-
bed discrepant features. Fig. 1(b) reports the performance
of three lightweight networks in the VI-ReID task. Com-
pared with the ImageNet-1k pretraining, our TOP strategy
can remarkably improve the baseline performance.

Another weakness of lightweight networks is that few
feature maps are learned from raw images for rapid infer-
ence. In the VI recognition scene, it is challenging to dis-
cover modality-shared patterns with so few learned feature
maps. In practice, the network can focus on a group of ag-
gregated modality-specific patterns that offer the most gra-
dient for identity classification. In contrast, the fine-grained
and modality-shared patterns, which are crucial for achiev-
ing robust cross-modality matching, are neglected.

Based on the above observations, we present a novel
fine-grained dependency reconstruction (FDR) module to
help lightweight networks learn modality-shared and fine-
grained patterns. Specifically, inspired by the horizontal
slice scheme [1], we first slice feature maps horizontally
and vertically to extract fine-grained patterns from diver-
sified local regions. Then, the original spatial dependen-
cies of these patterns are eliminated by using pooling oper-
ations. Further, the cross-modality dependencies are built
by using up-sampling layers to amplify the modality-shared
parts from these patterns. At last, to avoid overfitting, the
shuffle attention is designed to re-weight the channel depen-
dencies of all the feature maps, which spreads attention to
local patterns as much as possible. In general, the major
contributions of this paper can be summarized as follows.

• We propose an effective task-oriented pretrained
lightweight neural network (TOPLight) for VI recog-
nition. To the best of our knowledge, it is the first work
to develop a paradigm for VI recognition on edge de-
vices with an extremely low computation budget.

• An effective task-oriented pretraining strategy is pro-
posed to enhance the heterogeneous feature learning
capacity of lightweight networks with task-oriented
augmentations and the proposed fake domain loss.

• A fine-grained dependency reconstruction module is
designed to mine cross-modality dependencies.

• Extensive experiments demonstrate that the proposed
method outperforms the state-of-the-art methods on
mainstream VI-ReID and VI face recognition datasets
by a remarkable margin and extremely low complexity.

2. Related Work
Visible-Infrared Face Recognition (VI-FR). It aims to

match face images across visible and infrared modalities.
Initially, handcraft features are designed for VI-FR. In [3,9],
authors utilize the Local Radon Binary Pattern (LRBP)
as the general representation to perform identity match-
ing. Difference-of-Gaussian (DoG) filtering and Multi-
scale Block Local Binary Patterns (MB-LBP) are widely
adopted [20, 50] to acquire robust representations for VI-
FR. Recently, deep learning methods have achieved con-
siderable success in VI-FR, focusing on learning modality-
shared features with CNN networks [13,14,22] or disentan-
gling the modality-invariant representations with GAN net-
works [46]. In [37], a dual-generation method is proposed
to disentangle modality-invariant patterns from visible and
infrared images, which helps relieve the modality discrep-
ancy. After that, Duan et al. [8] proposed a pose-aligned
cross-spectral hallucination (PACH) network to eliminate
identity-independent patterns at multiple stages.

Visible-Infrared Person Re-identification (VI-ReID).
It aims to match visible and infrared pedestrian images ac-
cording to the feature similarity ranking [47]. The zero-
padding scheme [35] was first proposed to handle VI-ReID.
In the meantime, they established the first large-scale VI-
ReID dataset, named SYSU-MM01. Afterwards, a bi-
directional center-constrained network [39] was presented
to simultaneously optimize intra- and inter-modality dis-
crepancies. To help the network learn modality-invariant
patterns, X-modality [19] is introduced to bridge the gap
between visible and infrared modality. Recently, a dense
alignment learning method [26] was presented to estab-
lish the cross-modality feature correspondence at the pixel
level. Ye et al. [38] introduced an attentive graph to dis-
cover tri-level relations between visible and infrared im-
ages. In addition, several GAN-based methods implement
cross-modality alignment [29, 30] or modality compensa-
tion [31, 45] to help the network learn robust and compact
knowledge. However, despite the promising results, these
works are too complex to be utilized in the real world.

3. Methodology
3.1. Overview of The Proposed Method

The major pipeline of the proposed TOPLight is illus-
trated in Fig. 2, which can be summarized as three steps.
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Figure 2. The overall pipeline of our method. We take three steps to adapt a lightweight network to the VI recognition task.

Step-1. To adapt the lightweight networks to VI recog-
nition scenarios, we construct a dual-path network based on
the lightweight model trained on ImageNet-1k (similar in
[26]) and further train the dual-path network on ImageNet-
mini [18] with task-oriented augmentations. The identity
consistency loss (Lidc) and fake domain loss (Lfd) are de-
signed to supervise the domain conflict learning process.

Step-2. We utilize the uniform soup scheme [34] to unify
two pre-embedding block groups. This step aims to tune the
structure of the pretrained network suited for VI training,
which preserves two separate blocks (Block1-1 and Block1-
2) to extract low-level features from two modalities.

Step-3. In this stage, the pretrained dual-path network
is further trained on VI recognition datasets. A novel fine-
grained dependency reconstruction (FDR) module is inte-
grated into the network, which can construct fine-grained
pattern dependencies between visible and infrared features.

3.2. Task-oriented Pretraining Strategy

The core motivation of the task-oriented pretraining
strategy is to enable lightweight networks to learn prior
knowledge related to cross-modality matching during the
pretraining stage. Specifically, we first transform the
lightweight network trained on the ImageNet-1k dataset
into the dual-path network, which consists of two stem
blocks, two pre-embedding block groups and one post-
embedding block group. Then, the dual-path network is
further trained on the ImageNet-mini dataset. During this
training, task-oriented data augmentation (DA) is utilized to
create visual differences in training samples, which intends
to simulate the discrepancy between visible and infrared

Figure 3. The effects of each data augmentation.

images and enforce the network to pay more attention to
the identity-aware but colour-irrelevant patterns. Thus, we
design the generic, colour and texture data augmentation
(DAs) to achieve the training process, as shown in Fig. 3.

For the generic DAs, we increase the overall sample di-
versity by using random crop, flip and deformation. In the
colour DAs, we randomly perform colour jitter, channel
shuffle and RGB shift for each sample in the Block1-1 path.
The colour DAs are utilized to disturb the strong colour
prior knowledge learned from the ImageNet-1k dataset,
forcing the network to pay more attention to the structural
patterns of visible images (which also exist in infrared im-
ages), not just colour patterns. In the texture DAs, we ran-
domly perform compression, defocusing and sharpenGray
for each sample in the Block1-2 path, which intends to re-
move the colour information and simulate the terrible imag-
ing quality under night surveillance conditions. During the
TOP, we combine these three DAs to create visual differ-
ences that are close to the VI recognition scenes.
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However, in the above manner, the network can lazily
learn from one path to avoid embedding visually discrepant
samples. Meanwhile, the sample differences generated by
augmentations are insufficient to simulate the serious do-
main conflict in VI recognition scenes. Thus, we develop
a fake domain loss to aggravate the variation of mid-level
features during the training and motivate the network to dis-
cover shared patterns among them.

Assume x denotes a raw sample from the ImageNet-
mini dataset; after augmentations and feature learning, the
x1 and x2 denote the outcome features of Block4-1 and
Block4-2, respectively. y is the shared ground-truth label.
We concatenate x1 and x2 and feed them into Block5. The
output of Block7 is denoted as x̂ = {x̂1, x̂2}. Based on the
above definitions, the fake domain loss can be defined by:

L1
fd = Ld(x1,d1) + Ld(GRL(x̂1),d1), (1)

L2
fd = Ld(x2,d2) + Ld(GRL(x̂2),d2), (2)

where d1 and d2 are the corresponding pseudo domain la-
bels for x1 and x2. We use the domain labels to pretend that
x1 is from one domain and x2 is from the other. Ld denotes
the domain classification loss implemented with the logis-
tic classifier. GRL is the gradient reversal layer proposed
in [10], which aims to reverse the optimization target of the
final domain classifier. In this manner, L1

fd and L2
fd gen-

erate two contradictory learning procedures: self-domain
constraints are individually set on x1 and x2, which en-
force them to be representative and specific for the two fake
domains we pretended, respectively. The inverted-domain
constraints are set on the final features after Block7 (x̂1 and
x̂2) by reversing gradients, which urges them to be similar
so as to confound the domain classification loss Ld.

During this procedure, Block(2,3,4)-1 and Block(2,3,4)-
2 are trained to extract two types of strongly distinguished
“heterogeneous features”. In comparison, Block(5,6,7) are
trained to embed these discrepant features and learn their
shared patterns. We manually create this conflict to force
the lightweight network to learn how to represent heteroge-
neous features and discover shared patterns from them.

To ensure that the embedded features are identity-
related, the identity consistency loss (Lidc) is introduced as:

Lidc = log[P (y|p(x̂1))] + log[P (y|p(x̂2))], (3)

where p(x̂1) and p(x̂2) denote the identity prediction results
from the same linear classifier. y is the ground-truth label
for both x1 and x2. Here, we utilize one classifier to predict
two conflicted features with shared logits, aiming to further
improve the embedding capacity of Block(5,6,7).

The overall loss in the TOP is written as follows.

L = Lidc + L1
fd + L2

fd. (4)

After the pretraining, we utilize the uniform soup scheme
to unify two groups of pre-embedded blocks in turn (Step-2
in Fig. 2). The final lightweight network for VI-recognition
training consists of two independent stem blocks (Block1-1
and 1-2), one pre-embedding block group (Block2,3,4) and
one post-embedding block group (Block5,6,7), as shown in
the Step-3 of Fig. 2.

3.3. Fine-grained Dependency Reconstruction

After the task-oriented pretraining, the lightweight net-
work learns how to extract modality-invariant features from
heterogeneous images. However, it lacks the ability to dis-
cover fine-grained patterns across the modalities. There-
fore, we introduce a practical fine-grained dependency re-
construction module to help the lightweight network dis-
cover plentiful fine-grained patterns by constructing cross-
modality feature dependencies in the VI training phase.

Specifically, let us denote Sv = {xv
i |i = 1, 2, ..., Nv}

and Sr = {xr
i |i = 1, 2, ..., Nr} as the visible and infrared

training sets, respectively; Nv and Nr indicate the to-
tal numbers of visible and infrared samples, respectively.
During the training, we feed xv and xr into Block1-1
and Block1-2 to extract low-level features of two modal-
ities, respectively. Then, we concatenate these low-level
features and feed them into the Block(2,3,4) for the ini-
tial feature embedding. Based on the outcome of Block4
(Z = {Zv,Zr}), the fine-grained and cross-modality fea-
ture dependencies are constructed to help the network learn
substantial modality-shared patterns by the FDR module.

In order to extract fine-grained patterns from feature
maps, we slice Z into parts along the horizontal and ver-
tical directions. For each spatial map {Z}C−1

m=0 ∈ RH×W ,
the horizontal patterns are obtained by:

hf = Concat[Window
σ×W

({Zf}C−1
m=0)], f ∈ {v, r}, (5)

where Zf ∈ RC×H×W , f ∈ {v, r} denote visible or in-
frared features. C, H , W are the channel, height, and width
dimensions, respectively. hf ∈ RC×H

σ ×σ×W denotes a
group of fine-grained horizontal patterns extracted from Zf .
Similarly, the vertical patterns vf ∈ RC×W

µ ×H×µ can also
be obtained by:

vf = Concat[Window
H×µ

({Zf}C−1
m=0)], f ∈ {v, r}, (6)

where µ and σ are used to control the slice granularity.
Further, the spatial information of hf and vf is con-

densed by the average pooling operation, which produces
ĥf ∈ RC×H

σ and v̂f ∈ RC×W
µ . In the above manner, we

refine the original spatial maps {Zf}C−1
m=0 ∈ RH×W into

directional tensors ĥf and v̂f to cut off the original self-
modality dependencies in spatial dimensions. Furthermore,
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the cross-modality dependencies are established as follows.

Zf
h = TransConv

(H
σ ×W )

(ĥf ), f ∈ {v, r}, (7)

Zf
v = TransConv

(H×W
µ )

(v̂f ), f ∈ {v, r}. (8)

In Eq. (7) and Eq. (8), we use two modality-shared trans-
posed convolution layers to reconstruct the spatial maps of
hf and vf , respectively. This process aims to establish
the cross-modality spatial dependencies. The outputs are
zfh ∈ RC×H×W and zfv ∈ RC×H×W .

However, there exist “scheme stereotypes” in Zf
h and

Zf
v . The main reason is that these features are learned

from two distinct directional schemes, which may lead to
a skewed learning procedure. In contrast, we hope these
two schemes can consistently provide diversified patterns
that cover more valuable signals. Thus, the shuffle atten-
tion is designed to fuse Zf

h and Zf
v while decoupling them

from two directions. Specifically, we concatenate them on
the channel level and then shuffle the channel order to dis-
arrange the spatial maps learned from two directions.

Df = Shuffle(Concat(Zf
h,Z

f
v )), f ∈ {v, r}, (9)

where Df ∈ R2C×H×W denotes the concatenated feature
with disarranged channel order. The new channel depen-
dencies are established by weighting all the spatial maps.

D̂f = W2ReLU(W1GAP (Df )), f ∈ {v, r}, (10)

where W1 ∈ R2C×C
4 and W2 ∈ RC

4 ×C indicate projec-
tion matrices to compute the channel attention [16]. Finally,
we introduce D̂f to refine the original features.

Ẑf = D̂f ⊕ Zf , f ∈ {v, r}, (11)

where Ẑf is used as the input of the next block; ⊕ is the
element-wise add operation. The proposed fine-grained de-
pendency reconstruction module can effectively establish
fine-grained and cross-modality dependencies in both vis-
ible and infrared features, which can help discover substan-
tial small patterns that are vital in VI recognition.

3.4. Loss Function

We utilize the hard-mining triplet loss (Ltri) [42] and
cross-entropy loss (Lid) for metric learning and identity
learning, respectively. The overall loss can be defined as:

L = Lid + γ ∗ Ltri, (12)

where γ is the parameter to balance each loss term.

4. Experimental Results
4.1. Datasets and Settings for VI-ReID

We first evaluate the proposed method for the visible-
infrared person re-identification (VI-ReID) task on two pub-
lic benchmarks: SYSU-MM01 [35] and RegDB [25].

SYSU-MM01 [35] is the largest VI-ReID dataset, which
contains 491 persons captured from six different cameras
across scenes (indoor and outdoor). There are a total of
287628 visible images and 15792 infrared images. Follow-
ing the evaluation protocol in [26,38], 395 persons are fixed
for training and 96 persons for testing. The testing process
includes all-search and indoor-search modes.

RegDB [25] contains 412 persons, and each person has
10 visible and 10 infrared images. “Visible to infrared” and
“infrared to visible” are two testing modes. The former uses
visible as the query and infrared as the gallery. The latter
does the opposite. Following [26, 30, 38], the final perfor-
mance on the RegDB is made with the average results of 10
times the training and testing procedure. Each time, we ran-
domly sample 206 identities for training, and the remaining
206 identities are used for testing.

Evaluation Metrics. We use the standard cumulative
matching characteristics (CMC), mean average precision
(mAP), and mean inverse negative penalty (mINP) [42] as
the evaluation metrics.

Implementation Details. For the ablation studies, we
select the MobileNetV3-L [15] as the lightweight baseline
to validate each proposed component. As shown in Table 1,
we encapsulate all the layers of MobileNetV3-L as Block1-
7 and then initialize the first four blocks twice to construct
the dual-path network. During the TOP, detailed settings are

Table 1. Detailed structures for each Block. We package the entire
MobileNetV3-Large into Block1-7 without overlap.

Block partitions on MobileNetV3-large

Layer Name Structures Output Size

Block1 Conv(3×3, 2), Bneck(3×3, 1) 16 × 1122

Block2 Bneck(3×3, 2) 24 × 562

Block3 Bneck(3×3, 1) 24 × 562

Block4 Bneck(5×5, 2), Bneck(5×5, 1)×2 40 × 282

Block5 Bneck(3×3, 2), Bneck(3×3, 1)×5 112 × 142

Block6 Bneck(5×5, 2), Bneck(5×5, 1)×2 160 × 72

Block7 Conv(1×1, 1)×3 1280 × 72

shown in Table 2(b). It is worth noticing that the “Random
pick” means that for each image sample used in the Block1-
1 path, we randomly pick one method from colour jitter,
channel shuffle, or RGB shift to augment it.

During the VI-ReID training, detailed settings are pre-
sented in Table 2(a). Briefly, we randomly sample 6 identi-
ties with 6 visible and 6 infrared images per identity, which
makes a total of 72 images in each batch. All images are
resized to 288×144. Random erasing (RE) [49], flipping,
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Table 2. Detailed training and augmentation settings.
(a): Training settings

Settings On ImageNet-1K On ImageNet-mini On VI-ReID

Epochs 150 50 70
Batch size 512 36×2 36×2
Image size 224×224 224×224 288×144

Augs. Stanard [15] Task-oriented RE , CE, Flip

Optimizer SGD SGD AdamW [23]
Lr. 0.2 0.1 0.001

Decay cosine cosine constant
Warm up First 5 epoch None First 5 epoch

Weight decay 5E-4 5E-5 1E-2

Platform Pytorch, FP16 Pytorch Pytorch
GPU Tesla V100 RTX 3060 RTX 3060
Cost 57 h 4 h −

(b): Task-oriented augmentation settings
Augmentations Probability Target

Generic (G)
Crop & Filp 0.5

All pathDeformation 0.2

Colour (C)
Colour jitter

Random pick Block1-1 pathChannel shuffle
RGB shift

Texture (T)
Compression 0.2

Block1-2 pathDefocusing 0.2
Sharpen gray 1

and channel erasing (CE) [40] are utilized against overfit-
ting. The AdamW [23] optimizer with a learning rate (Lr)
of 0.001, and a weight decay of 0.01 is adopted to train our
network for 70 epochs. We use the Lr warm-up in the first 5
epochs and constant decay at the 20th and 40th epochs with
a decay factor of 0.1. The parameters µ and σ are set to
3 and 2 based on the fine-tuning results, respectively. The
balance parameter γ in Eq. (12) is empirically set to 1/2.

4.2. Ablation Study

Effect of Task-oriented Pretraining. We first evaluate
the effect of task-oriented pretraining on VI-ReID, as shown
in Table 3. No.1 indicates the baseline performance ob-
tained via direct fine-tuning of the ImageNet-1k pretrained
model in VI-ReID datasets. When only using generic aug-
mentations and identity loss to perform TOP on ImageNet-
mini, the “catastrophic forgetting” makes No.2 perform
worse than the baseline. However, when applying the pro-
posed task-oriented augmentations, the network learns to
extract stable features from visually discrepant images in
advance, thus improving the downstream VI-ReID perfor-
mance (No.3). Coupled with Lidc and Lfd, we create a con-
flicting learning process that enforces the network to learn
how to represent and embed heterogeneous features. No.5
shows significant improvements in both the SYSU-MM01
and RegDB datasets. By only using the MobileNetV3-large
backbone, the performance reported in No.5 has already ex-
ceeded many ResNet-based works [19, 26, 38].

Effect of Fine-grained Dependency Reconstruction
Module. In Table 3, No.6-No.9 show the ablation exper-
iments about the fine-grained dependency reconstruction
module. We intend to construct the cross-modality fea-
ture dependencies, and the first issue is how to model the

original feature relations. No.6 indicates directly applying
the coarse-grained features to the shuffle attention module.
The performance is slightly improved. When using the pro-
posed directional scheme (Hs, Vs) to extract fine-grained
patterns and reconstruct their spatial relation using trans-
posed convolution layers, No.7 and No.8 show meaningful
improvements. The full power of the FDR module is shown
in No.9, which adopts both fine-grained horizontal and ver-
tical patterns to discover cross-modality feature similarities,
achieving 66.14% and 63.80% in terms of Rank-1 and mAP
performance on SYSU-MM01 under the all-search mode.

Pointing at the difficulties in VI recognition tasks, we
design the TOP strategy and FDR module to remedy the
drawbacks of the lightweight network. Compared with the
baseline (No.1), our method (No.9) considerably improves
all metrics on two benchmarks. Meanwhile, the ablations
reported in Table 3 demonstrate that all the proposed com-
ponents bring advantages consistently to the accuracy gain.

Applicability with Lightweight Networks. We evalu-
ate our methods on three mainstream lightweight networks
(ShuffleNetV2 [24], GhostNet [11] and MobileNetV3 [15]).
As shown in Table 4, our method can remarkably improve
VI Re-ID performance with ignorable complexity growth.
Compared with conventional deep networks, we surpass
them significantly with minimal complexity.

Detailed Ablations on the FDR Module. We validate
the rationality of each component in the FDR module. Ta-
ble 5(a) shows the impacts of different spatial modelling
methods. Except for ours, the HAP [38] achieves the best
performance. However, we extract patterns from both the
horizontal and vertical regions and use up-sampling (u.) to
discover modality-shared cues from re-enlarged spatial ar-
eas, which can be regarded as a more effective solution.

Table 5(b) shows the impacts of different channel rela-
tion reasoning methods. Our shuffle attention (SA) wins
both SE [16] and CBAM [33]. The recipe is the channel
shuffle (cs.) operation that builds scheme-decoupled depen-
dencies. This crucial step can evenly correlate visible and
infrared features from each fine-grained pattern.

4.3. Feature Visualization

What Does TOP Do? We randomly track 10 identities
during the TOP stage and visualize the feature distribution
via T-SNE [28], as illustrated in Fig. 4.

We first use task-oriented augmentation to create two
types of visual discrepant samples from each image, as
shown in Fig. 4(a) and Fig. 4(b). Then, the proposed fake
domain loss forces the features after Block4 to be domain-
specific, as shown in Fig. 4(c). Concurrently, it forces the
network to learn to embed those domain-specific features
and provide domain-shared predictions. In Fig. 4(d), after
the training, we can observe that the network knows how to
extract the domain-shared representations and successfully
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Table 3. Evaluation of each proposed component on two VI-ReID datasets. “Augs.” indicates the augmentations. G, C and T denote the
generic, colour, and texture augmentations, respectively. In the FDR module, Hs and Vs denote the horizontal and vertical slices with
up-sampling. SA is the shuffle attention module. Rank (r) (%), mAP (%) and mINP (%) are reported.

No.

Task-oriented pretraining stage VI training stage
SYSU-MM01 (all-search) RegDB (visible-to-infrared)Augs. Loss functions FDR module

G C+T Lid Lidc Lfd Hs Vs SA r=1 r=10 mAP mINP r=1 r=10 mAP mINP

1 47.81 89.71 47.06 33.48 71.26 89.94 65.66 48.50
2 ✓ ✓ 43.28 85.96 45.56 31.10 70.73 88.52 65.65 48.41
3 ✓ ✓ ✓ 49.85 89.74 47.56 35.52 71.32 89.91 65.67 48.49
4 ✓ ✓ ✓ 54.28 92.11 52.94 41.29 75.31 92.64 68.78 52.16
5 ✓ ✓ ✓ ✓ 62.41 94.12 59.06 45.13 82.75 94.13 76.21 61.84
6 ✓ ✓ ✓ ✓ ✓ 62.89 94.26 59.79 45.84 82.88 94.19 76.24 61.92
7 ✓ ✓ ✓ ✓ ✓ ✓ 63.95 95.28 60.09 46.80 83.07 94.48 76.55 62.20
8 ✓ ✓ ✓ ✓ ✓ ✓ 64.04 95.41 61.12 46.92 83.22 94.69 77.01 63.16
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 66.14 96.03 63.80 49.76 84.15 94.98 79.26 63.86

Table 4. Experimental results on different lightweight networks
and conventional deep networks.

Methods
FLOPs SYSU-MM01 RegDB

(M) r=1 mAP r=1 mAP

C
on

ve
nt

io
n ResNet-50 3562 56.98 54.72 76.86 71.30

ConvNeXt-Tiny 3620 58.72 55.31 78.25 72.64
Vit-B 5689 52.17 51.81 75.31 70.37

Swin-Tiny 3287 58.24 55.16 78.39 72.68

L
ig

ht
w

ei
gh

t

ShuffleNetV2-1.0× 139 41.88 41.94 67.83 64.85
+TOP & FDR 177 55.71 52.63 79.82 66.36

ShuffleNetV2-1.5× 265 47.39 47.81 70.15 65.28
+TOP & FDR 371 63.35 60.81 84.13 76.98

GhostNet-1.0× 150 42.53 42.94 71.28 64.40
+TOP & FDR 189 58.54 55.19 83.26 77.16

GhostNet-1.3× 281 50.89 47.92 72.51 65.98
+TOP & FDR 395 66.76 64.01 85.51 79.95

MobileNetV3-S 104 40.92 42.51 62.77 58.31
+TOP & FDR 130 54.75 50.26 75.53 70.17

MobileNetV3-L 250 47.81 47.06 71.26 65.66
+TOP & FDR 362 66.14 63.80 84.15 79.26

Table 5. Evaluation of spatial modelling methods and channel re-
lation reasoning methods in the FDR module. “u.” and “cs.” re-
spectively denote the up-sampling and channel shuffle operations.

(a): Impact of different spatial modelling methods

Methods
SYSU-MM01 RegDB

r=1 mAP mINP r=1 mAP mINP

GAP 62.89 59.79 45.84 82.88 76.24 61.92
Context [2] 61.37 57.52 46.08 81.56 74.49 62.11
HAP [38] 62.92 58.13 47.84 82.98 76.20 62.77

Hs + Vs (w/o u.) 63.45 59.75 49.61 83.94 78.82 63.21
Hs + Vs 66.14 63.80 49.76 84.15 79.26 63.86

(b): Impact of different channel relation reasoning methods

Methods
SYSU-MM01 RegDB

r=1 mAP mINP r=1 mAP mINP

SE [16] 62.91 59.70 45.78 82.79 77.45 62.34
CBAM [33] 61.79 56.88 45.25 83.41 77.28 62.96
SA (w/o cs.) 62.81 58.10 45.76 82.75 76.12 62.56

SA 66.14 63.80 49.76 84.15 79.26 63.86

embed all the features into their respective identity groups.
Thus, the proposed task-oriented pretraining strategy makes
lightweight networks fit cross-modality tasks.

Pattern Visualization. As demonstrated in Fig. 5, we
visualize the learned patterns using Grad-CAM [27] to ex-

Figure 4. Feature distributions during task-oriented pretraining.
Each colour denotes an identity. In (a), the star markers represent
raw samples. In (b), (c) and (d), the circle and triangle markers
represent colour and texture-augmented samples, respectively.

Figure 5. Visualization of learned patterns via Grad-CAM [27].
For a clear presentation, we average all the spatial maps into four.

plain the effect of the FDR module. Clearly, the original
patterns extracted by MobileNetV3-L are concentrated and
overfit on the modality-specific parts. To remedy this is-
sue, we use the FDR module to discover modality-shared
patterns from fine-grained regions, which separates learned
patterns to focus on considerable modality-shared cues. A
good case is shown in Fig. 5. The visible patterns initially
learned are concentrated in the high chest area, while the
infrared patterns are all in the right arm. After re-weighting
by the FDR module, modality-shared small regions like the
face, arms, neck, and shoes are all taken into account, thus
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Table 6. Comparison with the state-of-the-arts on SYSU-MM01 [35]. Metrics of Rank at r (%), mAP (%) and mINP (%) are reported.
Details All-search Indoor-search

Methods Backbone FLOPs (M) r=1 r=10 r=20 mAP mINP r=1 r=10 r=20 mAP mINP
Zero-pad [35] ResNet50 >3562 14.80 54.12 71.33 15.95 − 20.58 68.38 85.79 26.92 −
JSIA [30] ResNet50+GAN >4133 38.10 80.70 89.90 36.90 − 43.80 86.20 94.20 52.90 −
AGW [42] ResNet50 >3562 47.50 84.39 92.14 47.65 35.30 54.17 91.14 95.98 62.97 59.23
X-Modal [19] ResNet50 >3562 49.90 89.80 96.00 50.70 − − − − − −
DMiR [38] ResNet50 >3562 50.54 88.12 94.86 49.29 − 53.92 92.50 97.09 62.49 −
FBP-AL [32] ResNet50 >3562 54.14 86.04 93.03 50.20 − − − − − −
DDAG [41] ResNet50 >3562 54.75 90.39 95.81 55.02 39.62 61.02 94.06 98.41 67.98 62.61
HAT [43] ResNet50 >3562 55.29 92.14 97.36 53.89 − 62.10 95.75 99.20 70.84 −
LBA [26] ResNet50 >3562 55.41 − − 54.14 − 58.46 − − 66.33 −
TSME [21] ResNet50 >3562 64.23 95.19 98.73 61.21 − 64.80 96.92 99.31 71.53 −
SPOT [4] ResNet50+ViT >4810 65.34 92.73 97.04 62.25 48.86 69.42 96.22 99.12 74.63 70.48
TOPLight (Ours) MobileNetV3-L = 362 66.14 96.03 97.68 63.80 49.76 72.41 97.54 99.23 76.11 71.43
TOPLight (Ours) GhostNet-1.3× = 395 66.76 96.23 98.70 64.01 50.18 72.89 97.93 99.28 76.70 71.95

Table 7. Comparison with the state-of-the-arts on RegDB [25]. Metrics of Rank at r (%), mAP (%) and mINP (%) are reported.
Details Visible-to-Infrared Infrared-to-Visible

Methods Backbone FLOPs (M) r=1 r=10 r=20 mAP mINP r=1 r=10 r=20 mAP mINP
Zero-pad [35] ResNet50 >3562 17.75 34.21 44.35 18.90 − 16.63 34.68 44.25 17.82 −
JSIA [30] ResNet50+GAN >4133 48.50 − − 49.30 − 48.10 − − 48.90 −
AGW [42] ResNet50 >3562 70.05 86.21 91.55 66.37 50.19 70.49 87.21 91.84 65.90 51.24
X-Modal [19] ResNet50 >3562 62.21 83.13 91.72 60.18 − − − − − −
DMiR [38] ResNet50 >3562 75.79 89.86 94.18 69.97 − 73.93 89.87 93.98 68.22 −
FBP-AL [32] ResNet50 >3562 73.98 89.71 93.69 68.24 − 70.05 89.22 93.88 66.61 −
DDAG [41] ResNet50 >3562 69.34 86.19 91.49 63.46 49.24 68.06 85.15 90.31 61.80 48.62
HAT [43] ResNet50 >3562 71.83 87.16 92.16 67.56 − 70.02 68.45 91.61 66.30 −
LBA [26] ResNet50 >3562 74.17 − − 67.64 − 72.43 − − 65.46 −
SPOT [4] ResNet50+ViT >4810 80.35 93.48 96.44 72.46 56.19 79.37 92.79 96.01 72.26 56.06
GECNet [48] ResNet50+GAN >4350 82.33 92.72 95.49 78.45 − 78.93 91.99 95.44 75.58 −
TOPLight (Ours) MobileNetV3-L =362 84.15 94.98 96.58 79.26 63.86 80.94 92.85 96.37 76.10 59.33
TOPLight (Ours) GhostNet-1.3× =395 85.51 94.99 96.70 79.95 63.85 80.65 92.81 96.32 75.91 59.26

improving the accuracy of the cross-modality matching.

4.4. Comparison with State of The Arts

We compare our method with recently proposed state-of-
the-art VI-ReID methods, as shown in Table 6 and Table 7.
They illustrate that we remarkably and efficiently exceed
all the compared SOTAs under diverse evaluation settings.
Specifically, based on the tiny GhostNet-1.3× backbone,
we attain the rank-1 of 66.76% and mAP of 64.01% on
the all-search mode of the large-scale SYSU-MM01 dataset
with only 395 FLOPs. The proposed method also achieves
excellent results on the RegDB dataset, surpassing the pre-
vious SOTAs by a significant margin with lower FLOPs.

Table 8. Evaluation on two VI-FR datasets. CA is channel aug-
mentation [40]. B is the LightCNN-29 baseline. Rank at 1 accu-
racy (%) and false acceptance rate (F: %) are reported.

Methods
Oulu [5] BUAA [17]

r=1 F:1% F:0.1% r=1 F:1% F:0.1%

IDR [13] 94.3 73.4 46.2 94.3 93.4 84.7
VSA [44] 99.9 96.8 82.3 98.0 98.2 92.5
PACH [8] 100 97.9 88.2 98.6 98.0 93.5
B [36] 100 97.9 87.0 98.0 97.7 93.7
B+CA [40] 100 98.9 91.7 98.3 98.2 94.5
B+TOP 100 98.8 91.5 98.3 98.1 94.5
B+TOP+FDR (Ours) 100 98.9 91.7 98.3 98.2 94.6

4.5. Visible-Infrared Face Recognition

We follow [40] to examine our method on Oulu-CASIA
NIR-VIS [5] and BUAA-VisNir face databases [17]. Fol-

lowing previous studies, we also adopt the LightCNN-29
[36] as our baseline network (B). Except for IDR [13],
VSA [44], and PACH [8], we also compare recently pro-
posed channel augmentation (CA) [40] with our method on
the same baseline. Results are displayed in Table 8.

Evidently, the proposed TOP and FDR also enhance the
performance of VI face recognition. These results further
validate the effectiveness and generalization of our meth-
ods, which can solve VI recognition tasks effectively.

5. Conclusion

This work presents an effective task-oriented pretrained
lightweight neural network (TOPLight) to solve visible-
infrared recognition problems. First, the task-oriented
pretraining strategy significantly improves the ability of
lightweight networks to understand heterogeneous images
by introducing domain conflict and sample variation during
the pretraining phase. Second, the fine-grained dependency
reconstruction module is utilized to destroy the modality-
specific pattern dependencies and construct the fine-grained
and modality-shared pattern dependencies between visible
and infrared features. Extensive experiments demonstrate
the superiority and effectiveness of the proposed method as
well as the efficacy of each component of our framework.
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