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Abstract

Test-time adaptation (TTA) intends to adapt the pre-
trained model to test distributions with only unlabeled test
data streams. Most of the previous TTA methods have
achieved great success on simple test data streams such as
independently sampled data from single or multiple distri-
butions. However, these attempts may fail in dynamic sce-
narios of real-world applications like autonomous driving,
where the environments gradually change and the test data
is sampled correlatively over time. In this work, we ex-
plore such practical test data streams to deploy the model
on the fly, namely practical test-time adaptation (PTTA).
To do so, we elaborate a Robust Test-Time Adaptation
(RoTTA) method against the complex data stream in PTTA.
More specifically, we present a robust batch normalization
scheme to estimate the normalization statistics. Meanwhile,
a memory bank is utilized to sample category-balanced data
with consideration of timeliness and uncertainty. Further, to
stabilize the training procedure, we develop a time-aware
reweighting strategy with a teacher-student model. Exten-
sive experiments prove that RoTTA enables continual test-
time adaptation on the correlatively sampled data streams.
Our method is easy to implement, making it a good choice
for rapid deployment. The code is publicly available at
https://github.com/BIT-DA/RoTTA

1. Introduction
In recent years, many machine learning problems have

made considerable headway with the success of deep neu-
ral networks [13, 22, 33, 38]. Unfortunately, the perfor-
mance of deep models drops significantly when training
data and testing data come from different distributions [59],
which limits their utility in real-world applications. To re-
duce the distribution shift, a handful of works focus on
transfer learning field [56], in particular, domain adapta-
tion (DA) [17, 42, 45, 48, 69, 72] or domain generalization
(DG) [40,41,52,71,83], in which one or more different but
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Figure 1. We consider the practical test-time adaptation (TTA)
setup and compare it with related ones. First, Fully TTA [70]
adapts models on a fixed test distribution with an independently
sampled test stream. Then, on this basis, Continual TTA [73] takes
the continually changing distributions into consideration. Next,
Non-i.i.d. TTA [19] tries to tackle the correlatively sampled test
streams on a single test distribution, where the label distribution
among a batch of data deviates from that of the test distribution.
To be more practical, Practical TTA strives to connect both worlds:
distribution changing and correlation sampling.

related labeled datasets (a.k.a. source domain) are collected
to help the model generalize well to unlabeled or unseen
samples in new datasets (a.k.a. target domain).

While both DA and DG have extensively studied the
problem of distribution shifts, they typically assume acces-
sibility to the raw source data. However, in many practical
scenarios like personal consumption records, the raw data
should not be publicly available due to data protection reg-
ulations. Further, existing methods have to perform heavy
backward computation, resulting in unbearable training
costs. Test-time adaptation (TTA) [3,11,16,24,26,54,65,81]
attempts to address the distribution shift online at test time
with only unlabeled test data streams. Unequivocally, TTA
has drawn widespread attention in a variety of applications,
e.g., 2D/3D visual recognition [2, 29, 49, 65, 82], multi-
modality [63, 64] and document understanding [15].

Prior TTA studies [7, 20, 70, 73] mostly concentrate on
a simple adaptation scenario, where test samples are inde-
pendently sampled from a fixed target domain. To name a
few, Sun et al. [65] adapt to online test samples drawn from
a constant or smoothly changing distribution with an auxil-
iary self-supervised task. Wang et al. [70] adapt to a fixed
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Table 1. Comparison between our proposed practical test-time adaptation (PTTA) and related adaptation settings.

Setting Adaptation Stage Available Data Test Data Stream
Train Test Source Target Distribution Sampling Protocol

Domain Adaptation ! % ! ! - -
Domain Generalization ! % ! % - -
Test-Time Training [65] ! ! ! ! stationary independently
Fully Test-Time Adaptation [70] % ! % ! stationary independently
Continual Test-Time Adaptation [73] % ! % ! continually changing independently
Non-i.i.d. Test-Time Adaptation [5, 19] % ! % ! stationary correlatively
Practical Test-Time Adaptation (Ours) % ! % ! continually changing correlatively

target distribution by performing entropy minimization on-
line. However, such an assumption is violated when the test
environments change frequently [73]. Later on, Boudiaf et
al. [5] and Gong et al. [19] consider the temporal correlation
ship within test samples. For example, in autonomous driv-
ing, test samples are highly correlated over time as the car
will follow more vehicles on the highway or will encounter
more pedestrians in the streets. More realistically, the data
distribution changes as the surrounding environment alerts
in weather, location, or other factors. In a word, distribution
change and data correlation occur simultaneously in reality.

Confronting continually changing distributions, tradi-
tional algorithms like pseudo labeling or entropy minimiza-
tion become more unreliable as the error gradients cumu-
late. Moreover, the high correlation among test samples re-
sults in the erroneous estimation of statistics for batch nor-
malization and collapse of the model. Driven by this analy-
sis, adapting to such data streams will encounter two major
obstacles: 1) incorrect estimation in the batch normaliza-
tion statistics leads to erroneous predictions of test samples,
consequently resulting in invalid adaptation; 2) the model
will easily or quickly overfit to the distribution caused by
the correlative sampling. Thus, such dynamic scenarios are
pressing for a new TTA paradigm to realize robust adapta-
tion.

In this work, we launch a more realistic TTA setting,
where distribution changing and correlative sampling oc-
cur simultaneously at the test phase. We call this Practical
Test-Time Adaptation, or briefly, PTTA. To understand more
clearly the similarities and differences between PTTA and
the previous setups, we visualize them in Figure 1 and sum-
marize them in Table 1. To conquer this challenging prob-
lem, we propose a Robust Test-Time Adaptation (RoTTA)
method, which consists of three parts: 1) robust statistics es-
timation, 2) category-balanced sampling considering time-
liness and uncertainty and 3) time-aware robust training.
More concretely, we first replace the erroneous statistics of
the current batch with global ones maintained by the expo-
nential moving average. It is a more stable manner to esti-
mate the statistics in BatchNorm layers. Then, we simulate
a batch of independent-like data in memory with category-
balanced sampling while considering the timeliness and un-
certainty of the buffered samples. That is, samples that are

newer and less uncertain are kept in memory with higher
priority. With this batch of category-balanced, timely and
confident samples, we can obtain a snapshot of the current
distribution. Finally, we introduce a time-aware reweight-
ing strategy that considers the timeliness of the samples in
the memory bank, with a teacher-student model to perform
robust adaptation. With extensive experiments, we demon-
strate that RoTTA can robustly adapt in the practical setup,
i.e., PTTA.

In a nutshell, our contributions can be summarized as:
• We propose a new test-time adaptation setup that

is more suitable for real-world applications, namely
practical test-time adaptation (PTTA). PTTA considers
both distribution changing and correlation sampling.

• We benchmark the performance of prior methods in
PTTA and uncover that they only consider one aspect
of the problem, resulting in ineffective adaptation.

• We propose a robust test-time adaptation method
(RoTTA), which has a more comprehensive considera-
tion of PTTA challenges. Ease of implementation and
effectiveness make it a practical deployment option.

• We extensively demonstrate the practicality of PTTA
and the effectiveness of RoTTA on common TTA
benchmarks [23], i.e., CIFAR-10-C and CIFAR-100-
C and a large-scale DomainNet [58] dataset. RoTTA
obtains state-of-the-art results, outperforming the best
baseline by a large margin (reducing the averaged
classification error by over 5.9%, 5.5% and 2.2% on
CIFAR-10-C, CIFAR-100-C and DomainNet, respec-
tively).

2. Related Work

Domain adaptation (DA) studies the problem of transfer-
ring the knowledge learned from a labeled source dataset to
an unlabeled target dataset [8, 17, 43, 51, 67, 68]. Represen-
tative techniques include latent distribution alignment [48,
77], adversarial training [17, 62], or self-training [75, 85].
The limitation of this setting, however, is that an unlabeled
test dataset (target domain) is needed at training time, in
addition to a labeled training dataset (source domain). Ac-
cordingly, it might fail to handle more practical scenarios

15923



Feature 𝐹

Robust batch normalization (RBN)

Update 𝜇௚, 𝜎௚
ଶ

Normalize Feature 𝐹′

Update bank with current sample  
Training 
loss ℒ௥

in Eq. (7)

Te
a

ch
e

r
S

tu
d

e
n

t

Adaptation with RBN

Memory
bank

EMA 

𝑡

A stream of online data

Update

Test time

Correlation
sampling

Strong & weak
augmentation flow

DistributionsCategory

Teacher

Major class
has highest ℋ in major

Remove
Add
When ℋ > ℋ

Samples to be
added & removed

Figure 2. Framework overview. Firstly, we replace the batch normalization layer with RBN which robustly normalizes the feature map.
During the inference of the online test stream of PTTA, we utilize the predictions of samples to maintain a memory bank by category-
balanced sampling with timeliness and uncertainty. Finally, we use the category-balanced, timely and confident data in the memory bank
combined with a robust loss to adapt the model at test time.

like test-time adaptation. Our practical test-time adaptation
setting can be viewed as performing correlatively sample
adaptation on the fly. It is worth noting that standard domain
adaptation techniques might collapse when only continual
data streams from multiple target domains are accessible.

Domain generalization (DG) assumes that multiple source
domains are available for model training and tries to learn
models that can generalize well to any unseen domains [4,
26,40,41,52,84]. A broad spectrum of methodologies based
on data augmentation [78, 84], meta-learning [14, 40], or
domain alignment [50,52] has made great progress. In con-
trast, this work instead aims to improve the performance of
source pre-trained models at the test time by using unla-
beled online data streams from multiple continually chang-
ing target domains.

Continual learning (CL) (also known as incremental
learning, life-long learning) addresses the problem of learn-
ing a model for many tasks sequentially without forgetting
knowledge obtained from the preceding tasks. [1, 6, 31, 37,
60]. CL methods can often be categorized into replay-
based [60, 66] and regularization-based [31, 44] methods.
Ideas from continual learning are also adopted for continu-
ous domain adaptation approaches [34, 74] In our work, we
share the same motivation as CL and point out that prac-
tical test-time adaptation (PTTA) also suffers catastrophic
forgetting (i.e., performance degradation on new test sam-
ples due to correlation sampling), which makes test-time
adaptation approaches are unstable to deploy.

Test-time adaptation (TTA) focus on more challenging
settings where only source model and unlabeled target data
are available [9, 18, 27, 28, 35, 46, 61]. A similar paradigm
is source-free domain adaptation (SFDA) [10, 36, 47, 79],
which also requires no access to the training (source) data.
To name a few, Liang et al. [45] fit the source hypoth-
esis by exploiting the information maximization and self-

supervised pseudo-labeling. Kundu et al. [35] formalize a
unified solution that explores SFDA without any category-
gap knowledge. To fully utilize any arbitrary pre-trained
model, Sun et al. [65] propose conducting adaptation on the
fly with an auxiliary self-supervised task. Later on, Wang et
al. [70] take a source pre-trained model and adapt it to the
test data by updating a few trainable parameters in Batch-
Norm layers [25] using entropy minimization [21].

While standard TTA has been widely studied in many
tasks [2, 20, 63, 64, 70, 82], the fact remains that both dis-
tribution changing [73] and data correlation sampling [19]
has only been considered in isolation. For example, Gong
et al. [19] propose instance-aware batch normalization and
prediction-balanced reservoir sampling to address the chal-
lenges of correlatively sampled test streams, however, it
does not consider unstable adaptation resulting from long-
term adaptation on continually changing distributions. On
the other hand, Wang et al. [73] assume that the target test
data is streamed from a continually changing environment
and continually adapt an off-the-shelf source pre-trained
model to the current test data. In this work, we launch
PTTA, a more practical TTA setting to connect both worlds:
distribution changing and correlation sampling.

3. Method
3.1. Problem Definition and Motivation

Given a model fθ0 with parameter θ0 pre-trained on
source domain DS = {(xS , yS)}, the proposed practical
test-time adaptation (PTTA) aims to adapt fθ0 to a stream
of online unlabeled samples X0,X1, ...,XT , where Xt is
a batch of highly correlated samples from the distribution
Ptest that changes with time t continually. More specifi-
cally, at test time, with time going on, the test distribution
Ptest changes continually as P0,P1, ...,P∞. At time step t,
we will receive a batch of unlabeled and correlated samples
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Figure 3. Illustration of the labels and distributions of the test
stream of CIFAR10-C under the setup PTTA. And we adopt
Dirichlet distribution to simulate the process of correlative sam-
pling. It is clear that as the concentration parameter δ decreases,
the correlation among sampled data increases, which is reflected
in the increasing aggregation of categories.

Xt from Ptest. Next, Xt is fed into the model fθt and the
model needs to adapt itself to the current test data streams
and make predictions fθt(Xt) on the fly.

As a matter of fact, this setup is largely driven the prac-
tical demands of deploying models in dynamic scenarios.
Taking for example the case of autonomous driving men-
tioned in § 1, test samples are highly correlated and the data
distribution changes continually with the weather or loca-
tion. Another example is the situation of intelligent moni-
toring, the camera will continuously capture more people at
certain times, such as after work, but fewer of them during
work time. Meanwhile, the light condition changes con-
tinually from day to night. The deployed model should be
robustly adapted in such dynamic scenarios. In a word, dis-
tribution change and data correlation often happen simul-
taneously in the real world. For this reason, existing TTA
methods [7,9,19,28,70,73,81] might become unstable when
the test stream is sampled from such dynamic scenarios.

To obtain the test stream of PTTA, we adopt Dirich-
let Distribution with parameter δ to simulate the correla-
tion among test samples. We present the test data streams
corresponding to different values of δ on the CIFAR10-C
dataset in Figure 3. We can observe that the smaller δ is,
the higher the correlation will be. For the sake of unity, we
set δ = 0.1 as the default for all experiments. In the follow-
ing, we present a robust test-time adaptation framework for
the practical test-time adaptation setup defined above. An
overview of our RoTTA is illustrated in Figure 2.

3.2. Robust Test-Time Adaptation

Motivated by the fact that the statistics of current batch
data, which are commonly used in previous TTA meth-
ods [7, 20, 65, 70, 73], become unreliable when they en-
counter correlative test data streams, we first turn to the
global robust statistics for normalization. Then, to effec-
tively adapt to the current distribution, we maintain a mem-
ory bank by category-balanced sampling with considering

timeliness and uncertainty, which captures a more stable
snapshot of the distribution. Finally, we utilize the teacher-
student model and design a timeliness-based reweighting
strategy to train the model robustly.
Robust batch normalization (RBN). Batch Normaliza-
tion (BN) [25] is a widely-used training technique as it can
accelerate the training and convergence speed of networks
and stabilize the training process by reducing the risk of
gradient explosion and vanishing. Given the feature map
F ∈ RB×C×H×W as the input for a BN layer when train-
ing, the channel-wise mean µ ∈ RC and variance σ2 ∈ RC

are calculated as follows:

µc =
1

BHW

B∑
b=1

H∑
h=1

W∑
w=1

F(b,c,h,w) , (1)

σ2
c =

1

BHW

B∑
b=1

H∑
h=1

W∑
w=1

(F(b,c,h,w) − µc)
2 . (2)

Then the feature map is normalized and refined in a
channel-wise manner as

BN(F(b,c,h,w);µ, σ
2) = γc

F(b,c,h,w) − µc√
σ2
c + ϵ

+ βc , (3)

where γ, β ∈ RC are learnable parameters in the layer and
ϵ > 0 is a constant for numerical stability. Meanwhile,
during training, the BN layer maintains a group of global
running mean and running variance (µs, σ

2
s) for inference.

Due to the domain shift at test time, the global statis-
tics (µs, σ

2
s) normalize test features inaccurately, causing

significant performance degradation. To tackle the prob-
lem above, some methods [55, 70, 73] use the statistics of
the current batch to perform normalization. Unfortunately,
when the test samples have a high correlation under PTTA
setup, the statistics of the current batch also fail to correctly
normalize the feature map, as demonstrated in Figure 4c.
Specifically, the performance of BN [53] decreases rapidly
as the data correlation increases.

Based on the analysis above, we propose a robust batch
normalization (RBN) module, which maintains a group of
global statistics (µg, σ

2
g) to normalize the feature map ro-

bustly. Before the whole test-time adaptation, (µg, σ
2
g) is

initialized as the running mean and variance (µs, σ
2
s) of the

pre-trained model. When adapting the model, we update the
global statistics first by exponential moving average as

µg = (1− α)µg + αµ , (4)

σ2
g = (1− α)σ2

g + ασ2 , (5)

where (µ, σ2) is the statistics of the buffered samples in the
memory bank. Then we normalize and affine the feature as
Eq. (3) with (µg, σ

2
g). When inferring for test samples, we

directly utilize (µg, σ
2
g) to calculate the output as Eq (3). Al-

though simple, RBN is effective enough to tackle the prob-
lem of normalization on test streams of PTTA.
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Category-balanced sampling with timeliness and uncer-
tainty (CSTU). In the PTTA setup, the correlation among
test samples Xt at time t leads to a deviation between the
observed distribution P̂test and the test distribution Ptest.
Specifically, the marginal label distribution p(y|t) tends to
differ from p(y). Continuously learning with Xt over time
t can lead to model adaptation to an unreliable distribution
P̂test, resulting in ineffective adaptation and an increased
risk of model collapse.

To address this issue, we propose a category-balanced
memory bank M with a capacity of N , which takes into
account the timeliness and uncertainty of samples when up-
dating. In particular, we adopt the predictions of test sam-
ples as pseudo labels to guide the update of M. Meanwhile,
to guarantee the balance among categories, we distribute the
capacity of M equally to each category, and samples of the
major categories will be replaced first (refer to lines 5-9 in
Algorithm 1). Furthermore, due to the continually changing
test distribution, old samples in M are limited in value, and
could even impair the ability of the model to adapt to the
current distribution. Additionally, samples of high uncer-
tainty always produce erroneous gradient information that
can hinder model adaptation, as suggested by [55].

With this in mind, we attach each sample in M with a
group of heuristics (A,U), where A, initialized as 0 and in-
creasing with time t, is the age of the sample, and U the un-
certainty calculated as the entropy of the prediction. Next,
we combine the timeliness and uncertainty to calculate a
heuristic score, i.e., category-balanced sampling with time-
liness and uncertainty (CSTU), as follows:

H = λt
1

1 + exp(−A/N )
+ λu

U
log C , (6)

where λt and λu make the trade-off between timeliness and
uncertainty, and for simplicity, λt and λu are set to 1.0 for
all experiments, and C is the number of categories. We sum-
marize our sampling algorithm in Algorithm 1. With CSTU,
we can obtain a robust snapshot of the current test distribu-
tion Ptest, and effectively adapt the model to it.

Robust training with timeliness. Actually, after replacing
BN layers with our RBN and obtaining the memory bank
selected via CSTU, we can directly adopt the widely used
techniques like pseudo labeling or entropy minimization to
perform test-time adaptation. However, we notice that too
old or unreliable instances still have the opportunity to stay
in M since keeping the category balance is assigned the top
priority. In addition, too aggressive updates of the model
will make the category balance of M unreliable, resulting in
unstable adaptation. Meanwhile, error accumulation caused
by the distribution change also makes the aforementioned
approaches unworkable.

To further reduce the risk of error gradients information
from old and unreliable instances and stabilize the adapta-
tion, we turn to the robust unsupervised learning method

Algorithm 1: CSTU for one test sample.

1 Input: a test sample x and the teacher model fθT .
2 Define: memory bank M and its capacity N ,

number of classes C, per class occupation O ∈ RC ,
total occupation Ω, classes to pop instance D.

3 Infer as p(y|x) = Softmax(fθT (x)).
4 Calculate the predicted category of x as

ŷ = argmaxc p(c|x), the uncertainty as
Ux = −

∑C
c=1 p(c|x) log(p(c|x)), the age as

Ax = 0, and the heuristic score Hx of x with
Eq (6)

5 if Oŷ < N
C then

6 if Ω < N : Search range D = ∅.
7 else: Search range D = {j|j = argmaxc Oc}
8 else
9 Search range D = {ŷ}

10 if D is ∅ then
11 Add (x, ŷ,Hx,Ux) into M.

12 else
13 Find the instance (x̂, yx̂,Ax̂,Ux̂) with the

highest value in Eq (6) Hx̂ among D.
14 if Hx < Hx̂ then
15 Remove (x̂, yx̂,Ax̂,Ux̂) from M.
16 Add (x, ŷ,Hx,Ux) into M.

17 else
18 Discard x.

19 Increase the age of all instances in M.

teacher-student model and propose a timeliness reweight-
ing strategy. In addition, for the sake of time efficiency and
stability, only affine parameters in RBN are trained during
adaptation.

At time step t, after inferring for the correlated data Xt

with the teacher model fθT
t

and updating the memory bank
M with Xt, we begin updating the student model fθS

t
and

the teacher model fθT
t

. Firstly, we update parameters of stu-
dent model θSt → θSt+1 by minimizing the following loss:

Lr =
1

Ω

Ω∑
i=1

L(xM
i ,Ai; θ

T
t , θ

S
t ) , (7)

where Ω = |M| is the total occupation of the memory bank,
and xM

i and Ai(i = 1, ..., Ω) are instances in the memory
bank and their age respectively. Subsequently, the teacher
model is updated by exponential moving average as

θTt+1 = (1− ν)θTt + νθSt+1 . (8)

To calculate the loss value of an instance xM
i from the mem-

ory bank, the timeliness reweighting term is computed as

E(Ai) =
exp(−Ai/N )

1 + exp(−Ai/N )
, (9)
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where Ai is the age of xM
i , and N is the capacity of the

bank. And then we calculate the cross entropy between the
soft-max prediction pS(y|x′′

i ) of the strong-augmented view
x′′
i from the student model and that pT (y|x′

i) of the weak-
augmented view 1 x′

i from the teacher model as follows:

ℓ(x′
i, x

′′
i ) = − 1

C

C∑
c=1

pT (c|x′
i) log pS(c|x′′

i ) . (10)

Finally, equipped with Eq. (9) and Eq. (10), the right-hand
side of Eq. (7) reduces to

L(xM
i ,Ai; θ

T
t , θ

S
t ) = E(Ai)ℓ(x

′
i, x

′′
i ) . (11)

To sum up, equipped with RBN, CSTU, and robust training
with timeliness, our RoTTA is capable of effectively adapt-
ing any pre-trained models in dynamic scenarios.

4. Experiments
4.1. Setup

Datasets. CIFAR10-C and CIFAR100-C [23] are the com-
monly used TTA benchmarks to testify the robustness un-
der corruptions. Both of them are obtained by applying 15
kinds of corruption with 5 different degrees of severity on
their clean test images of original datasets CIFAR10 and
CIFAR100 respectively. CIFAR10/CIFAR100 [32] have
50,000/10,000 training/test images, all of which fall into
10/100 categories. DomainNet [58] is the largest and hard-
est dataset to date for domain adaptation and consists of
about 0.6 million images with 345 classes. It consists of six
different domains including Clipart (clp), Infograph (inf),
Painting (pnt), Quickdraw (qdr), Real (rel), and Sketch
(skt). We first pre-train a source model on the train set in
one of six domains and testify all baseline methods on the
test set of the remaining five domains.

Implementation details. All experiments are conducted
with PyTorch [57] framework. In the case of robustness
to corruption, following the previous methods [55, 70, 73],
we obtain the pre-trained model from RobustBench bench-
mark [12], including the WildResNet-28 [80] for CIFAR10
→ CIFAR10-C, and the ResNeXt-29 [76] for CIFAR100
→ CIFAR100-C. Then, we change the test corruption at the
highest severity 5 one by one to simulate that the test distri-
bution continually changes with time in PTTA. And in the
case of generalization under the huge domain gap, we train
a ResNet-101 [22] by standard classification loss for each
domain in DomainNet and adapt them continually to differ-
ent domains except the source domain. Meanwhile, we uti-
lize the Dirichlet distribution to simulate the correlatively
sampled test stream for all datasets. For optimization, we
adopt Adam [30] optimizer with learning rate 1.0 × 10−3,

1Weak augmentation is ReSize+CenterCrop. Strong augmentation is a
combination nine operations like Clip, ColorJitter, and RandomAffine.

β = 0.9. For a fair comparison, we set the batch size for
all methods as 64 and the capacity of the memory bank of
RoTTA as N = 64. Concerning the hyperparameters, we
adopt a unified set of values for RoTTA across all experi-
ments including α = 0.05, ν = 0.001, λt = 1.0, λu = 1.0,
and δ = 0.1. More details are provided in the appendix.

4.2. Comparisons with the State-of-the-arts

Robustness under corruptions. The classification error
on CIFAR10→CIFAR10-C and CIFAR100→CIFAR100-C
are shown in Table 2 and Table 3 respectively. We change
the type of the current corruption at the highest severity 5
as time goes on, and sample data correlatively for infer-
ence and adaptation simultaneously. The same test stream
is shared across all compared methods.

From Table 2 and Table 3, we can see that RoTTA
achieves the best performance compared to previous meth-
ods. Moreover, RoTTA has a significant performance
gain to the second-best method that 5.9% improvement
on CIFAR10→CIFAR10-C and 5.5% improvement on
CIFAR100→CIFAR100-C respectively, verifying the effec-
tiveness of RoTTA to adapt the model under PTTA.

In more detail, we can observe that BN [53], PL [39],
TENT [70] and CoTTA [73] negatively adapt the model
to the test streams of both datasets compared to Source
(−6.5 ∼ −46.4%). This is attributed to the fact that these
methods overlook the issues posed by correlation sampling,
which can result in highly correlated data within a batch. As
a consequence, traditional normalization statistics may be
ineffective in appropriately normalizing the feature maps.
Equipped with RBN and CSTU, RoTTA no longer suffers
from this issue. Meanwhile, in Table 3, if focus on the
adaptation procedure, we can see that the performance of
PL [39], TENT [70] and NOTE [19] becomes worse and
worse, and eventually, the model even collapses (error rate
> 97%). This reveals that the impact of error accumula-
tion on long-term adaptation can be catastrophic. To tackle
this problem, RoTTA turns to robustly adapt the model with
timeliness reweighting and confident samples in the mem-
ory bank, and superior performance throughout the adapta-
tion process demonstrates its effectiveness.

In addition, we find that although LAME [5] never
tunes the parameters of the model, it is still a competi-
tive baseline for example it achieves the second-best result
on CIFAR100→CIFAR100-C. However, its performance is
very dependent on the performance of the pre-trained model
e.g. negligible improvement on difficult corruptions (shot,
gaussian, pixelate). On the contrary, our RoTTA is more
flexible and achieves better and more robust results.

Generalization under domain shift. We also evalu-
ate RoTTA under a more challenging dataset DomainNet,
where we continually adapt a source pre-trained model to
correlatively sampled test streams of the rest domains. As
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Table 2. Average classification error of the task CIFAR10 → CIFAR10-C while continually adapting to different corruptions at the highest
severity 5 with correlatively sampled test stream under the proposed setup PTTA.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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lse Avg.

Source 34.8 25.1 26.0 65.7 46.9 46.7 42.0 9.3 41.3 26.6 54.3 72.3 58.5 30.3 72.9 43.5
BN [53] 73.2 73.4 72.7 77.2 73.7 72.5 72.9 71.0 74.1 77.7 80.0 76.9 75.5 78.3 79.0 75.2
PL [39] 73.9 75.0 75.6 81.0 79.9 80.6 82.0 83.2 85.3 87.3 88.3 87.5 87.5 87.5 88.2 82.9
TENT [70] 74.3 77.4 80.1 86.2 86.7 87.3 87.9 87.4 88.2 89.0 89.2 89.0 88.3 89.7 89.2 86.0
LAME [5] 29.5 19.0 20.3 65.3 42.4 43.4 36.8 5.4 37.2 18.6 51.2 73.2 57.0 22.6 71.3 39.5
CoTTA [73] 77.1 80.6 83.1 84.4 83.9 84.2 83.1 82.6 84.4 84.2 84.5 84.6 82.7 83.8 84.9 83.2
NOTE [19] 18.0 22.1 20.6 35.6 26.9 13.6 26.5 17.3 27.2 37.0 48.3 38.8 42.6 41.9 49.7 31.1
RoTTA 18.1 21.3 18.8 33.6 23.6 16.5 15.1 11.2 21.9 30.7 39.6 26.8 33.7 27.8 39.5 25.2(+5.9)

Table 3. Average classification error of the task CIFAR100 → CIFAR100-C while continually adapting to different corruptions at the
highest severity 5 with correlatively sampled test stream under the proposed setup PTTA.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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lse Avg.

Source 30.8 39.5 50.3 68.0 29.3 55.1 28.8 29.5 45.8 37.2 54.1 73.0 74.7 41.2 39.4 46.4
BN [53] 48.5 54.0 58.9 56.2 46.4 48.0 47.0 45.4 52.9 53.4 57.1 58.2 51.7 57.1 58.8 52.9
PL [39] 50.6 62.1 73.9 87.8 90.8 96.0 94.8 96.4 97.4 97.2 97.4 97.4 97.3 97.4 97.4 88.9
TENT [70] 53.3 77.6 93.0 96.5 96.7 97.5 97.1 97.5 97.3 97.2 97.1 97.7 97.6 98.0 98.3 92.8
LAME [5] 22.4 30.4 43.9 66.3 21.3 51.7 20.6 21.8 39.6 28.0 48.7 72.8 74.6 33.1 32.3 40.5
CoTTA [73] 49.2 52.7 56.8 53.0 48.7 51.7 49.4 48.7 52.5 52.2 54.3 54.9 49.6 53.4 56.2 52.2
NOTE [19] 45.7 53.0 58.2 65.6 54.2 52.0 59.8 63.5 74.8 91.8 98.1 98.3 96.8 97.0 98.2 73.8
RoTTA 31.8 36.7 40.9 42.1 30.0 33.6 27.9 25.4 32.3 34.0 38.8 38.7 31.3 38.0 42.9 35.0(+5.5)

Table 4. Average classification error of DomainNet while continually adapting to different domains with correlatively sampled test stream.
Time t −−−−−−−−−−−−−−−−−−→ Time t −−−−−−−−−−−−−−−−−−→ Time t −−−−−−−−−−−−−−−−−−→ Time t −−−−−−−−−−−−−−−−−−→

Source clp inf pnt qdr rel skt Avg. BN clp inf pnt qdr rel skt Avg. PL clp inf pnt qdr rel skt Avg. TENT clp inf pnt qdr rel skt Avg.
clp N/A 83.9 65.4 88.6 48.0 59.1 69.0 clp N/A 88.6 70.7 90.5 65.4 67.0 76.5 clp N/A 94.5 98.9 99.5 99.7 99.7 98.5 clp N/A 87.5 71.9 94.2 96.2 98.9 89.7
inf 61.8 N/A 66.9 96.0 50.0 70.6 69.1 inf 68.6 N/A 74.2 96.2 69.9 76.8 77.1 inf 82.6 N/A 99.2 99.6 99.7 99.3 96.1 inf 68.6 N/A 75.0 97.3 95.9 98.7 87.1
pnt 56.5 83.7 N/A 94.2 42.6 63.4 68.1 pnt 60.8 87.9 N/A 94.3 62.3 68.7 74.8 pnt 78.6 99.4 N/A 99.7 99.6 99.7 95.4 pnt 61.7 87.1 N/A 96.4 95.3 98.8 87.8
qdr 89.2 99.0 98.6 N/A 95.0 92.3 94.8 qdr 80.3 97.7 92.6 N/A 88.7 88.1 89.5 qdr 81.7 99.5 99.6 N/A 99.7 99.8 96.1 qdr 78.9 97.1 91.6 N/A 89.2 88.7 89.1
rel 49.4 80.4 51.5 93.4 N/A 63.3 67.6 rel 57.9 87.1 63.1 94.3 N/A 70.8 74.6 rel 73.5 99.4 99.2 99.6 N/A 99.7 94.3 rel 57.8 86.4 68.1 96.9 N/A 96.7 81.2
skt 47.5 88.2 62.9 87.1 51.8 N/A 67.5 skt 50.4 87.6 64.6 89.6 63.1 N/A 71.1 skt 64.8 99.2 99.4 99.7 99.7 N/A 92.6 skt 51.9 87.2 69.1 95.3 97.3 N/A 80.1

Avg. 60.9 87.0 69.1 91.9 57.5 69.7 72.7 Avg. 63.6 89.8 73.0 93.0 69.9 74.3 77.3 Avg. 76.2 98.4 99.3 99.6 99.7 99.6 95.5 Avg. 63.8 89.0 75.1 96.0 94.8 96.4 85.8
Time t −−−−−−−−−−−−−−−−−−→ Time t −−−−−−−−−−−−−−−−−−→ Time t −−−−−−−−−−−−−−−−−−→ Time t −−−−−−−−−−−−−−−−−−→

LAME clp inf pnt qdr rel skt Avg. COTTA clp inf pnt qdr rel skt Avg. NOTE clp inf pnt qdr rel skt Avg. RoTTA clp inf pnt qdr rel skt Avg.
clp N/A 82.2 64.5 87.7 46.9 58.9 68.0 clp N/A 90.6 77.9 89.3 76.3 72.7 81.4 clp N/A 89.2 73.0 94.8 98.4 99.4 91.0 clp N/A 85.5 62.0 82.0 49.3 59.8 67.7
inf 60.1 N/A 65.7 95.4 48.5 69.4 67.8 inf 74.5 N/A 82.0 95.7 80.2 81.5 82.8 inf 75.4 N/A 78.7 98.7 98.1 99.5 90.1 inf 61.8 N/A 63.7 91.5 52.5 67.6 67.4
pnt 55.8 81.5 N/A 93.3 41.3 62.1 66.8 pnt 66.3 89.8 N/A 93.4 74.0 75.4 79.8 pnt 64.7 89.8 N/A 97.8 98.4 99.2 90.0 pnt 53.3 84.1 N/A 89.1 47.3 61.4 67.0
qdr 88.3 99.1 99.0 N/A 94.9 92.2 94.7 qdr 82.3 98.2 94.6 N/A 92.5 90.1 91.5 qdr 74.7 97.2 92.2 N/A 93.5 99.6 91.4 qdr 77.5 97.0 89.8 N/A 80.3 82.2 85.3
rel 48.0 79.3 50.1 91.6 N/A 60.2 65.8 rel 64.0 90.3 73.2 93.5 N/A 77.6 79.7 rel 61.3 89.2 68.9 98.8 N/A 99.2 83.5 rel 49.1 82.3 50.3 88.0 N/A 61.1 66.2
skt 45.6 87.1 59.5 83.9 49.9 N/A 65.2 skt 56.1 89.2 71.9 89.2 73.5 N/A 76.0 skt 55.2 89.7 70.1 96.9 98.3 N/A 82.0 skt 42.6 83.7 54.4 80.9 47.5 N/A 61.8

Avg. 59.6 85.8 67.8 90.4 56.3 68.6 71.4 Avg. 68.6 91.6 79.9 92.2 79.3 79.5 81.9 Avg. 66.3 91.0 76.6 97.4 97.3 99.4 88.0 Avg. 56.8 86.5 64.0 86.3 55.4 66.4 69.2(+2.2)

shown in Table 4, consistent with the previous analysis,
most of the methods include BN [53], PL [39], TENT [70],
CoTTA [73] and NOTE [19] even perform worse than the
Source model (−4.6 ∼ −22.8%). RoTTA consistently
achieves the best performance and has 2.2% gain than the
second method LAME [5], demonstrating RoTTA’s effec-
tiveness again.

4.3. Ablation Study

Effect of each component. To further investigate the effi-
cacy of each component, we replace each part with the nor-
mally used solutions to obtain three variants: (1) RoTTA
w/o RBN, replace RBN with test-time BN in TENT [70];
(2) RoTTA w/o CSTU, directly adapt the model on test
stream; (3) RoTTA w/o robust training (RT), directly adapt
the model only with entropy minimization. As shown in
Table 5, we can observe that significant performance degra-

dation occurs for all variants, proving that every part of
our proposed method is valid for PTTA. Take one com-
ponent for a detailed example, without RBN robustly nor-
malizing feature maps, the performance of RoTTA drops
50.2% and 16.3% on CIFAR10-C and CIFAR100-C respec-
tively, proving that RBN is robust enough to tackle the prob-
lem of normalization of correlatively sampled data streams.
CSTU enables RoTTA to adapt to a more stable distribu-
tion by maintaining a timely and confident snapshot of the
test distribution. Meanwhile, robust training with timeliness
greatly reduces the accumulation of errors. Every compo-
nent behaves significantly to enable effective adaptation un-
der PTTA.

Effect of the distribution changing order. To exclude the
effect of a fixed order of distribution changing, we con-
ducted experiments on ten different sequences of changes
on CIFAR10-C and CIFAR100-C with independently and
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(d) Batch size.
Figure 4. (a) & (b) we adapt the model continually to different corruptions of 10 different orders with independently and correlatively
sampled test streams on CIFAR10-C and CFAR100-C respectively and report their average classification error. (c) & (d) we verify the
effect of δ and batch size to different methods on CIFAR100-C respectively.

Table 5. Classification error of different variants of our RoTTA.

Variant CIFAR10-C CIFAR100-C Avg.
RoTTA w/o RBN 75.4 51.3 63.4
RoTTA w/o CSTU 47.1 46.3 46.7
RoTTA w/o RT 78.2 95.0 81.6
RoTTA 25.2 35.0 30.1

correlatively sampled test streams respectively. As shown
in Figure 4a and 4b, no matter what kind of setup, RoTTA
can achieve excellent results. The detailed results on the
correlatively sampled test streams are shown in Table 6,
RoTTA achieves 4.3% and 4.7% progress on CIFAR10-
C and CIFAR100-C respectively. This shows that RoTTA
can adapt the model robustly and effectively in long-term
scenarios where distribution continually changes and test
streams are sampled either independently or correlatively,
making it a good choice for model deployment.

Effect of Dirichlet concentration parameter δ. We vary
the value of δ on CIFAR100-C and compare RoTTA with
other approaches in Figure 4c. As the value of δ increases,
the performance of BN [53], PL [39], TENT [70] and
CoTTA [73] drops quickly, because they never consider
the increasing correlation among test samples. NOTE [19]
is stable to correlatively sampled test streams but does
not consider the distribution changing, causing ineffective
adaptation. Meanwhile, the higher correlation between test
samples will make the propagation of labels more accurate,
which is why the result of LAME [5] slightly improves. Fi-
nally, excellent and stable results once again prove the sta-
bility and effectiveness of RoTTA.

Effect of batch size. In real scenarios, considering deploy-
ment environments may use different test batch sizes, we
conduct experiments with different values of test batch sizes
and results are shown in Figure 4d. For a fair comparison,
we control the frequency of updating the model of RoTTA
so that the number of samples involved in back-propagation
is the same. As the batch size increases, we can see that all
of the compared methods have a significant improvement
except for lame which has a slight decrease. This is be-
cause the number of categories in a batch increases with the

Table 6. Average classification error of tasks CIFAR10 →
CIFAR10-C and CIFAR100 → CIFAR100-C while continually
adapting to different corruptions of 10 different orders at the high-
est severity 5 with correlatively sampled test stream.

Method CIFAR10-C CIFAR100-C Avg.
Source 43.5 46.4 46.9
BN [53] 75.2 52.9 64.1
PL [39] 75.2 52.9 60.1
TENT [70] 82.3 93.2 87.8
LAME [5] 39.5 40.6 40.1
NOTE [19] 30.5 76.1 53.3
CoTTA [73] 83.1 52.8 67.9
RoTTA 26.2(+4.3) 35.9(+4.7) 31.1(+9.0)

increasing batch size, causing the overall correlation to be-
come lower but the propagation of labels to become more
difficult. Most significantly, RoTTA achieves the best re-
sults across different batch sizes, demonstrating its robust-
ness in dynamic scenarios once again.

5. Conclusion
This work proposes a more realistic TTA setting where

distribution changing and correlative sampling occur si-
multaneously at the test phase, namely Practical Test-Time
Adaptation (PTTA). To tackle the problems of PTTA, we
propose Robust Test-Time Adaptation (RoTTA) method
against the complex data stream. More specifically, a group
of robust statistics for the normalization of feature maps
is estimated by robust batch normalization. Meanwhile, a
memory bank is adopted to capture a snapshot of the test
distribution by category-balanced sampling with consider-
ing timeliness and uncertainty. Further, we develop a time-
aware reweighting strategy with a teacher-student model to
stabilize the adaptation process. Extensive experiments and
ablation studies are conducted to verify the robustness and
effectiveness of the proposed method. We believe this work
will pave the way for thinking about adapting models into
real-world applications by test-time adaptation algorithm.
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