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Abstract

Multi-camera 3D object detection blossoms in recent
years and most of state-of-the-art methods are built up on
the bird’s-eye-view (BEV) representations. Albeit remark-
able performance, these works suffer from low efficiency.
Typically, knowledge distillation can be used for model
compression. However, due to unclear 3D geometry reason-
ing, expert features usually contain some noisy and confus-
ing areas. In this work, we investigate on how to distill the
knowledge from an imperfect expert. We propose FD3D, a
Focal Distiller for 3D object detection. Specifically, a set of
queries are leveraged to locate the instance-level areas for
masked feature generation, to intensify feature representa-
tion ability in these areas. Moreover, these queries search
out the representative fine-grained positions for refined dis-
tillation. We verify the effectiveness of our method by ap-
plying it to two popular detection models, BEVFormer and
DETR3D. The results demonstrate that our method achieves
improvements of 4.07 and 3.17 points respectively in terms
of NDS metric on nuScenes benchmark. Code is hosted
at https://github.com/OpenPerceptionX/
BEVPerception-Survey-Recipe.

1. Introduction

Accurate 3D object detection is a vital component in au-
tonomous driving. To achieve this, most methods [14, 37]
resort to LiDAR sensors and dominate the public bench-
marks [1, 27]. Despite the performance gap, pure vision
approaches are still worthy of in-depth inquiry, since cam-
eras can provide rich semantic information and are low-cost
and easy-to-deploy. Among these, bird’s-eye-view (BEV)
detection has drawn extensive attention from both industry
and academia, and shown great potential to narrow down
the performance gap [15, 21]. However, such models tend
to be computationally consuming.
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Figure 1. Illustration of the proposed generative and focal distilla-
tion method. Compared with others, the proposed manner in 1 (d)
leverages queries to generate instance masks for masked genera-
tive distillation, rather than random masks in 1 (c). Moreover, the
queries meanwhile search for the representative position to per-
form refined distillation, where the distillation region selection is
more fine-grained and flexible than 1 (b).

In common practice, knowledge distillation can com-
press the model and is usually applied to alleviate com-
putation overhead. One possible solution is to utilize the
LiDAR-based model as the expert [4, 17], but this requires
complex spatial-temporal calibrations and also needs to
handle heterogeneous problems from different modalities.
An intuitive question is, can we distill these models solely
based on camera sensors? In this work, we intend to ad-
dress this problem and focus on the camera-only distillation
setting. To the best of our knowledge, our work is the first
solution tailored for this setting.

Distillation methods in 2D object detection have derived
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Figure 2. Visualization of the predicted bounding boxes and bird’s
eye view feature of BEVFormer [19]. At the center is the au-
tonomous vehicle. In the left subfigure, green and blue boxes de-
note the ground truth and predictions respectively. In the right sub-
figure, the BEV feature is ray-shaped and contains a lot of noise.
Areas with incorrect high activation appear behind objects due to
occlusion, which easily introduces false positives, e.g., the region
circled by the ellipse.

various types as depicted in Fig. 1 (a)-(c), but their effec-
tiveness is not verified in 3D object detection. The main
challenge in camera-to-camera distillation for 3D object de-
tection comes from the imperfect expert features. Due to
the lack of accurate 3D information, expert features drawn
from 2D images usually contain some noisy and confusing
areas. To better illustrate this point, we visualize the BEV
features from BEVFormer [19] in Fig. 2. The unclear oc-
clusion reasoning makes the BEV features suffer from the
ray-shape artifacts. The imperfect BEV features result in
many false positives. Directly mimicking these features
from experts such as Fig. 1 (a) may exacerbate the draw-
back. Some 2D detection distillation methods [29] propose
to focus on foreground-orient regions, as shown in Fig. 1
(b). However, background regions are also important as
proved in [7, 35, 13]. We categorize these methods as at-
tentive distillation. Compared with 2D object detection, the
imbalance between foreground and background in 3D ar-
eas is much more severe. Balancing these weights is not a
general solution. The latest study MGD [36] demonstrates
the effectiveness of masked image modeling (MIM) distil-
lation as depicted in Fig. 1 (c). However, the global random
mask cannot greatly enhance 3D object detection, which is
validated in Tab. 4a.

To this end, we propose a Focal Distiller for 3D ob-
ject detection, shortened as FD3D. The schematic diagram
of FD3D is shown in Fig. 1 (d). Specifically, A set of
queries are leveraged to locate the instance-level focal re-
gions, masked generative distillation is performed within
the regions. Moreover, these queries dynamically search
fine-grained representative positions for focal distillation.
Two complementary modules guide the apprentice network
to generate enhanced feature representation on focal re-
gions. In summary, our work makes three-fold contribu-
tions:

1. To the best of our knowledge, this is the first work to
explore knowledge distillation on the camera-only 3D
object detection. We reveal the challenge relies on how
to distill focal knowledge from an imperfect 3D object
detector expert.

2. We propose FD3D, which utilizes a set of queries to
distill focal knowledge. With these queries, coarse-
grained focal regions are selected for masked gener-
ation, and fine-grained focal regions are searched out
for instance-oriented refinement distillation.

3. FD3D serves as a plug-and-play module. It can be eas-
ily extended to various detectors. The improvements
with 4.07 and 3.17 NDS can be obtained with FD3D
assembled in BEVFormer and DETR3D, respectively.

2. Related Work

Knowledge distillation on 2D object detection. Knowl-
edge distillation is originally proposed by Hinton et al. [9].
It regards teachers’ output logits as knowledge and is em-
ployed as a model compression approach in the classifica-
tion task. FitNet [26] extends the knowledge to intermediate
features. Recently, many works successfully apply knowl-
edge distillation on object detection [3]. Knowledge dis-
tillation on object detection encounters extreme imbalance
between positive and negative instances. Global feature im-
itation [29] such as Fig. 1 (a) brings marginal improvement,
and even exacerbates the performance. It is almost a con-
sensus that distillation should not treat all regions equally.
Revisiting from the latest works, where to perform distil-
lation is of great concern in distilling object detectors, and
they invariably resort to attentive distillation as depicted in
Fig. 1 (b). Mimic [16] performs distillation on ROI regions
sampled by an RPN network, but this framework can only
be applied to a two-stage detector. FIFG [29] claims the dis-
tillation should be performed on near-object regions. How-
ever, the near-object regions are defined by hand-crafted
rules and require manual refinement. GID [6] focuses on
regions where there is a significant difference between the
student and the teacher outputs. DeFeat [7] separates fore-
ground and background by ground truth and performs dis-
tillation independently. GID [6] and DeFeat [7] prove that
the informative cues in the background also benefit the stu-
dent network. FGD [35] designs a more elaborate structure
to focus on critical pixels and channels. Albeit the effec-
tiveness of the aforementioned studies, they require man-
ual hyper-parameter tuning to adjust the concentration of
distillation. ICD [13] encodes the instance annotations as
queries, and attention maps are generated to guide the dis-
tillation region concentration. We deem such a query-based
approach is more flexible. MGD [36] proposes a simple but
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Figure 3. We present FD3D, a Focal Distiller for 3D object detection. The framework aims to transfer the dark knowledge of the focal
region from the expert network to the compact apprentice network, where the feature distillation is performed on both perspective view
(PV) and bird’s-eye-view (BEV). We employ aligned BEV queries. With these queries, the instance masks in PV and BEV are generated,
and masked generative distillation is performed within the mask region to enhance the feature representation. Moreover, these queries
meanwhile leverage deformable attention mechanism to search out the representative features on focal BEV regions. The representative
features are utilized for refined distillation.

effective distillation paradigm as shown in Fig. 1 (c): the
student features are randomly masked and then recovered
to mimic teacher features.

Multi-camera 3D Object Detection. Early studies [22, 30]
independently process monocular images from multiple
views, and aggregate the results across cameras for post-
processing. FCOS3D [30] extends the popular anchor-
free detector FCOS [28] by directly predicting 3D bound-
ing boxes from 2D image features. Recent studies tend
to predict object location in 3D space. One branch of re-
searchers converts 2D image features to 3D space through
depth estimation. The typical approach is to convert the
estimated depth map into pseudo-LiDAR [31]. Lift-Splat-
Shoot (LSS) [23] estimates the depth distribution of each
image pixel and uses voxel pooling to generate BEV fea-
tures. Its follow-up studies BEVDet [11], BEVDet4D [10],
BEVDepth [18] further explore data augmentation, accel-
erating voxel pooling module and improving depth estima-
tion accuracy. Another branch of studies indexes 2D image
feature to 3D space through the camera extrinsic and intrin-
sic. Following DETR [2], DETR3D [32] defines a set of
3D object queries and samples 2D image features on the
queries’ projection points to predict 3D bounding boxes.
BEVFormer [19] explicitly defines queries in BEV space,
and performs 2D-to-3D transformation with deformable at-
tention to generate the BEV feature for downstream tasks.
PolarFormer [12] adopts polar coordinate system for more
accurate BEV feature construction. These state-of-the-art
models suffer from high computation overhead. It is natu-

ral to consider applying knowledge distillation to compress
the model. However, regardless of the view transform ap-
proaches, the 2D-to-3D transformation is ill-posed, so the
vision-based 3D object detector experts cannot provide a
reliable feature for imitation.

LiDAR-based knowledge distillation. In 3D object detec-
tion, there are existing studies covering knowledge distilla-
tion under LiDAR [33, 34] and extending to LiDAR-camera
cross-modality knowledge transfer. Monodistill [4] projects
the LiDAR points to the image plane, aligning two modali-
ties for knowledge transfer. UVTR [17] represents the im-
age and LiDAR in a unified voxel space, and the feature
distillation is performed on the query projection points. To
exclude the heterogeneous problems from different modali-
ties and focus on the exploration of distillation from an im-
perfect expect, the extent of this study is set at camera-only
distillation.

3. Methodology
Fig. 3 illustrates the pipeline of our distillation approach.

The overall structure of FD3D is presented in Sec. 3.1. The
two proposed distillation modules are elaborated in Sec. 3.2
and Sec. 3.3.

3.1. Overall Structure

The state-of-the-art multi-camera 3D object detection
networks suffer from high computation overhead. This
shortcoming mainly originates from the heavy network ar-
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Method Backbone Image
Resolution

BEV
Resolution

Encoder
Layer

BEVFormer
-Base* (E) R101 900×1600 200×200 6

BEVFormer
-Tiny (A) R50 450×800 100×100 3

BEVFormer
-Base (E) R101-DCN† 900×1600 200×200 6

BEVFormer
-Small (A) R101-DCN† 450×800 100×100 3

DETR3D
-R101 (E) R101-DCN† 900×1600 - -

DETR3D
-R50 (A) R50 900×1600 - -

Table 1. The setting of expert-apprentice pairs. The symbol
“E” and “A” denote “expert” and “apprentice” respectively. By
settng different network depth, input resolution or BEV resolu-
tion, we obtain expert-apprentice pairs. * represents this version
of BEVFormer-Base apply ResNet101 as backbone rather than
ResNet101-DCN, which is different from the original version [19].
† indicates using nuScene pretrained weight with FCOS3D [30].
Unless otherwise specified, the backbone is pretrained on Ima-
geNet only.

chitecture and high input resolution. By compressing the
network depth or input resolution, we obtain more com-
pact networks. However, the lightweight networks in-
evitably suffer from accuracy attenuation. Therefore, we
employ the heavy state-of-the-art model as the expert, adopt
the lightweight counterpart as the apprentice, and perform
knowledge transfer between them. We freeze the expert net-
work, and leverage the intermediate features of the expert
network as auxiliary supervision for the apprentice network.
The setting of adopted expert-apprentice pairs is depicted in
Tab. 1. Their GLOPS and FPS are presented at Tab. 2.

As depicted in Fig. 3, a distillation framework between
the expert network and the apprentice network is con-
structed. For the BEV perception model, the distillation
is performed on both the perspective view (PV) and BEV
features. We set up an extra distillation head and employ
a set of aligned BEV queries Q for distillation. The struc-
ture of the distillation head is similar to the head of De-
formable DETR [39]. Based on the deformable attention
mechanism, N queries sample key features from BEV fea-
tures and generate 3D bounding boxes. The generated 3D
bounding boxes are projected into PV and BEV. The projec-
tion areas are used for masked generative distillation, and
the sampled BEV features in the deformable attention pro-
cess are adopted for refined distillation. In order to urge the
projection areas locate at the foreground area and the sam-
pled BEV features come from the object region, the distilla-
tion head is also optimized with auxiliary detection losses.

The distillation head is built upon the expert BEV fea-
tures. The distillation queries go through a self-attention

layer, and then sample expert BEV feature FE to generate
yE through a deformable attention (DEFORMATTN) layer
and a feed-forward network (FFN ). The latter process is
formulated as:

yE = FFN (DEFORMATTN(Q,FE)), (1)

where yE = {[cE1 , bE1 ], [cE2 , bE2 ], . . . , [cEN , bEN ]}, and cEi , bEi
represent classification score and regression bounding box
corresponding to i-th distillation query. Based on bipartite
matching approach in [2], we search for the optimal per-
mutations σ̂ and optimize the distillation head by Ldh as
follows:⎧⎨⎩σ̂ = argmin

σ∈SN

∑N
i αLcls(c

E
σ(i), c

gt
i ) + βLbbox(b

E
σ(i), b

gt
i ),

Ldh =
∑N

i αLcls(c
E
σ̂(i), c

gt
i ) + βLbbox(b

E
σ̂(i), b

gt
i ),

(2)
where Lcls and Lbbox take the same form as FocalLoss [20]
and L1 loss respectively, bgt and cgt represent ground truth
boxes coordinates and classes, and α as well as β balance
the loss weight.

During the optimization process of the distillation head,
the queries with a confidence higher than ρc and GIOU
greater than ρb are filtered out as focal queries, termed as
Qf . The number of Qf is denoted as Nf . Finally, the gen-
erated 3D boxes and sampled BEV features corresponding
to the focal queries Qf are selected to perform masked gen-
erative distillation and refined distillation.

3.2. Selective Masked Generative Distillation

The generated 3D boxes by focal queries Qf are pro-
jected to PV and BEV. The 3D boxes are projected to PV
according to the camera extrinsics and intrinsics, and sim-
ply flattened to BEV from the top-down view. The masking
process described below is the same for both PV and BEV,
so we describe the process without distinction between PV
and BEV.

An instance mask Ifgi is generated with the projection
area corresponding to one focal query Qf

i . The dimension
of the instance mask is identical to that of the apprentice
feature. If a pixel is inside the bounding box bEi , the value is
set to be 0, otherwise its value is set to be 1. The formulation
of Ifgi is described as follows:

Ifgi,uv =

{
0, if (u, v) in bEi
1, Otherwise

. (3)

All instance masks are merged together to form the final
mask Ifg . The process of mask stacking is formulated as
follows:

Ifg = Ifg0 ∧ Ifg1 ∧ · · · ∧ IfgN−1. (4)

The masked region indicates where the objects reside in,
and the masked generation is performed within the masked
region.

995



The selective mask indicates that the pixels of apprentice
feature within Ifg are masked by ratio r. A random mask
Ir with the same size of Ifg is generated:

Iruv =

{
0, if Ru,v < r

1, Otherwise
, (5)

where Ru,v is a uniformly random number between 0 and
1. The process of the selective mask is expressed as an OR
operation between Ifg and Ir:

Im = Ifg ∨ Ir. (6)

Then the apprentice feature FA is masked with Im. The
masked apprentice feature is forced to recover with a gen-
erator G:

F̂A = G(FA · Im). (7)

The generator G here includes two convolutional layers, the
first one of which switches to a deconvolutional layer if the
dimensions of the apprentice feature and expert feature are
not identical. After generating F̂A, the channel-wise distri-
bution [25] is calculated as follows:

LSMGD =
τ2

C

C∑
c=1

H×W∑
i=1

ϕ(FE
c,i) log

ϕ(FE
c,i)

ϕ(F̂A
c,i)

, (8)

ϕ(Fc,i) =
exp(

Fc,i

τ )∑H×W
i=1 exp(

Fc,i

τ )
, (9)

where τ is the temperature factor of the SoftMax layer, C
means the feature channels, and H , W represent feature
height and width respectively.

3.3. Query-based Focal Distillation

Focal distillation denotes the refined distillation focusing
on the local feature pattern of focal positions. We aim to
leverage a set of queries to automatically search out the rep-
resentative positions of objects, and perform distillation on
the identical positions between expert features and appren-
tice features. We resort to the deformable attention module
to achieve the goal. The deformable attention module gen-
erates a set of offsets around a reference point. Based on
the offsets to the reference point, the features on the cru-
tial sampling points are sampled for object detection. We
exploit this mechanism to conduct a refined distillation on
such representative features as illustrated in Fig. 4.

A set of focal queries Qf are filtered out as described
in Sec. 3.1. For each focal query q ∈ Qf , the reference
point pq is generated by the query feature zq with a linear
projection MLP:

pq = MLP(zq). (10)

The reference point pq represents the projection center of
the estimated bounding box on the sampling feature plane.

Self-attention

Deformable-

attention

Expert feature ( )

Apprentice feature ( ) Distillation queries

Normalized

L2 loss

Figure 4. Process of query-based offset generation, feature sam-
pling and query parameter update. Leveraging the deformable at-
tention mechanism, the local expert feature and apprentice feature
are sampled at the same position, based on the offset generated
by the query. In addition, the query parameter is updated with the
collected expert feature.

For each focal query q, M attention heads are attached
on zq . Each attention head generates K sampling offsets by
another linear projection MLP ′. The offset is computed by
the following:

Δpmqk = MLP ′(zq,m, k), (11)

where m indexes the attention head, and k represents the
sampling point.

The positions searched by the generated offsets are
viewed as key representative positions. The query-based
focal distillation is conducted on such key representative
positions. Let FE

mqk, FA
mqk represent the sampled fea-

tures from the identical key positions for expert and appren-
tice,respectively. They are calculated as follows:

FE
mqk = FE(pq +Δpmqk), (12)

FA
mqk = FA(pq +Δpmqk). (13)

The sampled expert feature and apprentice feature are nor-
malized to F̃T

mqk and F̃S
mqk according to their maximum and

minimum. Finally, the L2 loss is computed between the nor-
malized key sampled features:

LQFD =
1

Nf

∑
q∈Qf

M∑
m=1

K∑
k=1

L2(F̃
A
mqk, F̃

E
mqk). (14)

Through the loss for the fine-grained local region, the re-
fined distillation on these representative positions is con-
ducted. Query-based focal distillation aims to optimize the
local patterns on the instances’ representative positions.

3.4. Overall Distillation Loss

Besides being supervised by ground truth, the intermedi-
ate feature of the apprentice detector is also supervised by
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the masked generative distillation loss LSMGD and query-
based focal distillation loss LQFD. The total knowledge
distillation loss is defined as follows:

LKD = λLSMGD + ηLQFD. (15)

LSMGD is used to optimize the global feature distribution,
indicating where should be with high activation. LQFD

is leveraged for optimizing the local feature pattern on
searched focal positions. The hyper-parameters λ and η
control the loss weight.

Note that only the gradients w.r.t. the vanilla detection
loss and the distillation loss LKD back-propagate to the ap-
prentice network. Ldh only optimizes the parameters of the
distillation head.

4. Experiments
4.1. Dataset and metrics

We conduct experiments on nuScenes dataset [1], a
large-scale autonomous driving dataset. This dataset con-
tains 700, 150, 150 scenes for training, validation and test-
ing, respectively. Each scene has roughly 20 seconds of
duration. The key frame is annotated at 2 Hz.

The two dominant metrics of the nuScenes detection task
are nuScenes Detection Score (NDS) and mean Average
Precision (mAP). The mAP of nuScenes is computed by the
center distance between predictions and annotations on the
ground plane. In addition, the nuScenes dataset defines five
true positive metrics mATE, mASE, mAOE, mAVE, mAAE
for measuring translation, scale, orientation, velocity and
attribute, respectively. NDS of nuScenes is a weighted
sum of mAP and the five true positive metrics, defined as
NDS = 1

10 [5mAP +
∑

mTP (1−min(1,mTP ))].

4.2. Implementation Details

We conduct experiments on BEVFormer [19] and
DETR3D [32]. Settings of expert-apprentice pairs are illus-
trated in Tab. 1. We obtain three groups of expert-apprentice
combinations by changing the backbone, input image reso-
lution and BEV grip resolution. ResNet [8] with or with-
out deformable convolution [38] are used for all backbones.
When applied to BEV perception model BEVFormer, the
selective masked generation is performed on both the PV
feature and BEV feature, and query-based focal distilla-
tion is performed on the BEV feature, while both selective
masked generative distillation and query-based focal distil-
lation are performed on PV feature when it comes to the
BEV-free perception model DETR3D. We also conduct the
experiment on BEVDepth in supplementary materials.

The codebase is developed upon MMDetection3D [5].
All models are trained on 8 NVIDIA A100 GPUs. For
BEVFormer and DETR3D, the models are trained for 24
epochs with an initial learning rate of 2e-4 and per-GPU

batch size of 1. No data augmentation is introduced when
training BEVFormer and DETR3D. Feature pyramid posi-
tion shift [24] is adopted for PV feature alignment between
low-resolution apprentice and high-resolution expert. The
hyperparameters r, τ , α, β, λ, η are set to be 0.5, 2.0, 2.0,
0.25, 0.25 and 0.001, respectively.

4.3. Comparison to State-of-the-arts

As depicted in Tab. 2, the proposed distillation
method brings significant improvement on BEVFormer-
Tiny, BEVFormer-Small and DETR3D by 4.07, 2.47 and
3.17 NDS, respectively. The gain comes mainly from
the improved mAP and velocity estimation accuracy. The
devised method brings 4.13 points to BEVFormer-Tiny
and 3.08 points to BEVFormer-Small in terms of mAP,
which demonstrates the enhancement of localization and
classification. The proposed approach also achieves im-
provements of 4.97 points to BEVFormer-Tiny and 8.21
points to DETR3D-R50 in terms of mAVE. In regard to
the classic distillation methods on the 2D field, regard-
less of BEVFormer-Tiny or DETR3D-R50, FitNet obtains
marginal improvement, yet CWD achieves larger gains.
MGD with the global random mask cannot outperform
CWD, indicating that random masked generative distilla-
tion in 3D detection scenes is not as powerful as that in
2D scenes. The proposed FD3D outperforms all classic
distillation methods on the 2D field by an obvious margin.
The comparison reveals that the devised fine-grained distil-
lation on focal regions truly improves the distillation qual-
ity. In the supplementary materials, we conduct further ex-
periments to validate the efficacy of FD3D on another BEV
perception model BEVDepth. It can be observed that FD3D
leads to improved performance on BEVDepth. These find-
ings demonstrate the generalizability of the proposed dis-
tillation method across various 3D object detectors. More-
over, we also present the gains achieved by FD3D on the
nuScenes test set, which are consistent with the effects ob-
served on the nuScenes val set.

4.4. Ablative Study

Contribution of each module. For a better understand-
ing of the contribution of each proposed module to the
distillation performance, we test each component indepen-
dently on group BEVFormer Base-Tiny and report the cor-
responding accuracy in Tab. 3. The channel-wise distribu-
tion (CWD) is adopted as a baseline distillation method and
obtains 41.80 NDS. When compared to this baseline, the
selective masked generation can achieve an additional 1.07
NDS improvement, revealing that such technique can en-
hance feature learning on focal regions. Query-based focal
distillation yields an extra 0.95 NDS gain over the baseline,
thereby highlighting the significance of the refined distilla-
tion on the fine-grained position. With the two proposed
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Method NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ GFLOPs↓ FPS↑
BEVFormer-Base* (E) 47.37 36.44 73.51 28.14 44.98 42.38 19.50 1845.36 2.0
BEVFormer-Tiny (A) 39.02 26.87 83.43 29.48 59.73 50.03 21.49

+ FitNet [26] 40.57 28.26 81.52 28.96 52.96 51.32 20.84
+ CWD [25] 41.80 29.79 80.81 28.55 50.63 49.87 21.21
+ MGD [36] 41.33 29.08 80.19 28.83 52.83 50.00 20.19

+ FD3D (Ours) 43.09 (↑4.07) 31.00 (↑4.13) 79.31 28.00 50.77 45.06 20.97

381.95 7.3

BEVFormer-Base (E) 51.74 41.64 67.26 27.34 37.04 39.41 19.74 1323.41 1.8
BEVFormer-Small (A) 46.26 34.56 74.27 28.00 44.53 43.98 19.41

+ FD3D (Ours) 48.73 (↑2.47) 37.64 (↑3.08) 71.94 27.50 40.89 39.41 21.16
416.46 5.9

DETR3D-R101 (E) 42.5 34.6 77.3 26.8 38.3 84.2 21.6 1016.83 2.5
DETR3D-R50 (A) 35.78 28.85 85.39 27.90 54.09 95.15 23.95

+ FitNet [26] 36.19 29.76 83.90 28.00 56.18 94.53 24.33
+ CWD [25] 37.22 30.13 82.74 27.65 49.40 94.65 23.98
+ MGD [36] 37.03 29.89 83.35 27.79 53.28 92.74 21.98

+ FD3D (Ours) 38.95 (↑3.17) 31.33 (↑2.48) 82.32 27.65 48.40 86.94 21.87

876.94 4.0

Table 2. 3D object detection improvement on nuScenes val set. The results demonstrate that the proposed distillation method benefits
various 3D object detectors and surpasses the classic 2D distillation methods. We also show their efficiency metrics with GFLOPs and
FPS. The FPS is measured on RTX 2080TI.

BEVFormer
Base-Tiny

Component
NDS mAP

CWD SMGD QFD

39.02 26.87
� 41.80 29.79

� 42.87 30.59
� 42.75 30.47

� � 43.09 31.00

Table 3. Contribution by each component. SMGD and QFD
are the proposed two novel modules. SMGD represents selective
masked generative distillation, and QFD indicates query-based fo-
cal distillation. Channel-wise distribution (CWD) is applied as the
baseline distillation method for comparison.

modules applied in conjunction, there is an observed in-
crease in performance of 1.29 NDS, providing evidence of
their efficacy and compatibility.

Mask region selection. As shown in Tab. 4a, variation
in the impact of masked generative distillation across dif-
ferent regions is substantial. Global random mask leads to
worsened results. Mask on foreground regions defined by
the ground truth yields significant gains. Furthermore, ap-
plying masks to the predicted focal regions, as defined by
focal queries, results in further improvement. This is proba-
bly attributed to the selection of focal queries, which effec-
tively filter out regions with high confidence while exclud-
ing challenging-to-discriminate regions.

Distillation region. The terms ”global distribution” and
”local pattern” refer to two distillation mode focusing on the
global overall activation and the local feature representa-
tion, respectively. And their performances are evaluated in
Tab. 4b. The results demonstrate that distilling with global
distribution alone already yields improvement, and when

focusing on the local pattern of focal regions, a slightly
higher gain is observed. The best performance is achieved
through the combined optimization of them.

Distillation stage. The view transform module takes PV
features as input and generates BEV features. PV features
and BEV features are from different stages of the network.
We explore the difference when global distillation (Fig. 1
(a)) is performed at different stages. The channel-wise dis-
tribution (CWD) is adopted in this ablation study. As shown
in Tab. 4c, separate distillation on PV features obtains an
improvement while separate distillation on BEV features
leads to a deterioration in performance. This is due to the
BEV feature containing a lot of shadow-like artifacts due to
the unclear occlusion. This result demonstrates the neces-
sity of selective distillation under BEV feature.

Feature alignment approach. When the BEV resolu-
tion differs between expert and apprentice, the BEV fea-
ture alignment is needed. There are two choices for align-
ment: upsampling the apprentice feature through a decon-
volutional layer or directly downsampling the expert fea-
ture. We compare the two alignment approaches in Tab. 4d.
Downsampling expert feature provokes inferior results than
upsampling apprentice feature. This is potentially caused
by the fatal information loss of the expert feature.

4.5. Visualization

The feature representation and prediction of the appren-
tice network BEVFormer-tiny with or without our proposed
method are presented in Fig. 5. For PV, the feature acti-
vations from the first FPN layer in front left view, front
right view and back left are displayed. The activation of
many background regions is high without distillation, mak-
ing the foreground and background indistinguishable. With
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Group Distillation Region NDS mAP

BEVFormer
Base-Tiny

directly imitation 41.80 29.79
global random mask 41.14 28.49

mask on GT 42.41 29.85
selective focal mask 42.87 30.59

DETR3D
R101-R50

directly imitation 37.22 30.13
global random mask 37.19 30.03

mask on GT 37.58 30.11
selective focal mask 37.91 29.87

(a) Mask region selection. Global random masked generation exacer-
bates the performance, while the selective masked generation on focal
regions brings a remarkable improvement.

Group Distillation Region NDS mAP

BEVFormer
Base-Tiny

global distribution 41.80 29.79
local pattern 41.91 29.89

global distribution
+ local pattern 42.68 30.30

DETR3D
R101-R50

global distribution 37.43 30.41
local pattern 38.00 30.21

global distribution
+ local pattern 38.72 30.57

(b) Distillation region. Global distribution means the channel-wise dis-
tribution of feature activation, and local pattern represents the feature
values on the fine-grained focal regions. Distillation on both global dis-
tribution and local patterns achieves the best performance.

Group
Distillation Stage

NDS mAP
PV BEV

BEVFormer
Base-Small

46.26 34.56
� 47.06 35.52

� 45.24 33.56
� � 47.60 35.97

(c) Distillation stage. Effect of global channel-wise distribution dis-
tillation (Fig. 1 (a)) on PV or BEV. The result indicates that combined
distillation on PV and BEV achieves the highest improvement. Note
that separate global distillation on BEV feature leads to a deterioration
in performance.

Group Feature Alignment NDS mAP

BEVFormer
Base-Small

downsample 47.47 36.66

deconvolution 48.73 37.50

(d) Feature alignment. Downsampling expert feature gets significantly
worse results than upsampling apprentice feature through a deconvolu-
tional layer.

Table 4. FD3D ablations on nuScenes val set. We show nuScenes detection score (NDS) and mean average precision (mAP) methics (%).
Default settings are marked in gray .
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Figure 5. Visualization of feature activation and the predicted re-
sults before and after knowledge distillation. In comparison with
the feature activation on PV, the foreground and background be-
come clearly distinguishable with distillation. The predictions are
illustrated on BEV, where green and blue boxes denote the ground
truth and predictions respectively. With the devised method, the
prediction accuracy of detection boxes is significantly improved.

the proposed approach, they become clearly distinguish-
able. The PV feature visualization confirms that the distil-
lation makes the backbone of the apprentice network well-

optimized. High-quality 2D image feature extraction is the
basis for BEV feature production and subsequent detection.
In addition, we give a comparison of predicted bounding
boxes in BEV. Through the comparison of the area within
the red dashed box, our approach significantly reduces the
translation error. Though the accuracy of the bounding
boxes is obviously improved, the false positive issues are
still serious after distillation due to the inherent detects in
the 3D object detection model.

5. Conclusion and Future Work
In this work, we apply knowledge distillation to camera-

only 3D object detection, and we reveal that the challenge
lies in how to distill focal knowledge when confronted with
an imperfect expert. We devise FD3D, a flexible query-
based approach that automatically searches the representa-
tive regions and highlights these regions for distillation. It
serves as a plug-and-play module and successfully applies
to various 3D object detectors.

Limitation and future work. The challenge of distilling
knowledge from imperfect experts exists in not only the 3D
object detection domain, but also in other fields. The pro-
posed approach is needed to be extended to address more
general scenarios.
Acknowledgements. This work is partially supported by
NSFC (62206172, 62222607), and the Shanghai Committee
of Science and Technology (21DZ1100100).
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