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Abstract

Pre-training by numerous image data has become de-
facto for robust 2D representations. In contrast, due to the
expensive data processing, a paucity of 3D datasets severely
hinders the learning for high-quality 3D features. In this
paper, we propose an alternative to obtain superior 3D
representations from 2D pre-trained models via Image-to-
Point Masked Autoencoders, named as I2P-MAE. By self-
supervised pre-training, we leverage the well learned 2D
knowledge to guide 3D masked autoencoding, which recon-
structs the masked point tokens with an encoder-decoder ar-
chitecture. Specifically, we first utilize off-the-shelf 2D mod-
els to extract the multi-view visual features of the input point
cloud, and then conduct two types of image-to-point learn-
ing schemes. For one, we introduce a 2D-guided masking
strategy that maintains semantically important point tokens
to be visible. Compared to random masking, the network
can better concentrate on significant 3D structures with
key spatial cues. For another, we enforce these visible to-
kens to reconstruct multi-view 2D features after the decoder.
This enables the network to effectively inherit high-level 2D
semantics for discriminative 3D modeling. Aided by our
image-to-point pre-training, the frozen I2P-MAE, without
any fine-tuning, achieves 93.4% accuracy for linear SVM
on ModelNet40, competitive to existing fully trained meth-
ods. By further fine-tuning on on ScanObjectNN’s hard-
est split, I2P-MAE attains the state-of-the-art 90.11% ac-
curacy, +3.68% to the second-best, demonstrating supe-
rior transferable capacity. Code is available at https:
//github.com/ZrrSkywalker/I2P-MAE.

1. Introduction
Driven by huge volumes of image data [11, 40, 56, 61],

pre-training for better visual representations has gained

† Corresponding author

2D	Pre-trained	Models

Image-to-Point 

LearningLarge-scale	2D	Data

Limited	3D	Data

Pre-train

Pre-train

I2P-MAE

MAE
Encoder

MAE
Decoder

Rich
2D

Knowledge

ResNet, ViT, Swin, …

Figure 1. Image-to-Point Masked Autoencoders. We leverage
the 2D pre-trained models to guide the MAE pre-training in 3D,
which alleviates the need of large-scale 3D datasets and learns
from 2D knowledge for superior 3D representations.

much attention in computer vision, which benefits a variety
of downstream tasks [8, 29, 39, 55, 62]. Besides supervised
pre-training with labels, many researches develop advanced
self-supervised approaches to fully utilize raw image data
via pre-text tasks, e.g., image-image contrast [5, 9, 10, 21,
28], language-image contrast [12, 53], and masked image
modeling [3, 4, 18, 19, 27, 31, 42, 70]. Given the popularity
of 2D pre-trained models, it is still absent for large-scale
3D datasets in the community, attributed to the expensive
data acquisition and labor-intensive annotation. The widely
adopted ShapeNet [6] only contains 50k point clouds of 55
object categories, far less than the 14 million ImageNet [11]
and 400 million image-text pairs [53] in 2D vision. Though
there have been attempts to extract self-supervisory signals
for 3D pre-training [33, 41, 47, 64, 69, 76, 78, 83], raw point
clouds with sparse structural patterns cannot provide suf-
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Figure 2. Comparison of (Left) Existing Methods [47, 78] and
(Right) our I2P-MAE. On top of the general 3D MAE architec-
ture, I2P-MAE introduces two schemes of image-to-point learn-
ing: 2D-guided masking and 2D-semantic reconstruction.

ficient and diversified semantics compared to colorful im-
ages, which constrain the generalization capacity of pre-
training. Considering the homology of images and point
clouds, both of which depict certain visual characteristics
of objects and are related by 2D-3D geometric mapping,
we ask the question: can off-the-shelf 2D pre-trained mod-
els help 3D representation learning by transferring robust
2D knowledge into 3D domains?

To tackle this challenge, we propose I2P-MAE, a
Masked Autoencoding framework that conducts Image-to-
Point knowledge transfer for self-supervised 3D point cloud
pre-training. As shown in Figure 1, aided by 2D semantics
learned from abundant image data, our I2P-MAE produces
high-quality 3D representations and exerts strong transfer-
able capacity to downstream 3D tasks. Specifically, refer-
ring to 3D MAE models [47, 78] in Figure 2 (Left), we
first adopt an asymmetric encoder-decoder transformer [14]
as our fundamental architecture for 3D pre-training, which
takes as input a randomly masked point cloud and recon-
structs the masked points from the visible ones. Then, to
acquire 2D semantics for the 3D shape, we bridge the modal
gap by efficiently projecting the point cloud into multi-view
depth maps. This requires no time-consuming offline ren-
dering and largely preserves 3D geometries from different
perspectives. On top of that, we utilize off-the-shelf 2D
models to obtain the multi-view 2D features along with 2D
attention maps of the point cloud, and respectively guide the
pre-training from two aspects, as shown in Figure 2 (Right).

Firstly, different from existing methods [47, 78] to ran-
domly sample visible tokens, we introduce a 2D-guided
masking strategy that reserves point tokens with more spa-
tial semantics to be visible for the MAE encoder. In de-
tail, we back-project the multi-view attention maps into 3D
space as a spatial attention cloud. Each element in the
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Figure 3. Pre-training Epochs vs. Linear SVM Accuracy on
ModelNet40 [67]. With the image-to-point learning schemes, I2P-
MAE exerts superior transferable capability with much faster con-
vergence speed than Point-MAE [47] and Point-M2AE [78].

cloud indicates the semantic significance of the correspond-
ing point token. Guided by this, the 3D network can bet-
ter focus on the visible critical structures to understand the
global 3D shape, and also reconstruct the masked tokens
from important spatial cues.

Secondly, in addition to the recovering of masked point
tokens, we propose to concurrently reconstruct 2D seman-
tics from the visible point tokens after the MAE decoder.
For each visible token, we respectively fetch its projected
2D representations from different views, and integrate them
as the 2D-semantic learning target. By simultaneously re-
constructing the masked 3D coordinates and visible 2D con-
cepts, I2P-MAE is able to learn both low-level spatial pat-
terns and high-level semantics pre-trained in 2D domains,
contributing to superior 3D representations.

With the aforementioned image-to-point guidance, our
I2P-MAE significantly accelerates the convergence speed
of pre-training and exhibits state-of-the-art performance on
3D downstream tasks, as shown in Figure 3. Learning
from 2D ViT [14] pre-trained by CLIP [53], I2P-MAE,
without any fine-tuning, achieves 93.4% classification ac-
curacy by linear SVM on ModelNet40 [67], which has
surpassed the fully fine-tuned results of Point-BERT [76]
and Point-MAE [33]. After fine-tuning, I2P-MAE further
achieves 90.11% classification accuracy on the hardest split
of ScanObjectNN [63], significantly exceeding the second-
best Point-M2AE [78] by +3.68%. The experiments fully
demonstrate the effectiveness of learning from pre-trained
2D models for superior 3D representations.

Our contributions are summarized as follows:

• We propose Image-to-Point Masked Autoencoders
(I2P-MAE), a pre-training framework to leverage 2D
pre-trained models for learning 3D representations.
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• We introduce two strategies, 2D-guided masking and
2D-semantic reconstruction, to effectively transfer the
well learned 2D knowledge into 3D domains.

• Extensive experiments have been conducted to indicate
the significance of our image-to-point pre-training.

2. Related Work
3D Point Cloud Pre-training. Supervised learning for
point clouds has attained remarkable progress by delicately
designed architectures [22, 50, 51, 80, 81] and local op-
erators [2, 37, 65, 68, 72, 82]. However, such methods
learned from closed-set datasets [63, 67] are limited to pro-
duce general 3D representations. Instead, self-supervised
pre-training via unlabelled point clouds [6] have revealed
promising transferable ability, which provides a good net-
work initialization for downstream fine-tuning. Mainstream
3D self-supervised approaches adopt encoder-decoder ar-
chitectures to recover the input point clouds from the trans-
formed representations, including point rearrangement [57],
part occlusion [64], rotation [49], downsampling [36], and
codeword encoding [74]. Concurrent works also adopt con-
trastive pre-text tasks between 3D data pairs, such as local-
global relation [17, 54], temporal frames [32], and aug-
mented viewpoints [69]. More recent works adopt pre-
trained CLIP [53] for zero-shot 3D recognition [24, 79, 86],
or introduce masked point modeling [13,16,33,41] as strong
3D self-supervised learners. Therein, Point-BERT [76] uti-
lizes pre-trained tokenizers to indicate discrete point tokens,
while Point-MAE [47], Point-M2AE [78], and PiMAE [7]
apply Masked Autoencoders (MAE) to directly reconstruct
masked 3D coordinates. Our I2P-MAE also adopts MAE as
the basic pre-training framework, but is guided by 2D pre-
trained models via image-to-point learning schemes, which
benefits 3D pre-training with diverse 2D semantics.

2D-to-3D Learning. Except for jointly training 2D-3D
networks [1, 23, 38, 46, 73], only a few existing researches
focus on 2D-to-3D learning, and can be categorized into
two groups. To eliminate the modal gap, the first group ei-
ther upgrades 2D pre-trained networks into 3D variants for
processing point clouds (convolutional kernels inflation [71,
77], modality-agnostic transformer [52]), or projects 3D
point clouds into 2D images with parameter-efficient tuning
(multi-view adapter [79], point-to-pixel prompting [66]).
Different from them, our I2P-MAE benefits from three
properties. 1) Pre-training: We learn from 2D models dur-
ing the pre-training stage, and then can be flexibly adapted
to various 3D scenarios by fine-tuning. However, prior
works are required to utilize 2D models on every differ-
ent downstream task. 2) Self-supervision: I2P-MAE is
pre-trained by raw point clouds in a self-supervised man-
ner and learns more general 3D representations. In con-

trast, prior works are supervised by labelled downstream
3D data, which might constrain the diverse 2D semantics
into specific 3D domains. 3) Independence: Prior works
directly inherit 2D network architectures for 3D training,
which is memory-consuming and not 3D extensible, while
we train an independent 3D network and regard 2D models
as semantic teachers. Another group of 2D-to-3D meth-
ods utilize paired real-world 2D-3D data of indoor [44] or
outdoor [59] scenes, and conduct contrastive learning for
knowledge transfer. Our approach also differs from them
in two ways. 4) Masked Autoencoding. I2P-MAE learns
2D semantics via the MAE-style pre-training without any
contrastive loss between point-pixel pairs. 5) 3D Data
Only. We require no real-world image dataset during the
pre-training and efficiently project the 3D shape into depth
maps for 2D features extraction.

3. Method

The overall pipeline of I2P-MAE is shown in Figure 4.
In Section 3.1, we first introduce I2P-MAE’s basic 3D ar-
chitecture for point cloud masked autoencoding without 2D
guidance. Then in Section 3.2, we show the details of utiliz-
ing 2D pre-trained models to obtain visual representations
from 3D point clouds. Finally in Section 3.3, we present
how to conduct image-to-point knowledge transfer for 3D
representation learning.

3.1. Basic 3D Architecture

As our basic framework for image-to-point learning,
I2P-MAE refers to existing works [47, 78] to conduct 3D
point cloud masked autoencoding, which consists of a token
embedding module, an encoder-decoder transformer, and a
head for reconstructing masked 3D coordinates.

Token Embedding. Given a raw point cloud P ∈ RN×3,
we first adopt Furthest Point Sampling (FPS) to downsam-
ple the point number from N to M , denoted as PT ∈
RM×3. Then, we utilize k Nearest-Neighbour (k-NN) to
search the k neighbors for each downsampled point, and
aggregate their features via a mini-PointNet [50] to obtain
M point tokens. In this way, each token can represent a
local spatial region and interact long-range features with
others in the follow-up transformer. We formulate them as
T ∈ RM×C , where C denotes the feature dimension.

Encoder-Decoder Transformer. To build the pre-text
learning targets, we mask the point tokens with a high ratio,
e.g., 80%, and only feed the visible ones, Tvis ∈ RMvis×C ,
into the transformer encoder, where Mvis denotes the vis-
ible token number. Each encoder block contains a self-
attention layer and is pre-trained to understand the global

21771



I2P

Input Point Cloud

MAE
Encoder

MAE
Decoder

2D Pre-trained
Models

2D-guided 
Masking

…

…

…

Token
Embed.

𝑇!"#

𝑇!"#$

𝑇%&#'$

Multi-view	Depth	Maps

Efficient 
Projection

Spatial	Attention Cloud

I2P
Average Concat.

2D	Attention Maps 2D	Visual	Features

2D-semantic	Targets

3D-Coord. 
Reconstruction

2D-semantic 
Reconstruction

Visible	Tokens

Masked	Tokens

{𝐼"}"678

{𝑆"9:}"678 {𝐹"}"678

𝑆8; 𝐹!"#8:

Back-project

and

…

Figure 4. The Pipeline of I2P-MAE. Given an input point cloud, we leverage the 2D pre-trained models to generate two guidance signals
from the projected depth maps: 2D attention maps and 2D visual features. We respectively conduct 2D-guided masking and 2D-semantic
reconstruction to transfer the encoded 2D knowledge for 3D point cloud pre-training.

3D shape from the remaining visible parts. After encod-
ing, we concatenate the encoded T e

vis with a set of shared
learnable masked tokens Tmask ∈ RMmask×C , and input
them into a lightweight decoder, where Mmask denotes the
masked token number and M = Mmask + Mvis. In the
transformer decoder, the masked tokens learn to capture
informative spatial cues from visible ones and reconstruct
the masked 3D coordinates. Importantly, we follow Point-
M2AE [78] to modify our transformer to be a hierarchical
architecture for encoding the multi-scale representations.

3D-coordinate Reconstruction. On top of the decoded
point tokens {T d

vis, T
d
mask}, we utilize T d

mask to recon-
struct 3D coordinates of the masked tokens along with
their k neighboring points. A reconstruction head of
a single linear projection layer is adopted to predict
Pmask ∈ RMmask×k×3, the ground-truth 3D coordinates of
the masked points. Then, we compute the loss by Chamfer
Distance [15] and formulate it as

L3D =
1

Mmaskk
Chamfer

(
H3D(T

d
mask), Pmask

)
, (1)

where H3D(·) denotes the head to reconstruct the masked
3D coordinates.

3.2. 2D Pre-trained Representations

We can leverage 2D models of different architectures
(ResNet [30], ViT [14]) and various pre-training approaches
(supervised [30, 45] and self-supervised [5, 53] ones) to
assist the 3D representation learning. To align the input
modality for 2D models, we project the input point cloud
onto multiple image planes to create depth maps, and then
encode them into multi-view 2D representations.

Efficient Projection. To ensure the efficiency of pre-
training, we simply project the input point cloud P from
three orthogonal views respectively along the x, y, z axes.
For every point, we directly omit each of its three coordi-
nates and round down the other two to obtain the 2D loca-
tion on the corresponding map. The projected pixel value
is set as the omitted coordinate to reflect relative depth re-
lations of points, which is then repeated by three times
to imitate the three-channel RGB. The projection of I2P-
MAE is highly time-efficient and involves no offline render-
ing [48, 60], projective transformation [20, 79], or learnble
prompting [66]. We denote the projected multi-view depth
maps of P as {Ii}3i=1.

2D Visual Features. We then utilize a 2D pre-trained
model, e.g., a pre-trained ResNet or ViT, to extract multi-
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view features of the point cloud with C channels, formu-
lated as {F 2D

i }3i=1, where Fi ∈ RH×W×C and H,W de-
note the feature map size. Such 2D features contain suffi-
cient high-level semantics learned from large-scale image
data. The geometric information loss during projection can
also be alleviated by encoding from different views.

2D Attention Maps. In addition to 2D features, we also
acquire a semantic attention map for each view via the 2D
pre-trained model. The one-channel maps indicate the se-
mantic importance of different image regions, which we de-
note as {S2D

i }3i=1, where Si ∈ RH×W×1. For ResNet, we
adopt pixel-wise max pooling on {F 2D

i }3i=1 to reduce the
feature dimension to one. For ViT, we adopt attention maps
of the class token at the last transformer layer, since the
attention weights to the class token reveal how much the
features contribute to the final classification.

3.3. Image-to-Point Learning Schemes

On top of the 2D pre-trained representations for the point
cloud, I2P-MAE’s pre-training is guided by two image-to-
point learning designs: 2D-guided masking before the en-
coder, and 2D-semantic reconstruction after the decoder.

2D-guided Masking. The conventional masking strategy
samples masked tokens randomly following a uniform dis-
tribution, which might prevent the encoder from ‘seeing’
important spatial characteristics and disturb the decoder by
nonsignificant structures. Therefore, we leverage the 2D at-
tention maps to guide the masking of point tokens, which
samples more semantically significant 3D parts for encod-
ing. Specifically, indexed by the coordinates of point to-
kens PT ∈ RM×3, we back-project the multi-view atten-
tion maps {S2D

i }3i=1 into 3D space and aggregate them as a
3D attention cloud S3D ∈ RM×1. For each point in S3D,
we assign the semantic score by averaging the correspond-
ing 2D values from multi-view attention maps as

S3D = Softmax
(1
3

3∑
i=1

I2P(S2D
i , PT )

)
, (2)

where I2P(·) denotes the 2D-to-3D back-projection opera-
tion in Figure 5. We apply a softmax function to normalize
the M points within S3D, and regard each element’s mag-
nitude as the visible probability for the corresponding point
token. With this 2D semantic prior, the random masking
becomes a nonuniform sampling with different probabilities
for different tokens, where the tokens covering more critical
3D structures are more likely to be preserved. This boosts
the representation learning of the encoder by focusing more
on significant 3D geometries, and provides the masked to-
kens with more informative cues at the decoder for better
reconstruction.

Average
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Figure 5. Image-to-Point Operation (I2P). Indexed by 3D point
coordinates, the corresponding multi-view 2D representations are
back-projected into 3D space for aggregation.

2D-semantic Reconstruction. The 3D-coordinate recon-
struction of masked point tokens enables the network to
explore low-level 3D patterns. On top of that, we fur-
ther enforce the visible point tokens, T d

vis, to reconstruct
the extracted 2D semantics from different views, which ef-
fectively transfers the 2D pre-trained knowledge into 3D
pre-training. To obtain the 2D-semantic targets, we uti-
lize the coordinates of visible point tokens PT

vis ∈ RMvis×3

as indices to aggregate corresponding 2D features from
{F 2D

i }3i=1 by channel-wise concatenation, formulated as

F 3D
vis = Concat

{
I2P(F 2D

i , PT
vis)

}3

i=1
, (3)

where F 3D
vis ∈ RMvis×3C . As the multi-view depth maps

depict a 3D shape from different perspectives, the concate-
nation between multi-view 2D features can better integrate
the rich semantics inherited from 2D pre-trained models.
Then, we also adopt a reconstruction head of a single linear
projection layer for T d

vis, and compute the l2 loss as

L2D =
1

Mvis

(
H2D(T

d
vis)− F 3D

vis

)2

, (4)

where H2D(·) denotes the head to reconstruct visible 2D
semantics, parallel to H3D(·) for masked 3D coordinates.
The final pre-training loss of our I2P-MAE is then formu-
lated as LI2P = L3D +L2D. With such image-to-point fea-
ture learning, I2P-MAE not only encodes low-level spatial
variations from 3D coordinates, but also explores high-level
semantic knowledge from 2D representations. As the 2D-
guided masking has preserved visible tokens with more spa-
tial significance, the 2D-semantic reconstruction upon them
further benefits I2P-MAE to learn more discriminative 3D
representations.
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Method ModelNet40 OBJ-BG

SO-Net [35] 87.3 -
FoldingNet [74] 88.4 -
VIP-GAN [26] 90.2 -

DGCNN + Jigsaw [58] 90.6 59.5
DGCNN + OcCo [64] 90.7 78.3
DGCNN + CrossPoint [1] 91.2 81.7

Transformer + OcCo [76] 89.6 -
Point-BERT [76] 87.4 -
Point-MAE [47] 91.0 77.7
3D-OAE [85] 92.3 -
Point-M2AE [78] 92.9 84.1

I2P-MAE 93.4 87.1
Improvement +0.5 +3.0

Table 1. Linear SVM Classification on ModelNet40 [67] and
ScanObjectNN [63]. We compare the accuracy (%) of existing
self-supervised methods, and the second-best one is underlined.
We adopt the OBJ-BG split for ScanObjectNN following [1].

4. Experiments
In Section 4.1, we first introduce our pre-training set-

tings and the linear SVM classification performance with-
out fine-tuning. Then in Section 4.2, we present the results
by fully fine-tuning I2P-MAE on various 3D downstream
tasks. Finally in Section 4.3, we conduct ablation studies to
investigate the characteristics of I2P-MAE.

4.1. Image-to-Point Pre-training

Settings. We adopt the popular ShapeNet [6] for self-
supervised 3D pre-training, which contains 57,448 syn-
thetic point clouds with 55 object categories. For fair com-
parison, we follow the same MAE transformer architecture
as Point-M2AE [78]: a 3-stage encoder with 5 blocks per
stage, a 2-stage decoder with 1 block per stage, 2,048 input
point number (N ), 512 downsampled number (M ), 16 near-
est neighbors (k), 384 feature channels (C), and the mask
ratio of 80%. For off-the-shelf 2D models, we utilize ViT-
Base [14] pre-trained by CLIP [53] as default and keep its
weights frozen during 3D pre-training. We project the point
cloud into three 224 × 224 depth maps, and obtain the 2D
feature size H ×W of 14× 14. I2P-MAE is pre-trained for
300 epochs with a batch size 64 and learning rate 10−3. We
adopt AdamW [34] optimizer with a weight decay 5×10−2

and the cosine scheduler with 10-epoch warm-up.

Linear SVM. To evaluate the transfer capacity, we di-
rectly utilize the features extracted by I2P-MAE’s encoder
for linear SVM on the synthetic ModelNet40 [67] and real-
world ScanObjectNN [63] without any fine-tuning or vot-
ing. As shown in Table 1, for 3D shape classification in

Method OBJ-BG OBJ-ONLY PB-T50-RS

PointNet [50] 73.3 79.2 68.0
PointNet++ [51] 82.3 84.3 77.9
PointCNN [37] 86.1 85.5 78.5
MVTN [25] - - 82.8
PointMLP [2] - - 85.2

Transformer [76] 79.86 80.55 77.24
[P] Point-BERT [76] 87.43 88.12 83.07
[P] 3D-OAE [85] 89.16 88.64 83.17
[P] MaskPoint [41] 89.30 88.10 84.30
[P] Point-MAE [47] 90.02 88.29 85.18
[P] MAE3D [33] - - 86.20
[P] Point-M2AE [78] 91.22 88.81 86.43

[P] I2P-MAE 94.15 91.57 90.11
Improvement +2.93 +2.76 +3.68

Table 2. Real-world 3D Classification on ScanObjectNN [63].
We report the accuracy (%) on the official three splits of ScanOb-
jectNN. [P] denotes to fine-tune the models after self-supervised
pre-training.

both domains, I2P-MAE shows superior performance and
exceeds the second-best respectively by +0.5% and +3.0%
accuracy. Our SVM results (93.4%, 87.1%) can even sur-
pass some existing methods after full downstream training
in Table 2 and 3, e.g., PointCNN [37] (92.2%, 86.1%),
Transformer [76] (91.4%, 79.86%), and Point-BERT [76]
(92.7%, 87.43%). In addition, guided by the 2D pre-trained
models, I2P-MAE exhibits much faster pre-training conver-
gence than Point-MAE [47] and Point-M2AE in Figure 3.
Therefore, the SVM performance of I2P-MAE demon-
strates its learned high-quality 3D representations and the
significance of our image-to-point learning schemes.

4.2. Downstream Tasks

After pre-training, I2P-MAE is fine-tuned for real-world
and synthetic 3D classification, and part segmentation. Ex-
cept ModelNet40 [67], we do not use the voting strat-
egy [43] for evaluation.

Real-world 3D Classification. The challenging ScanOb-
jectNN [63] consists of 11,416 training and 2,882 test 3D
shapes, which are scanned from the real-world scenes and
thus include backgrounds with noises. As shown in Ta-
ble 2, our I2P-MAE exerts great advantages over other self-
supervised methods, surpassing the second-best by +2.93%,
+2.76%, and +3.68% respectively for the three splits. This
is also the first model reaching 90% accuracy on the hardest
PB-T50-RS spilt. As the pre-training point clouds [6] are
synthetic 3D shapes with a large domain gap with the real-
world ScanobjectNN, the results well indicate the universal-
ity of I2P-MAE inherited from the 2D pre-trained models.
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Method Points No Voting Voting

PointNet [50] 1k 89.2 -
PointNet++ [51] 1k 90.7 -
PointCNN [37] 1k 92.2 -
Point Transformer [84] - 93.7

Transformer [76] 1k 91.4 -
[P] Point-BERT [76] 1k 92.7 93.2
[P] 3D-OAE [85] 1k - 93.4
[P] Point-MAE [47] 1k 93.2 93.8

Point-MAE 8k - 94.0
[P] Point-M2AE [78] 1k 93.4 94.0
[P] I2P-MAE-SVM 1k 93.4 -

I2P-MAE 1k 93.7 94.1

Table 3. Synthetic 3D Classification on ModelNet40 [67]. We
report the accuracy (%) before and after the voting [43]. [P] de-
notes to fine-tune the models after self-supervised pre-training.

Synthetic 3D Classification. The widely adopted Model-
Net40 [67] contains 9,843 training and 2,468 test 3D point
clouds, which are sampled from the synthetic CAD mod-
els of 40 categories. We report the classification accuracy
of existing methods before and after the voting in Table 3.
As shown, our I2P-MAE achieves leading performance for
both settings with only 1k input point number. For linear
SVM without any fine-tuning, I2P-MAE-SVM can already
attain 93.4% accuracy and exceed most previous works, in-
dicating the powerful transfer ability. By fine-tuning the en-
tire network, the accuracy can be further boosted by +0.3%
accuracy, and achieve 94.1% after the offline voting.

Part Segmentation. The synthetic ShapeNetPart [75] is
selected from ShapeNet [6] with 16 object categories and
50 part categories, which contains 14,007 and 2,874 sam-
ples for training and validation. We utilize the same seg-
mentation head after the pre-trained encoder as previous
works [47,78] for fair comparison. The head only conducts
simple upsampling for point tokens at different stages and
concatenates them alone the feature dimension as the out-
put. Two types of mean IoU scores, mIoUC and mIoUI are
reported in Table 4. For such highly saturated benchmark,
I2P-MAE can still exert leading performance guided by
the well learned 2D knowledge, e.g., +0.29% and +0.25%
higher than Point-M2AE concerning the two metrics. This
demonstrates that the 2D guidance also benefits the under-
standing for fine-grained point-wise 3D patterns.

4.3. Ablation Study

In this section, we explore the effectiveness of different
characteristics in I2P-MAE. We utilize our final solution as
the baseline and report the linear SVM accuracy (%).

Method mIoUC mIoUI

PointNet [50] 80.39 83.70
PointNet++ [51] 81.85 85.10
DGCNN [65] 82.33 85.20
PointMLP [2] 84.60 86.10

Transformer [76] 83.42 85.10
[P] Transformer + OcCo [76] 83.42 85.10
[P] Point-BERT [76] 84.11 85.60
[P] 3D-OAE [85] - 85.70
[P] MaskPoint [41] 84.40 86.00
[P] Point-MAE [47] - 86.10
[P] Point-M2AE [78] 84.86 86.51

[P] I2P-MAE 85.15 86.76

Table 4. Part Segmentation on ShapeNetPart [75]. We report
the average IoU scores (%) for part categories and instances, re-
spectively denoted as ‘mIoUC ’ and ‘mIoUI ’.

Method 20% 40% 60% 80% 100%

Point-MAE [47] 89.4 90.2 90.3 90.5 91.0
Point-M2AE [78] 90.8 92.0 92.1 92.4 92.9
I2P-MAE 92.1 92.7 93.1 93.1 93.4
Improvement +1.3 +0.7 +1.0 +0.7 +0.5

Table 5. Pre-training with Limited 3D Data. We utilize ran-
domly sampled 3D data from ShapeNet [6] for pre-training.

Pre-training with Limited 3D Data. In Table 5, we ran-
domly sample the pre-training dataset, ShapeNet [6], with
different ratios, and evaluate the performance of I2P-MAE
when 3D data is further deficient. Aided by 2D pre-trained
models, I2P-MAE still achieves competitive downstream
accuracy in low-data regimes, especially for 20% and 60%,
which outperforms Point-M2AE [78] by +1.3% and +1.0,
respectively. Importantly, with only 60% of the pre-training,
I2P-MAE (93.1%) outperforms Point-MAE (91.0%) and
Point-M2AE (92.9%) with full training data. This indicates
that our image-to-point learning scheme effectively can al-
leviate the need for large-scale 3D training datasets.

2D-guided Masking. In Table 6, we experiment differ-
ent masking strategies for I2P-MAE. The first row repre-
sents 2D-guided masking, which preserves more semanti-
cally important tokens to be visible for the encoder. Com-
pared to the second-row random masking, the guidance of
2D attention maps contributes to +0.4% and +0.9% accu-
racy on two datasets. Then, we reverse the token scores in
the spatial attention cloud, and instead mask the most im-
portant tokens. As shown in the third row, the results are
largely harmed, demonstrating the significance of encoding
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2D-guided Visible Ratio ModelNet40 OBJ-BG

✓ Important 0.8 93.4 87.1
- Random 0.8 93.0 86.2
✓ Unimportant 0.8 92.8 84.5
✓ Important 0.7 92.5 83.8
✓ Important 0.9 92.8 85.6

Table 6. 2D-guided Masking. ‘Visible’ denotes whether the pre-
served visible point tokens are more semantically important than
the masked ones. ‘Ratio’ denotes the masking ratio.

Tokens Targets
ModelNet40 OBJ-BG

Masked Visible 3D 2D

✓ ✓ M V 93.4 87.1
✓ - M - 92.9 84.7
- ✓ - V 91.9 80.2
✓ - - M 91.2 77.8
✓ - M M 92.6 84.9

Table 7. 2D-semantic Reconstruction. We utilize ‘M’ and ‘V’
to denote the reconstruction targets of masked and visible tokens.
‘3D’ and ‘2D’ denote 3D coordinates and 2D semantics.

critical 3D structures. Finally, we modify the masking ratio
by ± 0.1, which controls the proportion between visible and
masked tokens. The performance decay indicates that, the
2D-semantic and 3D-coordinate reconstruction are required
to be well balanced for a properly challenging pre-text task.

2D-semantic Reconstruction. In Table 7, we investi-
gate which groups of tokens are the best for learning 2D-
semantic targets. The comparison of the first two rows re-
veals the effectiveness of reconstructing 2D semantics from
visible tokens, i.e., +0.5% and +2.4% classification accu-
racy. By only using 2D targets for either the visible or
masked tokens (the 3rd and 4th rows), we verify that the
3D-coordinate reconstruction still plays an important role
in I2P-MAE, which learns low-level geometric 3D patterns
and provides complementary knowledge to the high-level
2D semantics. However, if the 3D and 2D targets are
both reconstructed from the masked tokens (the last row),
the network is restricted to learn 2D knowledge from the
masked nonsignificant 3D geometries, other than the more
discriminative parts. Also, assigning two targets on the
same tokens might cause 2D-3D semantic conflicts. There-
fore, the two targets are best to be reconstructed separately.

5. Visualization
We visualize the input point cloud, random masking,

spatial attention cloud, 2D-guided masking, and the recon-
structed 3D coordinates in Figure 6. Guided by the semantic
scores from 2D pre-trained models (darker points indicate

Input	
Point	Cloud

Random
Masking

Spatial
Attention
Cloud

2D-guided
Masking

Reconstructed
Point	Cloud

Figure 6. Visualization of I2P-MAE. Guided by the spatial atten-
tion cloud, I2P-MAE’s masking (the 4th column) preserves more
semantically important 3D structures than random masking.

higher scores), the masked point cloud largely preserves
significant parts of the 3D shape, e.g., the main body of an
airplane, the grip of a guitar, the frame of a chair and head-
phone. By this, the 3D network can learn more discrimina-
tive features by reconstructing these visible 2D semantics.

6. Conclusion

In this paper, we propose I2P-MAE, a masked point
modeling framework with effective image-to-point learning
schemes. We introduce two approaches to transfer the well
learned 2D knowledge into 3D domains: 2D-guided mask-
ing and 2D-semantic reconstruction. Aided by the 2D guid-
ance, I2P-MAE learns superior 3D representations and alle-
viates the demand for large-scale 3D data. For future work,
not limited to masking and reconstruction, we will explore
more sufficient image-to-point learning approaches, e.g.,
point token sampling and 2D-3D class-token contrast. Also,
we expect our pre-trained models to benefit wider ranges of
3D tasks, e.g., 3D object detection and visual grounding.
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