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Abstract

Previous works for ObjectNav task attempt to learn the
association (e.g. relation graph) between the visual inputs
and the goal during training. Such association contains
the prior knowledge of navigating in training environments,
which is denoted as the experience. The experience per-
forms a positive effect on helping the agent infer the likely
location of the goal when the layout gap between the un-
seen environments of the test and the prior knowledge ob-
tained in training is minor. However, when the layout gap is
significant, the experience exerts a negative effect on nav-
igation. Motivated by keeping the positive effect and re-
moving the negative effect of the experience, we propose
the layout-based soft Total Direct Effect (L-sTDE) frame-
work based on the causal inference to adjust the predic-
tion of the navigation policy. In particular, we propose to
calculate the layout gap which is defined as the KL diver-
gence between the posterior and the prior distribution of
the object layout. Then the sTDE is proposed to appropri-
ately control the effect of the experience based on the lay-
out gap. Experimental results on AI2THOR, RoboTHOR,
and Habitat demonstrate the effectiveness of our method.
The code is available at https://github.com/sx-
zhang/Layout-based-sTDE.git.

1. Introduction
The visual object-oriented navigation task (i.e. Object-

Nav) [3] requires the agent to navigate to a user-specified
goal (e.g. laptop) based on the egocentric visual observa-
tions. A typical challenge is navigating in unseen environ-
ments, where the goal is invisible most of the time, i.e. the
partial observable problem, which typically results in the
agent’s meaningless actions (e.g. back-tracking or getting
lost at dead-ends). Although encouraging the exploration in
the unseen environment (until the goal is visible) is an in-
tuitive solution, the lack of environment layout information
still limits the efficiency of goal-oriented navigation.
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Ḡ

Z Ā
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Figure 1. The proposed causal graph. (a) represents the fact pre-
diction a, i.e. the original prediction of the trained model. (b)
refers to the counter-fact prediction ā, i.e. the prediction is only
affected by the experience Z. (b) is realized by applying the inter-
vention and counterfactual operations to the original model.

Recently, the learning-based methods attempt to model
the prior knowledge of the spatial relationships among the
objects, so the agent could infer the likely locations of the
goal based on the current observation (which objects are
observed currently) and the prior knowledge (the spatial
relationships between the goal and the observed objects)
learned in the training stage. Some works utilize additional
modules to construct the objects graph [15, 59, 60], the re-
gion graph [63] and the attention mechanism [32], while
others [16, 56] employ a network that implicitly learns the
spatial relationships end-to-end. All these methods attempt
to establish prior knowledge in training environments, so
that the agent would utilize the prior knowledge to associate
the real-time observations with the goal, and infer the likely
locations of the goal during the inference. The underlying
assumption of these methods is that all of the object lay-
outs in unseen environments should be exactly consistent
with those in training environments. However, the layout
consistency assumption is only partially correct due to the
limited training data. Thus, those methods typically suffer
from poor generalization [31] in unseen environments.

To reveal the causes of poor generalization, we propose
to use the casual graph (i.e. Structural Causal Model, SCM
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[38]) to analyze these navigation works. As illustrated in
Fig. 1 (a), the navigation model takes the observation S and
the goal G as the input, and predicts the action A at each
timestamp. The causal links S → Z and G → Z represent
that the observation and the goal are embedded by the pre-
constructed modules [15, 32, 59, 60, 63] or the pre-trained
network [16, 56]. The embedding vector is defined as the
experience Z in the causal graph, which introduces the prior
knowledge to influence action prediction (Z → A). Mean-
while, the real-time observation and the goal also indepen-
dently affect the prediction without being encoded by the
prior knowledge module, which is represented as S → A
and G → A, respectively. The causal links S → A and
G → A represent the exploration-based effect (only related
to the current episode) on the action prediction, which is dif-
ferent from the experience-based effect Z → A. Consider
two cases of the layout gap between the current environment
and the prior knowledge: 1) the layout gap is minor and 2)
the layout gap is significant. In the former case, the object
layout is consistent in the current environment and the prior
knowledge. Thus, the experience Z exerts a positive effect
on the prediction of action A. However, the effect of experi-
ence Z in the latter case could be negative. If the agent still
relies on the “negative” experience to predict actions, it will
suffer from poor generalization. Therefore, wisely utilizing
the experience is essential to the ObjectNav task.

Motivated by wisely utilizing the learned experience,
we propose the soft Total Direct Effect (sTDE) framework
based on the Total Direct Effect analysis in causal inference.
Our sTDE improves the generalization of the trained model
in inference by eliminating the prediction bias brought by
the experience. To decouple the effect of experience, we
construct the counter-fact prediction ā: the prediction is
only affected by the experience Z while ignoring the S and
G, as shown in Fig. 1 (b). Then we propose the object
layout estimator that calculates whether the effect of the ex-
perience is positive, by measuring the layout gap between
the current environment and the prior knowledge. Further-
more, our sTDE will remove the counter-fact prediction ā
from the fact prediction a when the layout gap is large.

In this paper, we propose the layout-based soft TDE
framework for the ObjectNav task. Specifically, we adopt
the Dirichlet-Multinomial distribution [22] to formulate the
contextual relationship between objects, which represents
the object layout of the environment. Before training, the
agent learns prior layout distribution (i.e. the prior parame-
ters of Dirichlet-Multinomial distribution) by randomly ex-
ploring the training environments. In the training stage,
based on the Bayesian inference, the agent estimates the
posterior layout distribution with the prior distribution and
newly obtained observations. Then the constantly updated
posterior layout is encoded into the navigation model and
utilized to learn the environment-adaptive experience. The

entire model is trained with RL by maximizing the reward
of reaching the goal. In the test stage, our agent will not di-
rectly use the trained policy as most previous works do. The
agent first calculates the layout gap and the counter-fact pre-
diction. The layout gap is determined by calculating the KL
divergence between the posterior and prior distribution of
object layouts and serves as a weight to determine whether
to remove the counter-fact prediction (i.e. experience ef-
fect) from the original prediction. The experimental results
on AI2THOR [27], RoboTHOR [12] and Habitat [48] in-
dicate that our layout-based sTDE (L-sTDE) can be a plug-
and-play method to boost existing methods to achieve better
navigation performances.

2. Related Work
Visual Object Navigation. Target-oriented visual nav-

igation can be categorized [5] into PointGoal [8, 18, 43,
55], AreaGoal [28, 57], AudioGoal [10, 11], ImageGoal
[19, 29, 48], LanguageGoal (vision-and-language naviga-
tion) [23, 40, 41] and ObjectGoal. We focus on visual Ob-
jectGoal navigation, which sets the object category as the
target. Previous map-based methods usually build a met-
ric map [6–8, 44] or topological map [9, 47] to memorize
the environment layout. Besides, a popular deep-learning
pipeline is to take an end-to-end network [2, 17, 34] to pro-
cess the visual embedding and goal embedding, then pre-
dict the navigation action. Based on that, recent learning-
based methods propose various improvement ideas, such
as semantic representation [35], prior knowledge [59], ob-
ject relation graph [15, 60, 63], attention mechanism [32],
meta-learning [56], and transformer structure [16]. These
well-trained modules provide prior knowledge to guide the
agent in unseen environments. In our work, we denote such
knowledge learned from training (with whatever improve-
ment designs) as the experience. We try to find out, under
different environment layouts, whether the learned experi-
ence takes a positive effect or not, and how to better utilize
the experience to improve the navigation.

Causal Inference. Causal inference [38, 39] provides
analysis tools (e.g. intervention, counter-fact) to reveal the
causal effect behind the data-based statistical correlation,
which is widely adopted in epidemiology, psychology, or
politics research [24, 30, 46]. Recently, causal inference is
introduced into the computer vision society for scene graph
generation [50], vision and language task [1,36], long-tailed
classification [49] and few/zero-shot learning [4, 62]. For
the visual navigation task, [37] generates counterfactual ob-
servations to improve generalization to new environments
for VLN (vision-and-language navigation) task. [54] pro-
poses causal CT (continuous-time) models for visual drone
navigation tasks. In our work, we focus on the ObjectNav
task and utilize the causal inference to wisely control the
effect of experience in the inference.
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3. Preliminaries of ObjectNav Task
Task Definition. The ObjectNav task requires the

agent to navigate to a user-specified object category from
a random starting location in an unseen scene, and the
agent is only allowed to utilize the egocentric visual ob-
servation (e.g. RGB images) and the semantic embed-
ding of the target object. Formally, at each timestamp t,
the agent receives the observation S = st and the goal
G = gt and is expected to adopt an action A = at,
at ∈ A. The discrete action space is defined as: A =
{MoveAhead,RotateLeft,RotateRight, LookDown,
LookUp,Done}. When the agent outputs the Done action,
the episode terminates. An episode is considered successful
if, within a certain number of steps, the final location of the
agent is close to the goal within a distance threshold (e.g.
1m) and the goal is visible in the egocentric observation.

Navigation Model. Prevailing ObjectNav works can be
summarized as a visual-goal encoder and a policy function,
as shown in Fig. 2. The visual-goal encoder is constructed
to associate the visual observation S and the goal G. We de-
note such association as the experience Z since the encoder
could learn the prior experience during the training.

Previous learning-based methods typically implement
the visual-goal encoder as an object relation graph [15, 59,
60], region graph [63], attention module [32] and trans-
former structure [16]. For instance, the ORG [15] builds
an object relation graph, where the nodes are defined as the
object categories and the edges are defined as the spatial
correlations among different categories. The object relation
graph takes the observation and the goal as inputs and en-
codes them with the learned edges to obtain the experience
Z. Previous map-based methods [7, 44] typically construct
the semantic map based on the observations, and embed the
map with the target. Such embedding is also regarded as
the experience Z. Based on the observation, target object,
and these learned experiences, the policy module will out-
put the prediction. These navigation models are typically
trained with the RL (reinforcement learning) [33, 55, 64].

4. The Proposed Solution
4.1. Layout-based Soft Total Direct Effect

We humans make decisions in a causality-based man-
ner: we have the instinct to assess the effect of the naviga-
tion experience [51] and wisely eliminate the cognition bias
from the experience. However, the machines are likelihood-
based [50] and the predictions depend on the association
likelihood between observations, goal, and actions, which
is mainly learned from limited training data. Therefore, the
predictions are inevitably biased due to the biased experi-
ence. Prevailing methods [15, 16, 56, 59, 60, 63] entirely ac-
cept the experience learned in the training stage, and rarely
consider whether the prior experience is beneficial to the
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Figure 2. Prevailing navigation framework (top) and our contribu-
tions (bottom). Our layout estimator outputs the expectation wt

of posterior layout distribution and the layout gap Dt
∆. The wt is

proposed to enhance the adaptability of the experience zt to new
environments. The layout gap Dt

∆ serves as a weight to alleviate
the experience bias.

current environment. However, as previously discussed, the
learned experience has both positive and negative effects,
especially in the unseen environments, which may have a
different layout from the training environments. Therefore,
keeping positive effects and removing negative effects of
learned experience is essential to the navigation models.

The causal inference [39,52,53] encourages the machine
to discover the causality behind the association likelihood,
which has been proven to be an effective analysis method
in many computer vision tasks [36, 49, 50, 61]. From the
perspective of causal inference, the experience Z serves as
the mediator between the input (observation S and target
G) and the output (action A) as illustrated in Fig. 1 (a). To
eliminate the mediation fallacy, the causal inference [38]
introduces the Total Direct Effect (TDE) analysis to remove
the prediction bias brought by the mediator.

Total Direct Effect. The fundamental principle behind
TDE analysis [36,49,50] is to build a bias prediction āt that
is exclusively affected by the mediator, and then remove the
bias item from the original prediction at. The TDE analysis
is formulated as:

TDE(at) = at − āt (1)

where at = π (A|S = st, G = gt) is the factual predic-
tion of a trained model π, which takes the observation
S = st and target G = gt as the input, as shown in
Fig. 1 (a). The latter is the counterfactual prediction
āt = π(A|do (S = s̄t, G = ḡt) , Z = Zst,gt) as shown in
Fig. 1 (b). The calculation of āt includes two operations
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in causal inference: intervention and counterfactual opera-
tions. The intervention operation is denoted as do (·) and
realized by specifying a certain value for the variable (e.g.
do(S = s̄t)). The intervened value (e.g. s̄t, ḡt) is set to
a random or zero vector. The intervention operation elimi-
nates the effect of observation S and goal G on the action
prediction, while it also changes the value of the causal suc-
cessor (i.e. Z). However, since our motivation is to model
the case only affected by the mediator, which requires the
mediator Z to remain the original value. To this end, the
counterfactual operation assigns the original value to the
variable Z as if S = st, G = gt had existed. The coun-
terfactual operation is symbolized as Z = Zst,gt .

The TDE analysis is easily realized by manipulating the
values of several variables (e.g. S, G, Z) and is efficient in
removing the effect of the mediator (i.e. experience). How-
ever, the experience is not always detrimental. It can also
be beneficial when the object layout gap is minor. There-
fore, we propose the soft TDE to appropriately maintain the
positive effect of experience.

Soft Total Direct Effect. In alternative to previous TDE
analysis, our soft TDE modifies the Eq. 1 by adding a trade-
off weight, which is formulated as:

sTDE(at) = at −ReLU(Dt
∆ − ε) · āt (2)

where ReLU(·) is the ReLU activation function, and ε is
a threshold hyperparameter. The Dt

∆ is the object layout
gap, which is produced by our layout estimator (Sec. 4.2)
as shown in Fig. 2. The Dt

∆ evaluates the effect of the
experience Z, and preserves the positive experience when
the layout gap between the current environment and prior
knowledge is minor (i.e. Dt

∆ is less than the threshold ε).

4.2. Layout Estimator

Object Layout. For the ObjectNav task, the main chal-
lenge is the partially observable problem, that the agent can
only observe the partial area at each time. With continu-
ously observing during the navigation process, more objects
will be observed, and the partially known problem can also
be alleviated. Considering objects are usually distributed
in a reasonable layout, the adjacent relation of objects is
essential to help the agent infer the location of the target
object based on the observed objects. Therefore, we con-
centrate on the contextual relationship to represent the ob-
ject layout. The object layout in a scene is defined as the
set D = {θi}Ki=1, where K is the number of object cate-
gories. The θi = (θi,j)

K
j=1 represents the context distribu-

tion of object category ci. Each dimension θi,j represents
the probability p(cj |ci) that the object category cj can be
observed around the category ci in an observation. Specif-
ically, we assume that the context distribution follows the
Dirichlet distribution: θi = (θi,j)

K
j=1 ∼ Dir (αi), where

Observations st

Count vector nt

ci cj cp cq

1 1 2 10 0 0

p(cj |ci) = θi, j
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Figure 3. The calculation of the likelihood function p(sti|θi).

∑
j θi,j = 1, θi,j ≥ 0, and αi = (αi,j)

K
j=1, αi,j > 0 param-

eterizes the distribution. The Dirichlet distribution is cho-
sen for two reasons: 1) the conjugate prior permits concise
calculations; 2) the likelihood-equivalence property [22].

At the beginning of every new episode, the parameter αi

is initialized as the prior initial value α∗
i (α∗

i will be detailed
in Sec. 4.3). At each timestamp t, our method computes the
posterior object distribution based on the incoming observa-
tions. Specifically, the agent receives the visual observation
st, and the visual observation is then converted into a count
vector nt ∈ RK , where each dimension of nt = (nt

i)
K
i=1,

nt
i ≥ 0 records the number of each object category appear-

ing in the current observation. The count vector nt is ob-
tained by the object detection or segmentation modules (e.g.
Faster R-CNN [45] or Mask R-CNN [20]). As shown in Fig.
3, we define nt

−i =
(
nt
−i,j

)K
j=1

, nt
−i,j ≥ 0 as the count of

other categories (except ci) and define sti as the contextual
observation of the category ci. Conditioned on ci, assume
the probability that sti is observed follows the multinomial
distribution sti ∼ Mult

(
nt
−i, θi

)
. Then the likelihood func-

tion can be calculated as:

p
(
sti|θi

)
=

K∏
j=1

θ
nt
−i,j

i,j (3)

Meanwhile, according to the previous Dirichlet distribu-
tion assumption, the prior distribution of θi at timestamp t
is p (θi|αt

i) = Dir (θi|αt
i). Considering the contextual ob-

servation sti, the posterior distribution of θi is further calcu-
lated according to the Bayesian inference as the following:

p
(
θi|sti, αt

i

)
=

p (sti|θi) p (θi|αt
i)

p (sti|αt
i)

= Dir
(
θi|αt

i + nt
−i

)
(4)
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The Eq. 4 indicates that the posterior distribution
p (θi|sti, αt

i) also satisfies the Dirichlet distribution (the cal-
culation process is detailed in the supplements), which is
known as the conjugate prior property. The conjugate prior
property guarantees the succinct calculation for the pos-
terior distribution of θi, i.e. simply combining the count
vector nt

−i of context objects around category ci with the
hyperparameter αt

i of the prior distribution. Similarly, the
posterior distributions of other object categories can also be
obtained following the Eq. 4.

Furthermore, the posterior distributions at time t serves
as the prior distributions at time t + 1, thus the value of
hyperparameter αi is updated by αt+1

i = αt
i + nt

−i. This
update guarantees the knowledge of object layout is contin-
uously adapted to the current navigation environment.

Based on the obtained posterior distribution, the layout
gap Dt

∆ is defined as the KL divergence between the pos-
terior and prior object layout over all categories. Formally,
the object layout gap Dt

∆ is defined as:

Dt
∆ = tanh(

1

K

K∑
i=1

KL
(
p
(
θi|st, αt

i

)
||p

(
θi|αt

i

))
) (5)

where tanh(·) is the tanh activation function. The layout
gap Dt

∆ estimates the gap between the posterior object lay-
out at time t and the prior knowledge before time t, which
plays a vital role in the Eq. 2.

Environment-Adaptive Experience. The prevailing
methods [15,16,59] typically encode the visual observation
st and the target object gt into the experience zt ∈ RK×M

during training, where K is the number of object categories
and M refers to the feature dimension. The learned experi-
ence could be both biased (the layout gap between the train-
ing and test environments) and environment-static (without
adaptation to the current environment). Therefore, in addi-
tion to eliminate the bias in the inference, we also propose
to enhance the environmental adaptability of the experience
zt to achieve a better performance. To this end, the dynam-
ically updated knowledge of object layout D = {θi}Ki=1 is
encoded into the navigation framework. Specifically, the
expectation of the posterior distribution of the object layout
D is formalized as wt ∈ RK×K , wt

i,j > 0. For j = i,
since p(ci|ci) always exists, we set wt

i,j = 1. When j ̸= i,
wt

i,j = Ep(θi|sti,αt
i)
(θi,j), where E (·) denote the expectation

calculation. Based on [22], the expectation of the Dirichlet
function Dir(θi|αt

i + nt
−i) is equivalent to the normaliza-

tion of its parameters. Accordingly, for j ̸= i,

wt
i,j = Ep(θi|sti,αt

i)
(θi,j) =

αt
i,j + nt

−i,j∑K
j=1(α

t
i,j + nt

−i,j)
(6)

Since wt is updated in real-time, we propose to im-
prove the environment-static experience zt to environment-

adaptive experience ẑt by incorporating the dynamically
updated knowledge of object layout, where ẑt is given by:

ẑt = zt ⊙
[
wt × gt

]
(7)

where ⊙ represents the element-wise multiplication, ×
refers to the matrix multiplication, and gt ∈ RK is a one-hot
vector indicating the target category of the goal. The result
of [wt × gt] ∈ RK indicates the probability of the target
gt is observed conditioned on each object category, which
serves as a weight on the category-specific dimension of zt.

4.3. Training and Inference

As shown in Fig. 2, our layout estimator outputs (1) the
expectation wt of the posterior layout distribution, and (2)
the layout gap Dt

∆. Both wt and Dt
∆ are calculated math-

ematically without learnable parameters, thus our method
has the plug-and-play property to boost the existing meth-
ods. Specifically, our layout-based sTDE is realized as: (1)
Before training, to determine the initial value (α∗

i )
K
i=1, we

first employ a random agent equipped with our object lay-
out estimator, whose parameters (αi)

K
i=1 are initialized as

all one vector. Then the agent randomly explores the train-
ing scenes to obtain sufficient observations to update the
parameters by Eq. 4. The updated parameters are defined
as (α∗

i )
K
i=1. (2) In the training stage, at the beginning of

every episode, all parameters (αi)
K
i=1 are initialized as the

prior parameters (α∗
i )

K
i=1. The layout estimator calculates

the posterior distribution of object layout D (Eq. 4), us-
ing the constant observation st and the prior distribution.
Then the expectation of the posterior distribution wt is es-
timated and incorporated in the navigation model π (Eq. 6,
7). The model π is trained with RL. (3) In the causal-
inference stage, the agent will not directly use the trained
policy π, while it first calculates the layout gap Dt

∆ (Eq. 5)
and the counter-fact prediction āt (the effect of the experi-
ence). Then the agent appropriately removes the counter-
fact prediction āt from the fact prediction at based on the
layout gap Dt

∆ (Eq. 2). For more details and algorithms of
training and inference, please refer to the supplements.

Note that the expectation of the posterior distribution of
the object layout wt affects the prediction of the model dur-
ing both training and inference, while Dt

∆ is utilized for de-
biasing only in the inference. Furthermore, we want to ex-
plain why the debiasing operation only acts in inference.
As shown in Fig. 1, the prediction is influenced by two ef-
fects: the inputs (the observation S and the goal G) and their
mediator (the experience E). The mediator (experience) has
agnostic effects because it is learned from limited training
data. The training data can not cover all room layouts, thus
resulting the prediction bias in the inference. Consequently,
the debiasing operation (i.e. the sTDE partially removes the
effect of experience from prediction) is conducted in infer-
ence to decouple the effect from the training data.
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5. Experiments
5.1. Experimental Setup

We utilize the AI2THOR [27], RoboTHOR [12] simu-
lators to conduct ablation studies and compare our method
with the learning-based methods [15, 16, 32, 56, 59, 63, 64].
The experimental settings on above datasets follow the pri-
mary works [15,16,63]. Besides, we choose the Gibson [58]
dataset in the Habitat simulator [48] to compare our method
with the map-based methods and adopt the same settings
as [7]. For more details about the settings of the datasets
(e.g. the split of training, validation, testing scenes, and the
target objects), please refer to the supplements.

Our method and the related works are both trained to
maximize the navigation reward via RL. The reward func-
tion penalizes the agent by -0.01 for each step and rewards
it by 5 if the episode is successful (the successful episode
is defined in Sec. 3). All methods are trained with 6M
episodes, where in each episode, the starting position of the
agent and the goal are randomly selected. Note that, since
our method needs prerequisite exploration to determine the
initial parameters (α∗

i )
K
i=1 of the layout distribution. To be

fair, we employ the agent to randomly explore the training
rooms to learn the initial parameters for 2M episodes, then
we train our method with 4M episodes.

For evaluation, we repeatedly run 3 trials and report the
results with mean±standard deviation. We choose SR (Suc-
cess Rate), SPL (Success weighted by Path Length), and
DTS (Distance to Goal) metrics for evaluation, which are
detailed in the supplements. For all results in the following
tables, the ↑ means that the larger value is better, while ↓
indicates the opposite.

5.2. The Compared Methods

We choose the learning-based methods [15, 16, 32, 56,
59, 63, 64] and the map-based method [7] for comparison.
Random: the agent adopts random actions. RGB(D)+RL
(A3C) [48, 64]: the agent utilizes the simple embeddings
of visual input and the goal, and is trained with A3C [34].

Success Rate (%)

Category

Baseline Improvements of our method

Figure 5. Category-wise improvement of our method compared
to the baseline. The categories are arranged from high to low
based on their average layout similarity between training and test-
ing scenes.

SP [59]: SP constructs the scene prior knowledge from the
external dataset. The prior knowledge encoded with GCN
[26] is provided to the agent as the additional information.
SAVN [56]: SAVN establishes a sub-network to learn a self-
supervised interaction loss. EOTP [32]: EOTP proposes an
attention module to encode the semantic information about
the observed objects. ORG [15]: ORG proposes to learn
an object relation graph, and builds a memory-augmented
tentative policy network (TPN) to produce self-supervision.
VTNet [16]: VTNet employs the Transformer network to
encode the visual information and the goal. HOZ [63]:
HOZ attempts to abstract the region relation among the ob-
jects and proposes to learn the region relation graph to asso-
ciate the vision and the goal. SemExp [7]: SemExp builds
an episodic semantic map and trains a goal-oriented policy
taking the semantic map as the input.

5.3. Evaluation Results

In this section, we adopt the ORG [15] as the baseline
and conduct evaluations on the validation set of AI2THOR.

Correlation between layout and success rate. Our mo-
tivation is that the layout gap between training and testing
scenes may have an impact on navigation. To verify this,
we take the statistic and visualize the results in Fig. 4 (a),
where the y-axis represents the success rate of navigating
to objects ci in a testing scene Rj , the x-axis represents the
layout similarity of the object ci between the training scenes
and the test scenes, and the scatter points represent all target
objects in all test scenes. As shown in Fig. 4 (b), the layout
similarity is defined as the cosine similarity of the statistics
vectors (the count of cooccurrence objects) obtained in the
training scenes and the test scene Rj . Fig. 4 (a) indicates
that the navigation performance on SR during inference has
a generally positive correlation with the layout similarity,
which supports our motivation.

Improvements of our method compared to baseline.
The navigation performance of the baseline (green bar) and
the improvements brought by our method (blue bar) are
shown in Fig. 5. All goals (x-axis) are arranged from high
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Figure 6. The ablation study of the threshold ε and the visualiza-
tion of the object layout gap Dt

∆ over the navigation steps.

to low based on their layout similarity. The results indicate
that our method can bring more obvious improvement in the
categories with low layout similarity (as illustrated by the
red dashed circle). We presume that the goals with a larger
layout gap are more susceptible to the effects of the experi-
ence, thus benefiting more from our de-biased method. The
results once again support our motivation.

Ablations on the threshold ε. The threshold ε influ-
ences the agent by Eq. 2, which determines whether to
remove the prediction bias introduced by the experience.
As shown in Fig. 6 (a), the results of different threshold
ε basically show the same trend on the SR, SPL metrics:
as the value of threshold ε increases, the performances on
these metrics initially increase and then decrease. When the
value of threshold ε is small, the Eq. 2 tends to consider that
the majority of experiences Z are negative and need to be
removed. At this point, gradually increasing the threshold
ε could retain more experiences and improve performance.
However, when the threshold ε is too large (e.g. ε = 1), the
Eq. 2 falls into another extreme which considers all experi-
ences are positive and need to be preserved, resulting in the
performance degradation. The results on DTS metric indi-
cate that excessively removing the experience (ε is small)
will increase the exploration of the agent, thus resulting in
worse performance on DTS. Based on the above results, we
choose the threshold as ε = 0.5.

Visualization of the object layout gap Dt
∆. The object

layout gap Dt
∆ represents the KL divergence between the

posterior and the prior distribution of the layout. The aver-
age value of the Dt

∆ over navigation steps in AI2THOR is
illustrated in Fig. 6 (b). The results indicate that the layout
gap decreases as the number of steps increases (the purple
line). However, without updating by our method (the grey
line), the layout gap is maintained at a large value. The
trend of Dt

∆ demonstrates that the learned knowledge (pos-
terior distribution of the layout) by our method is gradually
approaching the real layout of the current scene. It also re-
veals that the wt (the expectation of posterior distribution)
is environment-adaptive information for guiding the agent.

Additionally, considering the threshold ε = 0.5 and

Table 1. The ablation studies. (I) The ablations of several compo-
nents. The wt represents encoding the expectation of the posterior
distribution of object layout into the model, and Dt

∆ represents de-
biasing the trained model in the inference with our sTDE. (II) The
comparison of different de-bias methods.

ID Method
SR↑ (%) SPL↑ (%) DTS↓ (m)

Baseline wt Dt
∆

I
1 ✓ 66.48±0.22 38.42±0.39 0.54±0.01

2 ✓ ✓ 71.40±0.37 39.11±0.44 0.49±0.02

3 ✓ ✓ ✓ 74.95±0.38 41.68±0.23 0.47±0.02

II

4 w/o De-bias 71.40±0.37 39.11±0.44 0.49±0.02

5 TDE [53] 69.24±0.12 38.38±0.16 0.52±0.01

6 Ours sTDE (zero) 74.95±0.38 41.68±0.23 0.47±0.02

7 Ours sTDE (random) 75.03±0.69 41.48±0.44 0.46±0.03

looking back at Fig. 6 (b), we can observe how our layout-
based sTDE works in the time (i.e. steps) dimension. Ac-
cording to the Eq. 2, the de-bias operation is activated when
(Dt

∆ − ε) > 0, as shown in the upper purple shadow. At
the beginning of an episode, the agent is unfamiliar with
the current scene, and the layout gap is large. At this stage,
our layout-based sTDE is activated to eliminate the predic-
tion bias caused by the experience. Then with continuous
navigating and updating, the prior knowledge of the object
layout has been gradually adjusted to fit the current scene.
Therefore, at this stage, the updated experience is applicable
to the current scene and fully accepted for the navigation.

Ablations of different components. We evaluate differ-
ent components of our method. The ablation study in Tab. 1
(I) indicates the efficacy of each component in our method.
Specifically, the expectation wt of the posterior distribution
of the object layout improves the baseline (ORG) perfor-
mance by 4.92%, 0.69% and -0.05m on SR, SPL and DTS
metrics. Moreover, the soft Total Direct Effect (sTDE) fur-
ther improves the performance and gains 3.55%, 2.57% and
-0.02m improvement on SR, SPL and DTS metrics. Over-
all, our method outperforms the baseline by 8.47%, 3.26%
and -0.07m on SR, SPL and DTS metrics.

Comparison with TDE and sTDE. The TDE analysis
is effective in removing the mediation fallacy and is applied
in many works [36, 49, 50], which regard the mediator (i.e.
the experience in our work) as the cause of prediction bias
and remove it in the inference by Eq. 1. However, directly
applying TDE makes the agent completely ignore the posi-
tive effect of the experience. Thus, as shown in Tab. 1 (II),
employing TDE (line 5) even degrades the navigation per-
formance (compared with line 4). Compared with TDE, our
sTDE (line 6 and 7) adaptively retains the positive effects of
the experience and obtains significant improvements. Pre-
vious work [50] introduces constructing the counterfactual
item (i.e. āt), by setting the value of observation S and
the goal G to random or zero. We respectively adopt these
two ways (line 6 and 7) and find out that their performances
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Table 2. The comparisons with the related works (learning-based methods) in AI2THOR and RoboTHOR simulators. The L-sTDE
represents our layout-based soft TDE framework based on different baselines. The improvements are shown in blue font.

ID Method AI2THOR RoboTHOR
SR↑ (%) SPL↑ (%) DTS↓ (m) SR↑ (%) SPL↑ (%) DTS↓ (m)

1 Random 4.68 ±1.74 2.42 ±1.35 1.36 ±0.01 2.92 ±0.39 1.34 ±0.20 2.40 ±0.02

2 RGB+RL (A3C) [64] 59.06 ±0.19 34.56 ±0.44 0.68 ±0.01 27.48 ±0.46 16.45 ±0.12 2.08 ±0.02

3 SP [59] 62.19 ±0.67 37.60 ±0.35 0.61 ±0.02 26.22 ±0.78 16.90 ±0.33 2.06 ±0.02

4 SAVN [56] 63.27 ±0.11 38.20 ±0.04 0.56 ±0.01 28.53 ±0.77 18.27 ±0.35 1.96 ±0.02

5 EOTP [32] 65.61 ±0.25 38.93 ±0.10 0.55 ±0.01 28.84 ±0.41 18.82 ±0.35 1.95 ±0.02

6 ORG [15] 66.53 ±0.29 39.00 ±0.34 0.54 ±0.01 29.64 ±0.89 19.13 ±0.59 1.95 ±0.03

7 ORG+TPN [15] 68.60 ±0.29 39.40 ±0.17 0.54 ±0.01 30.05 ±0.06 19.05 ±0.08 1.89 ±0.01

8 VTNet [16] 70.10 ±1.00 39.60 ±0.10 0.52 ±0.01 31.62 ±0.74 19.63 ±0.42 1.87 ±0.03

9 HOZ [63] 70.38 ±0.14 39.04 ±0.11 0.48 ±0.02 32.27 ±1.14 20.48 ±0.48 1.85 ±0.01

10 Ours L-sTDE (EOTP) 69.62 (4.01↑) ±0.71 40.02 (1.09↑) ±0.47 0.52 (0.03↑) ±0.01 37.37 (8.53↑) ±0.75 22.00 (3.18↑) ±0.42 1.81 (0.14↑) ±0.02

11 Ours L-sTDE (ORG) 74.85 (8.32↑) ±0.33 41.56 (2.56↑) ±0.11 0.47 (0.07↑) ±0.02 39.27 (9.63↑) ±0.55 22.81 (3.68↑) ±0.47 1.77 (0.18↑) ±0.02

12 Ours L-sTDE (VTNet) 75.25 (5.15↑) ±0.39 41.69 (2.09↑) ±0.13 0.47 (0.05↑)±0.02 41.53 (9.91↑) ±0.67 23.87 (4.24↑) ±0.50 1.72 (0.15↑) ±0.02

13 Ours L-sTDE (HOZ) 75.05 (4.67↑) ±0.29 41.53 (2.49↑) ±0.21 0.46 (0.02↑)±0.02 42.13 (9.86↑) ±0.78 24.54 (4.06↑) ±0.43 1.67 (0.18↑) ±0.01

are similar, except that using the random value makes the
performance more volatile (i.e. larger standard deviation).
Therefore, we set the value of the observation and the goal
as zeros to construct the counterfactual item. More ablation
studies and visualizations are detailed in the supplements.

5.4. Comparisons with the Related Works

In this section, we evaluate all methods on the test
datasets of AI2THOR, RoboTHOR, and Gibson. We com-
pare the learning-based methods [15, 16, 32, 56, 59, 63, 64]
in AI2THOR and RoboTHOR as shown in Tab. 2. With
the egocentric RGB input, all methods are constructed with
the Faster R-CNN backbone, which is pre-trained follow-
ing [15]. To keep fair comparisons, we present VTNet
[16] using their reported results with Faster R-CNN. Since
other methods [32, 56, 59, 64] are originally proposed with
the ResNet [21] pre-trained in ImageNet [14] as the vi-
sual backbone. For fair comparisons, following the rec-
ommendation of [15], we additionally encode the detec-
tion information provided by Faster R-CNN to these meth-
ods [32, 56, 59, 64]. Therefore, the reimplemented perfor-
mances are higher than those results reported in the orig-
inal papers. As shown in Tab. 2, benefiting from the in-
corporation of our layout-based sTDE (L-sTDE), the per-
formances of existing methods are improved, especially our
L-sTDE based on HOZ and VTNet achieve new SOTA per-
formance. Other learning-based methods employ CLIP [42]
as the backbone [25], or adopt pre-training on large-scale
datasets (e.g. ProcTHOR [13]), and we compare our L-
sTDE with these methods in the supplements.

Since most map-based methods require the RGB-D vi-
sual inputs and segmentation information provided by Mask
R-CNN [20] to construct the semantic map, we take an-
other comparison with the map-based methods as shown in
Tab. 3. The map-based methods employ a parameter-free
modular system to build the semantic map, then encode the
map into the policy. We regard the encoded map as the ex-

Table 3. The comparisons with the related works (map-based
methods) in Gibson simulators.

ID Method SR↑ (%) SPL↑ (%) DTS↓ (m)

1 Random 0.04 0.04 3.89
2 RGBD+RL [48] 8.42 2.87 3.23
3 SemExp [7] 65.35 33.52 1.56
4 Ours L-sTDE (SemExp) 66.96 (1.61↑) 34.33 (0.81↑) 1.53 (0.03↑)

perience zt and modify [7] with our L-sTDE. The results
indicate that our method still brings some performance im-
provements, although the gains are limited compared to that
of the learning-based methods. We analyze that, compared
with the learning-based methods whose parameters are all
trained end-to-end, the map-based methods utilize a modu-
lar system, and only a small number of parameters (the pol-
icy) need to be trained. Therefore, the map-based methods
are less affected by the experience learned from training,
and thus benefit less from our method.

6. Conclusion
We propose the layout-based soft Total Direct Effect

framework for ObjectNav task. Our motivation is to keep
the positive effect and remove the negative effect of the ex-
perience, which is learned as the prior knowledge in train-
ing. Specifically, we propose to calculate the layout gap
between the current environment and the prior knowledge.
Then the layout gap is utilized to assess whether the impact
of the learned experience is positive. Furthermore, the soft
Total Direct Effect is proposed to appropriately control the
effect of the experience on action prediction. The experi-
ment results indicate the effectiveness of our method.
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