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Abstract

Generative models show good potential for recovering
3D faces beyond limited shape assumptions. While plau-
sible details and resolutions are achieved, these models
easily fail under extreme conditions of pose, shadow or
appearance, due to the entangled fitting or lack of multi-
view priors. To address this problem, this paper presents
a novel Neural Proto-face Field (NPF) for unsupervised
robust 3D face modeling. Instead of using constrained
images as Neural Radiance Field (NeRF), NPF disentan-
gles the common/specific facial cues, i.e., ID, expression
and scene-specific details from in-the-wild photo collec-
tions. Specifically, NPF learns a face prototype to aggregate
3D-consistent identity via uncertainty modeling, extract-
ing multi-image priors from a photo collection. NPF then
learns to deform the prototype with the appropriate facial
expressions, constrained by a loss of expression consistency
and personal idiosyncrasies. Finally, NPF is optimized to fit
a target image in the collection, recovering specific details
of appearance and geometry. In this way, the generative
model benefits from multi-image priors and meaningful fa-
cial structures. Extensive experiments on benchmarks show
that NPF recovers superior or competitive facial shapes
and textures, compared to state-of-the-art methods.

1. Introduction

3D face reconstruction is a long-standing problem with

applications including games, digital human and mobile

photography. It is ill-posed in many cases requiring strong

assumptions e.g., shape from shading [99]. With the 3D

Morphable Model (3DMM) [10] proposed, such a problem

can be solved by fitting parameters to the target faces [67,

68, 107]. Recently, deep-learning methods [22, 25, 43, 64,

*Chengjie Wang and Ying Tai are corresponding authors

Figure 1. (a) Comparison with graphics-renderer-based methods

LAP [100] and D3DFR [20]. Our method models geometry de-

tails and photo-realistic texture. (b) Results of neural rendering

methods EG3D [13] + PTI [66], HeadNeRF [34] and our method.

Our method produces high-quality geometry, robust texture mod-

eling under rotation and deformation.

105] are proposed to regress 3DMM parameters from in-

put images. These approaches are then improved by non-

linear modeling [24, 29, 79, 81, 84, 94] and multi-view con-

sistency [7, 15, 76, 90]. Besides 3DMM methods, recent ef-

forts [91, 100] attempt to model 3D face without shape as-

sumptions. These non-parametric methods have potential

ability to improve the modeling quality beyond 3DMM.

Although the aforementioned methods achieve impres-

sive performance, they also have obvious drawbacks. On

the one hand, as the parametric models are usually built

from a small amount of subjects (e.g., BFM [58] with 200

subjects) and rigidly controlled conditions, they may be

fragile to large variations of identity [106], and have limi-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

382



tations on building teeth, skin details or anatomic grounded

muscles [23]. On the other hand, all of these methods de-

pend on graphics renderers [42, 44, 46] in the analysis-by-

synthesis fitting procedure, and thus yields hand-crafted ap-

proximation or ill-posed decomposition on intrinsic clues.

Hence, as illustrated in Fig. 1-(a), these methods struggle to

produce photo-realistic texture or geometric details.

Against these limitations, efforts are made to use a neu-

ral renderer such as StyleGAN [38, 39] to model faces by

inverting the corresponding images [1,2] into W space. Ex-

isting methods [11, 18, 59, 62, 92] mainly learn to embed

3DMM coefficients to implicitly leverage 3D clues, but they

have difficulty achieving precise 3D controls due to their en-

tangled image formation. To disentangle neural rendering,

recent works [13, 14, 34, 54] employ explicit 3D pipelines,

e.g., Neural Radiance Field (NeRF) [52] into the Style-

GANs’ framework, so that face shapes and camera views

can be extracted. In this way, precise 3D controls and de-

tailed geometry can be obtained. However, these methods

still show fragile performance under challenging conditions

as shown in Fig. 1-(b). When confronting large poses, ex-

treme appearance or lighting, the lack of facial priors dis-

turbs the reconstruction and results in severe distortions.

This is due to the essentially overfitting objective of invert-

ing single target image, where the geometry ambiguity is

unavoidable.

On top of this, one solution is to leverage reliable pri-

ors, e.g., multi-image consistency as a complement. While

NeRF provides a natural paradigm to dig multi-view cues, it

requires fully constrained images that are difficult to obtain.

Even conditioned by style codes [13, 14, 54], there is no di-

rect way to build 3D faces from unconstrained portrait col-

lections in such a neural rendering mechanism. In this work,

we present a novel Neural Proto-face Field (NPF) for un-

supervised robust 3D face modeling, where ID, expression

and scene-specific details can be disentangled from in-the-

wild photo collections. To aggregate ID-aware cues, NPF

leverages uncertainty modeling to extract multi-image pri-

ors and recovers a face prototype with ID-consistent face

shape. To disentangle the expression, NPF then learns

appropriate representations to deform the prototype, con-

strained by a expression consistency loss. In this way, the

learned face shape is properly blended to avoid geometric

ambiguity. Finally, to recover the scene-specific details,

NPF is optimized to fit a target image in the collection. The

robustness of fitting is guaranteed by a geometry and ap-

pearance regularization. As shown in Fig. 1-(b), NPF makes

the generative method benefit from multi-image priors in

unconstrained environments, and produces high-quality 3D

faces under challenging conditions.

In summary, our contributions are as follows:

1) A novel Neural Proto-face Field (NPF) is proposed to

disentangle ID, expression and specific details from 3D face

Methods Rendering Pipeline Multi-view

EMOCA [81], DECA [24], Unsup3D [91] Graphics Disentangled ×
LAP [100], FML [76], MVF [90] Graphics Disentangled �

DFG [18], StyleRig [77], StyleFlow [3] Neural Entangled ×
Pi-GAN [14], StyleSDF [54], EG3D [13] Neural Disentangled ×

Ours Neural Disentangled �

Table 1. Discussion with selected existing methods.

modeling, which uses in-the-wild photo collections to ben-

efit the 3D generative model under challenging conditions.

2) With a novel face prototype aggregation method, NPF

integrates multi-image face priors against the large varia-

tions in unconstrained environments.

3) With a series of novel consistency losses, NPF is well

fit to specific scenes with personalized details, based on the

guidance of face prototypes.

2. Related Works
In Table 1, we make a discussion on existing methods.

NPF benefits from neural rendering and avoids hand-crafted

approximations of graphics renderers. In contrast to neural

rendering methods, our approach has explicit 3D pipelines,

and leverages multi-image consistency in the wild.

3D Face Reconstruction: As a long-standing problem,

the studies mainly start from the pioneer work 3DMM [10].

With the parametric model, early works try to find suitable

parameters via optimization [67, 68, 107], while recent ap-

proaches [25, 64, 105, 106] leverage deep neural networks

to regress the results from input images. With the differ-

entiable renderers proposed, efforts are made on aspects of

unsupervised learning [30,65,81], improving the non-linear

feasibility [16,21,24,29,81,84,104] and multi-view consis-

tency [7, 15, 76, 90]. More recent works attempt to learn

complete 3DMM basis [79] or implicit functions [94, 102]

which brings new possibilities to this topic.

Beyond 3DMM, non-parametric models are also devel-

oped by data-driven supervised training [4, 35, 97]. With

shape-from-shading algorithm [99], unsupervised methods

are proposed including SFS-Net [70], Unsup3D [91] and

LAP [100]. Recently, Gan2Shape [55] and LiftedGAN [72]

try to distill knowledge from 2D GANs for 3D reconstruc-

tion. De3D [89] de-renders more intrinsic factors based on

reliable priors. Different from the these discussed meth-

ods, NPF benefits 3D face modeling via neural rendering

mechanisms, thus provides better performance on details,

resolution and non-facial objects.

Neural Scene Representation: Neural scene represen-

tation is a novel way to parameterize signals, and attracts

more attention on learning geometry [12, 49, 51, 74, 93].

Recent effort Neural Radiance Field (NeRF) [8, 9, 52]

shows impressive performance on recovering appearance

and shapes from multi-view images. Based on NeRF, 3D

face can also be modeled [28,61,86,87] from a few or single

views. Recent efforts are developed to perform reconstruc-
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tion against non-rigid deformation [56,57,60]. Conditioned

on specific expressions, NeRF can also be used to realize

editing [5, 36] or 4D facial avatars [27, 31, 103]. In sum-

mary, these methods depend on fully constrained environ-

ments, i.e., the used images have to be captured at a same

time. In contrast, our method leverages face consistency

from in-the-wild photo sets that are easy to collect, and ad-

dresses large variations of lighting, appearance or artifacts.

Neural Rendering on Face Modeling: Neural render-

ing aims to render images using neural networks [50,78,80]

with much relaxed inputs. The style-based approaches, i.e.,

StyleGANs [37–39] obtain the state-of-the-art performance

on face generation. With the pretrained StyleGANs, face

modeling can be achieved by inverting the target images

[1,2,63,66]. 3D embedding (e.g., 3DMM parameter) is then

employed to implicitly control the StyleGAN’s prediction

on pose, identity and lighting [3,18,77]. However, they can-

not guarantee the robustness on physical perspective, nor

obtain explicit geometry. More recent works attempt to em-

ploy 3D pipelines, such as NeRF or deferred neural render-

ing [82], into StyleGANs [11,13,14,19,32,53,54,75,101].

While these methods achieve more precise controls and fa-

cial geometry prediction, they are fragile to large pose and

ambiguous appearance due to the single-image fitting. In

contrast, NPF well leverages multi-image consistency as

complementary priors and shows more robust performance.

3. Preliminary

Exploiting the consistency of multiple images, especially

from unconstrained environments, is non-trivial for neural

rendering methods because there is no explicit topology that

can be shared within the image set. While NeRF provides a

natural paradigm to dig consistency from different views, it

requires photos taken at the same time or constrained scene.

Recent 3D-aware generative methods [13, 14, 32, 54] show

that NeRF can represent different faces conditioned on style

codes. Such an evidence makes it possible to learn com-

mon hybrid 3D representations from in-the-wild photo col-

lections. Without loss of generality, we build our model on

EG3D [13] as it achieves the state-of-the-art performance.

EG3D represents the 3D scene as a tri-plane denoted as:

Fxy,Fxz,Fyz = Φg(s), s = {sj}Mj=1, (1)

where F ∈ [H,W,C] is the orthogonal feature plane along

different axis, and Φg is the StyleGAN generator. s ∈
R

14×512 is the style code with stages M = 14, generated

from a random noise z by a mapping network. Then any 3D

position x ∈ R
3 can be projected onto each of the three fea-

ture planes, retrieving its feature f = fxy+fxz+fyz via bi-

linear interpolation. The corresponding density σ and color

c is predicted by a tri-plane decoder Φd from f . In this way,

given a camera pose p, origin o and near/far bound tn, tf ,

the pixel color C for a ray r(t) = o + td can be obtained

using volume rendering equation [48]:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d) dt, (2)

where T (t) = exp(
∫ t

tn
σ(r(s))ds, and t is the sampled

point along each ray. Using Eqn. 2, EG3D renders a low-

resolution image Il as well as a feature image If . If is

then fed into a super-resolution module Φu to generate final

face image I. Adversarial loss is calculated between I, Il
and the real image to update Φg,Φd and Φu. Once trained,

given a target image It, face modeling can be achieved by

image inversion [1,63,66]. As discussed in Sec. 1, this kind

of approaches suffer from ambiguous appearance and large

poses. In contrast, NPF tackles the problem by further dis-

entangling a face using multi-image priors, which is intro-

duced in the following.

4. Methodology
In this section, we introduce the proposed Neural Proto-

face Field (NPF). Our aim is digging multi-image priors

to improve the robustness of 3D face modeling. This is

achieved by disentangling ID-consistent shape, expression

and specific details from in-the-wild photo collection. The

overview is shown in Fig. 2, where NPF contains identity-

aware aggregation and deformation modeling to recover

face prototypes (Sec. 4.1). After NPF is learned, the target

face is reconstructed by a fitting procedure (Sec. 4.2).

4.1. Neural Proto-face Field Learning

Face appearance of an identity shares consistent cues

due to the invariant face geometry, even under differ-

ent in-the-wild environments. Such consistency has been

widely used in previous methods by sharing the coeffi-

cients [20,69,79,90] or combining the UV space [100,101].

Inspired by these efforts, we propose NPF to aggregate a

common hybrid 3D representation from each photo col-

lection, which models a face prototype with ID-consistent

shape from reliable priors.

Identity-aware Aggregation: Our method starts from

the style code s = {sj}Mj=1, which well conditions the radi-

ance field of tri-planes to render a face image I. Theoreti-

cally, s can be obtained from various methods [1, 2, 63, 83].

Without specially statement, we use the most direct scheme

proposed in [38] to optimize s for real-image inversion.

Given a photo collection {Ii}Ni=1 of a same ID, we obtain

{si}Ni=1 in the W space. Although finding optimal solution

is difficult, si still represents the face shape of Ii, and such

consistent cues should have much lower uncertainty than

any other information within the image set. As a result, we

propose an uncertainty-aware aggregation method inspired

by [73] to extract the consistency. As illustrated in Fig. 2,
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Figure 2. Overview of NPF learning method. For an in-the-wild photo collection {Ii}Ni=1, we first obtain its style codes {si}Ni=1 and

uncertainties {ωi}Ni=1, then perform identity-aware aggregation to get the pivotal proto code s̄. To model deformation, we use 3DMM

expression parameters {βi}Ni=1 as conditions, and train deformation networks {Φj
Δ}Mj=1 to predict deformation code Δsi. We also learn

global face representation h̄j at j-th stage to complement for personalized idiosyncrasies. In this way, the ID-consistent face is suitably

blended on the manifold by Eqn. 5. Training by Eqn. 7, NPF well leverages the consistency within in-the-wild portrait sets.

we use an encoder Φa to get uncertainty ωi ∈ R
512 from Ii,

and assume Ii to have a multivariate Gaussian representa-

tion N (si, ωi) in the latent space. Then the aggregation is

performed as:

s̄ =

N∑
i=1

ω2

ω2
i

si,
1

ω2
=

N∑
i=1

1

ω2
i

, (3)

where s̄ is the pivotal proto code similar to PTI [66] but

from the photo collection instead of a single image. When

forcing s̄ to approximate each image, the consistency which

has lower uncertainty within {Ii}Ni=1 is remained, while

other information is suppressed. In this way, the the com-

mon facial shape and appearance is well aggregated into s̄
as a face prototype. Further, compared with average pool-

ing, the adaptively fusion algorithm of Eqn. 3 can be jointly

learned with deformation to improve the modeling quality,

which is introduced in the following.

Deformation Modeling: Although s̄ has the common

prior of an identity, it considers no facial deformation which

is suppressed after the aggregation, resulting in a mean ex-

pression. Actually, modeling deformation is crucial for face

reconstruction [10]. On the one hand, if the face prototype

has a different expression from the target image, then recov-

ering the gap will be difficult in the fitting procedure. On

the other hand, face images have different appearance and

silhouettes due to expression variation, and thus discarding

the expression brings ambiguity or conflicts to the consis-

tent geometry. Hence, we propose deformation modeling

method to disentangle expressions of face prototype.

Previous works [56, 57] learn deformation during NeRF

sampling, which depends on plentiful images captured in

a constrained environment. As the data we use is in-the-

wild with limited numbers, using such a deformation strat-

egy is difficult. In contrast, we model expression by modi-

fying style codes. As illustrated in Fig. 2, we first extracts

the 3DMM expression parameters {βi}Ni=1, βi ∈ R
64 and

camera poses {pi}Ni=1 from a pretrained 3D face network

Φ3d [20], which provides guidance on tuning s̄. Note that,

{βi}Ni=1 cannot well represent the personalized expression

with unique idiosyncrasies, as it is unrelated to the iden-

tity. Hence, we extracts global image representations from

{Ii}Ni=1 to complement for the characteristics. We use a

similar encoder Φe as PSP [63] to get the representation

hj
i ∈ R

512, j = 1, 2, ...,M and the corresponding uncer-

tainty μj
i from Ii. Then following Eqn. 3, we fuse the

{hj
i}Ni=1 using {μj

i}Ni=1 to get the global representation h̄j at

j-th stage. With the global h̄j of the collection, we propose

deformation networks {Φj
Δ}Mj=1 to predict the deformation

code on each stage, which can be defined as:

Δsji = Φj
Δ(h̄

j , βi). (4)

Denoting {Δsji}Mj=1 as Δsi for simplification, the person-

alized deformation of Ii can be achieved via modifying the

pivotal proto code:

ŝi = s̄+Δsi. (5)

Finally, the face prototype Îi can be obtained from ŝi and

pi using pretrained EG3D networks. In this way, Îi suf-

fers from less appearance conflicts to Ii. Further, by jointly
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learning of Δsi and s̄, the consistent face shape within a

collection is adaptively blended against non-rigid ambigu-

ity, and have more precise geometry and texture.

Training Loss: Note that we do not require Îi to be

exactly the same as Ii, but have a proper expression and

a consistent blended shape among {Ii}Ni=1. To achieve

such an aim, we propose a series of consistency losses to

learn Φa,Φe and ΦΔ. The reconstruction loss is defined as

Lre = Llpips(Îi−Ii)+LL2(Îi−Ii), where Llpips is the per-

ceptual loss [98] and LL2 is the L2 distance. To constrain

the expression of Îi, we propose an expression consistency

loss using pretrained Φ3d:

Lc(Îi, βi) =
1

Ω
|Φ3d(Îi)− βi|, (6)

where Ω is the normalization factor. To prevent distortion,

we limit the deformation code via a regularization as Ld =
‖Δsi‖22. The final loss function is denoted as:

Lproto =

N∑
i=1

Lre(Îi, Ii) + λcLc(Îi, βi) + λdLd(si), (7)

where λc, λd are the weights. When using Lproto to up-

date Φa,Φe and ΦΔ, the networks of EG3D are all frozen.

In this way, we learn neural proto-face field from in-the-

wild photo collections, and disentangle identities and ex-

pressions of the face prototypes.

4.2. Neural Proto-face Field Fitting

Once NPF is learned, we get a 3D hybrid initializa-

tion containing consistent cues of the photo collection, con-

strained by reliable multi-image priors. To model the pre-

cise 3D faces, scene-specific details need to be recovered.

Such an aim can be achieved by tuning the generator us-

ing pivotal tuning (PTI) algorithm [66]. However, PTI has

obvious drawbacks of two aspects: 1) its pivotal code has

no multi-view prior; 2) its tuning procedure easily overfits

to a single image. The former one has been addressed by

NPF. For the latter, we propose a consistent fitting method

to overcome the monocular ambiguity.

Multi-image Warm-Up: Fitting is achieved by tuning

the generator Φg of EG3D while freezing other networks.

In the early stage of fitting, we need to prevent the genera-

tor converging to a local optimum that provides distortions

due to challenging conditions. In contrast to fitting a single

image, we propose a multi-image warm-up method to fit Φg

to the photo collection {Ii}Ni=1. We use Lre to approach the

target image set. To guarantee the geometry consistency at

unseen views, we randomly sample a camera pose p′ at ev-

ery step, and use the volume renderer of EG3D to predict

the corresponding normal maps n̂i and ṅi from the origi-

nal/new weights of Φg , respectively. Then we calculate the

Lre

Lgc

Lac

Lre

Figure 3. The proposed consistency losses of NPF fitting. (a)

Multi-image Warm-up; (b) Robust Target-image Fitting.

geometry consistency loss Lgc(ṅi, n̂i) = ‖ṅi−n̂i‖22 to con-

strain the robustness of facial geometry. The final objective

of multi-image warm-up is denoted as:

Lwarm =

N∑
i=1

Lre(İi, Ii) + λgLgc(ṅi, n̂i), (8)

where İi is the reconstructed image. Using Lwarm, we

make Φg initialize to a solution near the optimum of each

image, and suppress distortions of unseen poses.

Robust Target-image Fitting: After the multi-image

warm-up, we fit Φg to the target image Ii and model specific

details. Besides the reconstruction loss Lre, we constrain

the recovered appearance of unseen poses. Similar to Lgc,

we randomly sample a camera pose p′ at each step and ren-

der an image İ′i, then encourage İ′i and the target Ii to have

similar representations via Lac = ‖Φe(İ
′
i)−Φe(Ii)‖22. The

final loss of robust target-image fitting is:

Ltarget = Lre(İi, Ii) + λaLac. (9)

In this way, we improve the robustness of the scene-specific

details recovering.

5. Experiment
Dataset: We first train our Φa,Φe and ΦΔ on

CelebA [45] and CASIA-WebFace [95], then fine-tune

them on a high-resolution dataset CelebAMask-HQ [41].

Following [100], we organize CelebA and CASIA-

WebFace using ID-labels and keep each identity with at

least 6 photos. This provides 600K images with 16K

identities. We select images of 12K/2K/2K identities as

train/val/test set. For CelebAMask-HQ, we organize it into

24K different identities using ground truth ID-labels, and

randomly select 20K/1K/3K identities as train/val/test set.

Following [4, 91, 100], we perform testing on MICC [6],

Photoface [96] and FG3D [26] dataset. Photoface dataset

contains 12K images of 453 people with face/normal image

386



No. method p2p (mm) ↓ MAD (deg.) ↓ IDE ↓
(1) Ours 1.77 11.87 0.257
(2) Ours face prototype 1.96 12.39 0.307

(3) w/o uncertainty = avg pooling 1.87 12.13 0.298

(4) w/o deformation modeling 2.25 12.90 0.401

(5) w/o Φe 2.01 12.46 0.350

(6) w/o multi-image warm-up 1.84 12.30 0.301

(7) w/o Lgc 1.80 12.15 0.274

(8) w/o Lac 1.79 11.87 0.262

(9) single-image PTI [66] 2.35 12.10 0.482

Table 2. Comparison with Different Baselines and Settings.

pairs, and we follow the protocol of [4,70] for testing. More

details are introduced in Appendix.

Implementation Details: We build Φa using a similar

architecture to the encoder of [91, 100]. The deformation

network Φj
Δ of j-th stage contains 3 MLP layers to encode

βi, and another 3 MLP layers to predict Δsji from the com-

bination of βi, h̄
j . We set λc = 1, λd = 1e− 3, λg = λa =

0.2 for the losses. Following [13], the output images of the

model are of 512 × 512, and the meshes are extracted us-

ing Marching Cubes [47] with a same size. During training,

we randomly set N from 1 to 6 to adapt different sizes of

a photo collection. We train the model with batch size of

4 on CelebA and CASIA-WebFace for 15 epochs, and fine-

tune it on CelebAMaskHQ for 30 epochs. During fitting,

the multi-image warm-up lasts 100 steps and robust target-

image fitting lasts another 100 steps. We use Adam [40] as

the optimizer, and set the learning rate as 0.0001 on a V-100

GPU. More details are in the Appendix.

Evaluation Protocol: Without special statements, we

use 4-image results to compare with other methods. To

evaluate the modeled texture, we calculate Structural Simi-

larity Index (SSIM) [88], Cosine-similarity of Arcface [17]

representation and RMSE of identity parameters (IDE) of

3D face network [20] between the original high-quality im-

ages and rendered ones. We render images under different

poses to measure the robustness. To evaluate the geometry,

we rigid-align predictions to the ground truth via ICP using

hand-crafted key points. Mean Angle Deviation (MAD) of

normal maps and point-to-plane (p2p) distance between the

aligned prediction and ground truth are utilized as metrics.

Please see Appendix for more details.

5.1. Ablation Study

Comparison with Baselines: We first analyse differ-

ent settings of NPF in Table 2. We calculate NME, MAD

and IDE metrics on MICC, Photoface and CelebaMaskHQ

dataset, respectively. In row (1), our full method obtains

the best performance in all metrics, approving the effective-

ness of each proposed component. In row (2), we observe

that the face prototype gets satisfactory, or even better re-

sults than several baselines, which reveals that NPF well

integrates consistency from photo collection. In row (3),

we replace the adaptive uncertainty with average pooling

to get the proto code s̄, and the performance is reduced to

Figure 4. Analysis on the deformation modeling. (a) How the

deformation modeling improves the details and shape accuracy.

(b) How the settings of deformation modules influence the results.

some extent. This reveals our identity-aware aggregation

well contributes on digging consistent cues. In row (4), the

significant accuracy drop demonstrates the effectiveness of

deformation modeling on avoiding expression-aware shape

ambiguity. Row (5) also proves that the global face rep-

resentation from Φe improves the quality of deformation

modeling. Rows (6)-(8) reveal that the multi-image warm-

up and consistency losses also improve the robustness. Fi-

nally, row (9) is the state-of-the-art single-image baseline,

where it achieves even worse results than face prototype

in IDE. This is due to the distortion caused by overfitting

or ambiguity under challenging conditions of pose, lighting

and occlusion.

Analysis on Deformation Modeling: We analyse how

the proposed deformation modeling method improves the

performance. In Fig. 4-(a), we highlight the differences

between this two settings. Without deformation modeling,

fusing the style codes yields s̄ to represent a mean expres-

sion on the face prototype, which is different from the target

face. Hence, it brings difficulty to recover the target’s ex-

pression during NPF fitting. Further, as the face shapes with

various expressions show different appearance and silhou-

ettes on the images, ignoring the deformation brings am-

biguity when digging the multi-image consistency. Hence,

such a model produces improper shapes and details. In con-

trast, modeling the deformation recovers the target’s expres-

sion, the corresponding shapes and appearance effects. In

Fig. 4-(b), we show the influence of different settings. With-

out deformation modeling, the target expression cannot be

recovered. Without the global representation h̄, the expres-

sion effect is produced but not accurate enough. Finally, our

full method recovers precise target deformation.

Analysis on Multi-image Consistency: We analyse

how our method leverages the multi-image priors from in-

the-wild photo collections. In Fig. 5-(a), we show the in-

fluence of the size N of photo collections. Compared with

the single-image setting (same as PTI [66]), N = 2 sig-
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Figure 5. Analysis on the multi-image consistency. (a) (b) Perfor-

mance under different photo collection size N ; (c) The effective-

ness of multi-image warm-up. Red box signs the target image.

MICC FG3D

Method 3DMM indoor outdoor LQ HQ

Extreme3D [85] � 3.66 3.70 3.49 3.58

PRN [25] � 2.32 2.47 2.38 2.06

RingNet [69] � 1.93 2.02 2.08 2.02

3DDFA v2 [33] � 1.88 1.96 2.10 1.91

D3DFR [20] (mv) � 1.66 1.69 1.90 1.95

MGCnet [71] � 1.72 1.78 1.95 1.90

DECA [24] � 1.69 1.70 1.91 1.89
Cross-modal [4] × 2.39 2.33 2.30 2.04

Unsup3D [91] × 2.48 2.52 2.41 2.29

LAP [100] (mv) × 2.32 2.25 2.18 2.16

PhyDIR [101] (mv) × 2.29 2.20 2.25 2.09

Ours × 1.75 1.81 2.15 1.98

Table 3. Point-to-plane distance (mm) on benchmarks.

nificantly improves the accuracy, revealing that even two

images still provide reliable priors. With N increasing, the

accuracy gets better. Fig. 5-(b) illustrates the qualitative per-

formance. The single-image result has obvious distortion

of facial shape due to the target’s large pose and challeng-

ing appearance. Increasing N = 3 obviously suppresses

the degradation, and the setting N = 6 obtains best per-

formance with proper geometry. In Fig. 5-(c), we observe

that during fitting, the proposed multi-image warm-up sup-

presses the overfitting on occlusion or shadows, boosted by

the consistency from other images.

6. Comparison with State-of-the-art
Evaluation on Geometry: We first analyse the mod-

eled geometry on MICC and FG3D dataset. We use the

provided indoor/outdoor videos of MICC, low-quality (LQ)

and high-quality (HQ) image sets to optimize the trained

NPF. The geometry for each identity is obtained from 4

images, and calculated the average results. The compar-

isons are shown in Table 3, where we divide the methods

into 3DMM and non-3DMM group. The tag ‘(mv)’ means

the method uses multi-view input. We observe that our

method obtains the best performance among non-3DMM

approaches, but higher errors than D3DFR, MGCnet and

MAD ↓ < 20◦ ↑ < 25◦ ↑ < 30◦ ↑
SfSNet [70] 25.5±9.3 43.6% 57.5% 68.7%

PRN [25] 24.8±6.8 43.1% 62.9% 74.1%

DF2Net [97] (GT) 24.3±5.7 42.2% 62.7% 74.5%

D3DFR [20] (mv) 23.5±6.1 46.1% 61.8% 73.3%

Cross-Modal [4] (GT) 22.8±6.5 49.0% 62.9% 74.1%

DECA [24] 22.5±5.3 48.7% 62.3% 73.7%

LAP [100] (mv) 23.0±5.1 48.2% 63.1% 74.9%

PhyDIR [101] (mv) 22.7±4.3 49.2% 63.4% 75.3%

Ours prototype 23.7±4.7 45.6% 61.4% 73.0%

SfSNet-ft [70] 12.8±5.4 83.7% 90.8% 94.5%

Cross-Modal-ft [4] (GT) 12.0±5.3 85.2% 92.0% 95.6%

LAP-ft [100] (mv) 12.3±4.5 84.9% 92.4% 96.3%

PhyDIR-ft [101] (mv) 12.0±4.9 85.3% 92.7% 96.9%

Ours 11.87±5.2 85.9% 93.0% 96.9%

Table 4. Facial normal evaluation on Photoface dataset.

Figure 6. Qualitative comparison on predicted facial geometry.

DECA. Note that, 3DMM is a highly reliable face shape as-

sumption made from real 3D ground truth, and thus it fun-

damentally boosts the models’ accuracy. Even though, our

method still outperforms Extreme3D, PRN, RingNet and

competes with 3DDFA v2. We further analyse the mod-

eled facial normal on Photoface dataset in Table 4, where

‘-ft’ means finetuning. Our prototype has already outper-

forms several methods. After finetuning, our method ob-

tains best performance. Finally, we illustrate qualitative

results in Fig. 6, where our method provides finer details.

Compared with the EG3D [13] + PTI [66] baseline, our

method is much more robust against distortion from large

pose, extreme lighting and appearance.

Evaluation on Texture: We then evaluate the modeled

texture on CelebAMaskHQ dataset. Besides the recon-

structed image, we render images along the yaw angle in

3 ranges: [0◦, ±20◦], [±20◦, ±40◦] and [±40◦, ±60◦],
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Figure 7. Qualitative comparison with EG3D [13] + PTI [66] baseline, PhyDIR [101], HeadNeRF [34] and DFG [18] on the robustness of

rotation and expression editting. Our method produces robust and photo-realistic rendering results. Zooming in to see the details.

[0◦, ±20◦] [±20◦, ±40◦] [±40◦, ±60◦]

Method Cos-sim IDE Cos-sim IDE Cos-sim IDE SSIM

DFG [18] 0.732 0.342 0.644 0.385 0.581 0.430 0.751

Unsup3D [91] 0.701 0.318 0.677 0.334 0.632 0.387 0.514

LAP [100] (mv) 0.740 0.293 0.685 0.301 0.658 0.359 0.623

PhyDIR [101] (mv) 0.826 0.267 0.792 0.294 0.745 0.328 0.880

MoFANeRF [108] 0.693 0.337 0.666 0.360 0.640 0.395 0.523

HeadNeRF [34] 0.830 0.240 0.801 0.268 0.671 0.364 0.823

EG3D + PTI 0.835 0.248 0.783 0.279 0.709 0.347 0.919

Ours 0.842 0.233 0.806 0.251 0.750 0.287 0.921

Table 5. Quality of rendered images on CelebAMask-HQ.

and calculate the cosine similarity and ID parameter error

between them and target images. The performance is illus-

trated in Table 5, where DFG cannot provide satisfactory

results due to its entangled image formation. For Unsup3D

and LAP, the quality of texture is limited by the graphics

renderer. MoFANeRF suffers from limited data diversity

of constrained environments. PhyDIR and HeadNeRF suf-

fer from large-pose degradation. The single-image baseline

EG3D + PTI obtains high reconstruction performance, but

fragile results under rotation due to the degraded shapes.

In contrast, our method obtains the best performance in all

the metrics, and shows robust and high-quality modeling

results. Finally, we show qualitative results in Fig. 7 under

challenging conditions of extreme lighting and pose. EG3D

+ PTI suffers from overfitting and produces flatten shapes,

while our method obtains best performance on the render-

ing quality and robustness. Our method also show satis-

factory ability on editing the expressions via deformation

codes. More results and comparisons can be seen in the

Appendix.

Limitation: Our method requires multiple images of a

same person as input, which may limit the application un-

der limitative conditions. This problem can be suppressed

by searching images with similar identity and building a ‘re-

laxed’ photo collection. Further, the performance also de-

pends on the pretrained EG3D models. As a result, extreme

expressions and poses may bring degradation on accuracy.

Such issues can be addressed by re-training EG3D via tar-

geted dataset. We make the discussions in the Appendix.

7. Conclusion & Future Work

In this paper, we propose a Neural Proto-face Field

(NPF) method for unsupervised robust 3D face modeling.

NPF digs multi-image priors from in-the-wild photo col-

lections to boost the 3D generative models, and well com-

plements the single-image overfitting inversion procedure.

To aggregate consistency against large variations in uncon-

strained environments, a novel identity-aware aggregation

method is proposed to adaptively combine the style codes,

and build ID-consistent face prototypes. To suppress the

non-rigid ambiguity, NPF blends the consistent hybrid rep-

resentation via a novel deformation modeling method. In

this way, NPF obtains face prototypes containing common

facial cues within the collection, and disentangles specific

expressions. The final recovered 3D face is obtained via fit-

ting NPF with consistency losses, and thus scene-specific

details can be recovered. Extensive experiments demon-

strate that our method models robust and detailed face

shapes under challenging conditions, and recovers photo-

realistic texture with pose/expression controlling. In the fu-

ture, the works could be proposed to tackle the limitation

such as supporting single-image input. Further, decompos-

ing the NeRF pipeline, the texture could be disentangled

into different intrinsic factors.
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