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Abstract

A meaningful video is semantically coherent and
changes smoothly. However, most existing ne-grained
video representation learning methods learn frame-wise
features by aligning frames across videos or exploring rel-
evance between multiple views, neglecting the inherent dy-
namic process of each video. In this paper, we propose to
learn video representations by modeling Video as Stochas-
tic Processes (VSP) via a novel process-based contrastive
learning framework, which aims to discriminate between
video processes and simultaneously capture the temporal
dynamics in the processes. Specically, we enforce the em-
beddings of the frame sequence of interest to approximate
a goal-oriented stochastic process, i.e., Brownian bridge,
in the latent space via a process-based contrastive loss. To
construct the Brownian bridge, we adapt specialized sam-
pling strategies under different annotations for both self-
supervised and weakly-supervised learning. Experimental
results on four datasets show that VSP stands as a state-of-
the-art method for various video understanding tasks, in-
cluding phase progression, phase classication, and frame
retrieval. Code is available at https://github.com/
hengRUC/VSP.

1. Introduction
Fine-grained video representation learning [11] is one of

the fundamental problems in computer vision, which has
great practical value in various real-world applications such
as action phase classication [11, 40], phase boundary de-
tection [26], and video object segmentation [7, 9, 22, 33].
The way to model videos, especially the temporal dynam-
ics, is the core problem of video representation learning
and is highly relevant to available data annotations. Pioneer

*Equal contributions.
†Corresponding author.

works [4,29] directly model video as 3D data where tempo-
ral is one dimension, and they require large-scale human-
generated annotations for representation learning. How-
ever, it is labor-intensive and time-consuming to collect
those annotations. Besides, human-generated annotations
hinder domain generalization to multiple downstream tasks.

To alleviate the requirement on labeled data, some re-
cent works [11–13] model the video alignment (Figure 1(a))
across the temporal dimensions by the cycle-consistency
loss [11] or temporal alignment loss [13]. Their basic as-
sumption is that two videos of the same action can be
aligned over temporal ordering in the embedding space, and
the latent correspondences across sequence pairs can be re-
garded as a supervisory signal. However, these methods es-
sentially work in a weakly-supervised manner that requires
video-level annotations to construct video pairs, impeding
their application in the real-world scene where the semantic
labels are absent.

As an alternative, self-supervised video representation
learning [5, 26] explores the view relevance (Figure 1(b))
between two augmented views of one video. By model-
ing video as a sequence along the temporal dimensions,
they elaborately construct two views through a series of
spatio-temporal data augmentations. The training objec-
tive is to encourage the relevance of two augmented views
to conform to their assumptions, e.g., spatio-temporal con-
trast [26] or similarity distribution [5]. However, those
methods are sensitive to complex hand-craft view augmen-
tation thus suffering from sub-optimal performance.

As crucial and intrinsic cues, the dynamics of videos
impose temporal correlations among successive frames.
Therefore, the evolution process of the corresponding ne-
grained representations should follow coherent constraints,
which can be modeled as a stochastic process. To this
end, we propose a new perspective that considers Video as
Stochastic Processes (VSP) to explicitly capture the tem-
poral dynamics of videos by exploring process agreement
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Figure 1. The evolution of ne-grained video representation learning. (a) Video alignment (e.g., TCC [11], LAV [13]) enforces two videos
from the same action aligned temporally. (b) View relevance (e.g., TCN [26], CARL [5]) enforces the relevance of two augmented views
conform to specic assumptions. (c) The proposed process agreement models video as stochastic process and enforces an arbitrary frame
to agree with a time-variant Gaussian distribution conditioned on the start and end frames.

(Figure 1(c)). The basic assumption is that a video phase
is coherent and smoothly changes from the start to the end,
which is essentially a goal-oriented stochastic process that
neighboring points are similar to each other and their co-
herent changes abide by the direction of the endpoint. For
example, a baseball pitching video demonstrates a series
of continuous movements as the ball ies out of the hand.
Specically, we model a video phase as a goal-oriented
stochastic process, i.e., the Brownian bridge [3, 25], where
the frame representations in the latent embedding space are
expected to be smooth temporal dynamics conditioned on
the xed start and end frames. With this intuitive assump-
tion, an arbitrary frame is enforced to be like a noisy lin-
ear interpolation between the start and end frames with un-
certainty in a latent space, i.e., agree with a time-variant
Gaussian distribution. By modeling video as stochastic pro-
cesses, the proposed method captures the dynamics of each
action and establishes dependencies between video frames
as well as the semantic consistency of the whole video.
Compared with video alignment which assumes pairing
videos can be temporally aligned or view relevance which
assumes two augmented views are relevant, VSP only re-
quests process agreement that assumes the internal frames
agree with the start and end frames, discarding the expen-
sive annotated video pairs or hand-crafted view pairs.

The implementation of VSP follows a process-based
contrastive learning framework where each sample is a
frame triplet (start, internal, end). The start and end frames
of each sample are identied as the beginning and end of the
Brownian Bridge. The positive samples are the frame inside
the Brownian bridge while the negatives are outside ones.
The training objective is to enforce the positive samples
conform to the distribution of the target Brownian bridges
process while the negative samples stay away from it. Ben-
eting from the tunability of the start and end points of the
Brownian bridge, VSP is versatile for various annotation

situations. For the most generic situations where human an-
notations are not accessible, VSP works in a self-supervised
manner by randomly sampling the triplets with an empirical
length as Brownian bridges. With the phase-level annota-
tions, VSP gains more powerful representations by taking
each phase as a Brownian bridge in a weakly-supervised
manner. As for the frame-level annotations, the proposed
process-based contrastive objective serves as the regulariza-
tion term of conventional contrastive losses.

The main contributions are summarized as follows:

• We propose a novel ne-grained video representation
learning framework that models Video as Stochastic
Processes (VSP) by enforcing frame sequences to con-
form to Brownian bridge distributions via a process-
based contrastive loss.

• We adopt specialized sampling strategies for differ-
ent types of annotated data by adjusting the Brownian
bridge and therefore acquire favorable video represen-
tations in both self-supervised and weakly-supervised
manners.

• To the best of our knowledge, we are the rst to model
video as a stochastic process and achieve state-of-the-
art performance on various ne-grained video under-
standing tasks across four widely-used datasets.

2. Related Works
Weakly-supervised Learning in Videos. Previous weakly-
supervised works usually leverage video-level annotations
to obtain a video pair of the same action and learn tem-
porally ne-grained representations in the alignment of the
video pairs. For temporal alignment, TCC [11] designs
a proxy task implemented by matching frame correspon-
dences across the video pair with a cycle-consistency loss.
Different from TCC which aligns a video pair frame by
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Figure 2. An overview of the proposed VSP. (a) We encoder frame sequences with a spatio-temporal network fθ to get context-aware
representations, which are expected to conform to the transition density of a stochastic process (Section 3.1). (b) Then we take special
strategies for Brownian bridge construction under different annotation situations. (i) For raw videos, we build Brownian bridges by
randomly sampling stated lengths and overlap thresholds. (ii) For videos with annotations on phase nodes, we build Brownian bridges by
using the phase nodes as bridge boundaries. (iii) For videos with frame-level labels, we build Brownian bridges according to the frame-level
annotations (Section 3.2). (c) Process-based Contrastive Training aims to pull the positive frames into the target Brownian bridge process
while push the negatives away (Section 3.3).

frame, GTA [12] aligns the video as a whole by combining
a contrastive alignment loss and a global cycle consistency
loss. Similarly, LAV [13] proposes a fusion of temporal
alignment loss and temporal regularization, which aims to
align frame sequences and increase the similarity of tempo-
ral close frames respectively. All those methods learn rep-
resentations from temporal alignment with video-level cues
while our method learns from a Brownian bridge process of
frame triplets without using any semantic annotations.
Self-supervised Learning in Videos. Recent self-
supervised video representation learning approaches can
be broadly divided into two major categories: pretext
task-based approaches and contrastive learning-based ap-
proaches. 1) Spatial pretext tasks for video mainly stem
from image pretext tasks, such as video colorization [31],
video rotation prediction [16] and solving spatiotemporal
jigsaw puzzles [1, 15, 18]. Temporal pretext tasks aim to
recognize the correct or normal video, such as temporal or-
der prediction of frame sequence [20,21] or clips [37] from
shufed videos, playback direction prediction as a binary
classication [36] and playback rate perception [6,8,34,39].
2) Most of video contrastive learning methods [10, 23, 24,
28, 38] are based on video clip discrimination where clips
of the same video are positives while clips of the different
videos are negatives, which is disadvantageous to temporal
diversity learning of intra- and inter-clips. To alleviate this
problem, a sampling-based temporal augmentation strategy
was proposed in CVRL [24] to focus more on the tempo-
rally close clips. A combination of local-local and global-
local temporal contrastive loss was presented in TCLR [10]
to increase the temporal diversity of the learned features. In
contrast, our work integrates the Brownian bridge process

into contrastive learning to distinguish different action pro-
cesses and maintain the temporal evaluation features in the
process simultaneously.

The most recent work CARL [5] concerns the distribu-
tion of frame sequence. It compels the sequence similarity
of two augmented views to conform to a prior Gaussian dis-
tribution of timestamp distance. While our approach con-
siders the sequence distribution directly and does not rely
on multiple views of a video. We relax the restrictive as-
sumptions of the prior distribution for all intra-sequences
and take each action phase as a unique Brownian bridge
process wherein the distribution of frame representations
changes according to timestamp.

3. Method
3.1. Video as Stochastic Processes

Given the T frames of a video as input, we encode
them into latent embeddings with a frame-level video en-
coder [5], which is a combination of 2D DCNN [19] and
Transformer [30]. Specically, we extract per-frame fea-
tures with ResNet-50 [14], then map the features into an in-
termediate embedding space with an MLP projection head.
At last, a 3-layer Transformer concatenated with a linear
layer is employed to project the encoded embeddings to the
nal context-aware representations, Z = zA, · · · , zT .

As we discuss in the Introduction, the goal of VSP is
to learn ne-grained representations from a sequence of
frames that capture the dynamic evolution along the tempo-
ral dimension, which follows a stochastic process wherein
frames change gradually from start to end. Based on this
observation and inspired by [35], we build the stochastic
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process via the Brownian bridge for videos.
Formally, taking zA, zT as the start and end points of the

Brownian bridge process respectively, the transition density
of the process obeys a time-variant Gaussian distribution,
given as,

p(ztzA, zT ) = N ((1− α)zA + αzT ,α(T − t)) ,

where α =
t−A

T −A


(1)

Here, zt is an arbitrary point in the process.
In terms of mean value, this density constructs zt with a

linear combination of the start and end points of the trajec-
tory according to their relative temporal distance. zt near
the start point should be more similar to zA. In the same
way, zt near the endpoint should be more similar to zT . In
terms of variance, the uncertainty of zt conforms to a nor-
mal distribution where the value in the middle is the biggest
and decreases to both ends.

3.2. Brownian Bridge Construction

In the video, we take a frame triplet as a Brownian
bridge. The start and end frames of a triplet together in-
dicate a target Brownian bridge process. As expounded in
Section 3.1, the length, start, and end points of a Brownian
bridge are customizable. We can build Brownian bridges
unconditionally on raw videos, or conditionally on labeled
videos in a more reasonable way. Here, we discuss the sam-
pling strategies to build Brownian bridges under various an-
notation situations.
Raw videos. This is a more general scene where anno-
tations are absent. We build Brownian bridges by ran-
domly sampling frame triplets from a video with a Brow-
nian bridge length η. For videos with less than η frames,
the Brownian bridge length is the length of the video. For
temporal continuity, we force adjacent Brownian bridges to
have δ percent of overlap at least. This a self-supervised
branch that does not rely on any semantic annotations. We
denote this branch as VSP.
Phase nodes. In this setting, only the start and end points
of a phase are given. we customize the Brownian bridge
on phase nodes, i.e., each phase is regarded as a Brownian
Bridge. Thus the Brownian bridges connect via phase nodes
and no overlap control is needed. Note that, we just use
the start and end position information of a phase instead
of the per-frame label. This is a weakly-supervised branch
denoted as VSP-P.
Frame labels. Fine-grained annotations are accessible in-
cluding video and phase labels, i.e., frame-level annota-
tions. We take the same strategy in VSP-P which builds the
Brownian bridge on phase nodes. This branch can leverage
frame labels in the process of contrastive training and we
denote this branch as VSP-F.

3.3. Process Contrastive Training

After Brownian bridge construction, we next introduce
the Process-based Contrastive Loss (PCL) to map frames in
sequences into the latent space of the Brownian bridge and
Supervise Contrastive Loss (SCL) to leverage frame anno-
tations.
Process-based Contrastive Loss. We rst dene the dis-
tance between zt and the target point in the Brownian bridge
process at time t,

d(zA, zt, zT ) = − 1

2σ2
∥zt − (1− α)zA − αzT ∥22 ,

where α =
t−A

T −A


(2)

Here, σ2 is the variance of the Brownian bridge transition
density:α(T − t) in Equation (1).

Next, we dene the target Brownian process and its pos-
itive and negative samples in the process-based contrastive
loss. A target process is denoted as (xA, ,xT ) where xA,
xT are sampled from the frame sequence whereinA<T−1.
A positive sample for the target Brownian process is a frame
between xA and xT , which is denoted as xt. Thus a pos-
itive triplet is (xA,xt,xT ). Note that, (xA,xt,xT ) indi-
cates sampling order: xt is sampled after xA and xT sam-
pled after xt in the video. A negative sample x′

t for the
target Brownian process is a frame that does not belong to
this process. A negative triplet is denoted by (xA,x

′
t,xT ).

Given N triplets sampled from N videos, through en-
coder we get their corresponding latent embeddings Z =
(zA, zt, zT )

1, (zA, zt, zT )
2, , (zA, zt, zT )

N

. Speci-

cally for a target process (zA, , zT )i, the negative frames
are provided by the other triplets, which we denote as
B =

{
zj
A,t,T j ̸= i

}
. Then the union of all negative frames

and the positive frame for the i-th process can be denoted
as M =


zi
t


∪ B. We compel the positive frame to con-

form to the transition density of the target Brownian bridge
process described in Equation (1) while the negative frames
are away from it, using the following objective:

Li
P = − log

exp(d(zi
A, z

i
t, z

i
T ))

z′
t∈M

exp(d(zi
A, z

′
t, z

i
T ))

, (3)

where (zi
A,z

i
T ) is the start-end frame of the target Brown-

ian bridge process (zA, , zT )i. Thus the nal loss for a
training batch in VSP and VSP-P is:

LP =
1

N

N∑

i=1

Li
P  (4)

Supervised Contrastive Loss. Fine-labeled datasets pro-
vide hard positive and negative samples for contrastive loss,
which is conducive to gaining powerful representations as
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demonstrated in [17, 32]. To leverage those valuable cues,
we design a frame-wise contrastive loss where the anchor
sample is an internal frame of a phase. For the anchor
frame zi

t of the i-th triplet (zA, zt, zT )
i, the positive frames

zp ∈ P come from the other triplets of the same action
phase. While the negative frames zn ∈ N belong to other
action phases. Then the loss of the target frame of the i-th
triplet can be formulated as:

Li
S = − log


p∈P

exp(zi
t · zpτ)


p∈P

exp(zi
t · zpτ) +


n∈N

exp(zi
t · znτ)



(5)
Similarly for a training batch, LS = 1

N

N
i=1 Li

S . The goal
of this objective is to pull the frames of the same subac-
tion into a cluster. Adding our process-based contrastive
objective as a regularization can further align those frames
temporally in intra- and inter-action phases. And the nal
objective for VSP-F is:

LF =
1

N

N∑

i=1

(Li
S + Li

P ) (6)

4. Experiments

4.1. Experimental Settings

Datasets. We use four action recognition datasets, namely
PennAction [40], Pouring [26], IKEA ASM [2], and Fin-
eGym [27]. PennAction videos record humans’ actions of
doing sports or exercise. Following TCC [11], we use 13
actions of PennAction wherein each action owns 40-134
training and 42-116 validation videos. The phase-level an-
notations are provided by LAV [13] and each action is com-
posed of 2-6 phases. The video contains 18 to 663 frames.
Pouring videos focus on human hands interacting with ob-
jects (i.e., pouring liquid from one container to another).
There are 70 videos for training and 14 videos for testing
in this dataset. We obtain the phase labels from TCC [11]
and each video has 5 phases. The video contains 186 to 797
frames. IKEA ASM videos show assembling furniture by
different assemblers from multiple views. It contains 371
samples of furniture assemblies and 33 action classes. Fol-
lowing LAV [13], we use all Kallax Drawer Shelf videos
which are split into 61 training and 29 validation videos.
Each video has 17 phases, which is more challenging than
PennAction and Pouring. FineGym is a more challenging
ne-grained video dataset that records the gymnastic move-
ments of professional athletes where the semantic informa-
tion is dense and frames are low redundant. The training
set contains 3182 videos and the testing set contains 1442
videos following prior splits [11]. FineGym provides two
version: FineGym99 and FineGym288 where the number

represents sub-action classes. FineGym288 is a relatively
unbalanced version compared to FineGym99.
Evaluation Metrics. For each dataset, we optimize the net-
work on the training set and then x its parameters. Ac-
cording to different metrics, a linear classier or regressor
is catenated on the frozen network and trained with annota-
tions. We list the four evaluation metrics [11] used on the
validation set. Phase Classication is the average per-frame
phase classication accuracy. Average Precision@K is the
ne-grained frame retrieval accuracy by computing the ra-
tio of the correct match in retrieved K frames where K = 5,
10, 15. For all metrics, a higher score implies better per-
formance. Phase Progressionmeasures how well the repre-
sentations capture the phase progress temporally. Kendall’s
Tau measures the degree of order correspondence between
two sequences.
Implementation Details. We adopt the same encoder net-
work with CARL [5], we use the ResNet-50 pre-trained
on the ImageNet dataset and freeze the rst four residual
blocks, a 3-layer Transformer of 256 in width and 8 atten-
tion heads. In the training process, only the last residual
block and its following architectures are learnable. In all
experiments, our model is optimized by Adam with a learn-
ing rate of 1e-4 and a weight decay of 1e-5. We apply ran-
dom crops, resize, horizontal ips, Gaussian blur, and color
jittering as spatial augmentations. We implement the pro-
posed method using PyTorch and train the model on two
NVIDIA RTX 3090 GPUs for 300 epochs with batch size
128. We set η = 120, δ = 20% as the default Brownian
bridge length and overlap ratio in the experiments.

4.2. Comparison with State-of-the-Art Methods

We compare the following methods of multiple learn-
ing manners. a) Video Alignment: We compare with recent
weakly-supervised learning methods, namely TCC [11],
LAV [13] and GTA [12]. These methods rely on video-level
annotations to pair up videos with the same action. b) View
relevance: This learning manner requires no annotations
or assumptions on datasets. We compare with prior self-
supervised learning methods, namely SAL [21],TCN [26]
and CARL [5]. c) Fully-Supervised Learning: For compar-
ison, we train a network from scratch with explicit supervi-
sion on the phase classication task by catenating a linear
classier at the end of the network.
Phase Classication and Frame Retrieval. Table 1 shows
the comparison with video-alignment-based and view-
relevance-based methods on PennAction, Pouring, IKEA
ASM, and FineGym99/288 datasets using phase classica-
tion and frame retrieval. Our methods outperform the other
methods on both evaluation metrics on all datasets. With
the help of phase or frame labels, our VSP-F and VSP-P
achieve the best and second-best results respectively over
all tracks. Especially, our method gains signicant improve-
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Method Labels Phase Classication Frame Retrieval (AP@5)
Penn. Pour. IKEA. FineGym Penn. Pour. IKEA.

Video Alignment:
TCC∗ [11] Video 81.35 91.53 26.46 25.18 / 20.82 76.74 87.16 19.80
TCC [11] Video 74.39 - - - - - -
LAV∗ [13] Video 84.25 92.84 30.43 - 79.13 89.13 23.89
LAV [13] Video 78.68 - - - - - -
View Relevance:
SaL [21] None 68.15 - 22.14 21.45 / 19.58 76.04 84.05 15.15
TCN [26] None 68.09 89.53 26.80 20.02 / 17.11 77.84 83.56 19.15
CARL [5] None 93.07 93.73 - 41.75 / 35.23 92.28 - -
Process Agreement:
VSP None 93.12 93.85 44.29 43.12 / 36.95 92.56 91.85 26.54
VSP-P Phase 93.27 94.08 46.77 44.58 / 38.23 93.45 93.18 28.48
VSP-F Frame 94.24 94.89 47.52 45.66 / 39.48 94.89 94.26 30.23

Table 1. Comparison with video-alignment-based and view-relevance-based methods for phase classication and frame retrieval on Penn-
Action, Pouring, IKEA ASM, and FineGym 99 / 288. ∗ means special models for each action. Best and second best results are highlighted.
The proposed process agreement outperforms both video alignment and view relevance.

Method Labels Penn. Pour. IKEA.
0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

Supervised Learning Frame 69.28 81.72 84.83 73.23 90.01 92.90 23.84 32.49 34.72
Video Alignment:
TCC [11] Video 79.72 81.12 81.35 90.65 91.11 91.53 24.74 25.22 26.46
LAV [13] Video 83.56 83.95 84.25 91.61 92.82 92.84 29.78 29.85 30.43
View Relevance:
SaL [21] None 79.94 81.11 81.79 87.63 87.58 88.81 21.68 21.72 22.14
TCN [26] None 81.99 82.64 82.78 89.67 87.32 89.53 25.17 25.70 26.80
Process Agreement:
VSP None 92.24 92.48 93.12 92.87 93.36 93.85 42.52 43.76 44.29
VSP-P Phase 92.36 92.78 93.27 93.13 93.64 94.08 43.21 44.98 46.77
VSP-F Frame 92.72 93.62 94.24 93.93 94.24 94.89 45.00 45.97 47.52

Table 2. Comparsion of Phase classication under different proportion (0.1, 0.5, 1.0) of labeled data on PennAction, Pouring, and IKEA
ASM. Best and second best results are highlighted. The proposed process agreement signicantly outperforms both video alignment and
view relevance based methods.

ment on the challenging IKEAASM and FineGym datasets,
e.g., 4.25% improvement on FineGym288. We further eval-
uate the effectiveness of our learned representations for ac-
tion phase classication under 10%, 50% and 100% data
protocols. As Table 2 shows, VSP outperforms the other
methods on all datasets and the performances can be fur-
ther improved by leveraging phase-level annotations in VSP
(i.e., VSP-P). Notably, using only 10% labeled data, VSP
achieves comparable performance to the fully-supervised
method of learning with the whole labeled data. For more
frame retrieval results under AP@10 and AP@15, please
refer to supplementary materials.
Phase Progression and Kendall’s Tau. Due to the dupli-
cate labels in IKEA ASM, we do not evaluate these two
metrics on this dataset. As shown in Table 3, VSP surpasses
all methods in both metrics on PennAction and Pouring.
In the self-supervised track, our methods outperform the
other methods on both datasets under all evaluation met-

Method PennAction Pouring
Progress τ Progress τ

TCC∗ [11] 0.664 0.701 0.837 0.864
TCC [11] 0.591 0.641 - -
LAV∗ [13] 0.661 0.805 0.805 0.856
LAV [13] 0.625 0.684 - -
GTA [12] 0.789 0.748 - -
SaL [21] 0.390 0.474 - -
TCN [26] 0.383 0.542 0.804 0.852
CARL [5] 0.918 0.985 0.935 0.992
VSP 0.923 0.986 0.942 0.990

Table 3. Comparison of Phase Progression and Kendall’s Tau re-
sults on PennAction and Pouring. Best and second best results are
highlighted. Our VSP achieves state-of-the-art performance.

rics except Kendall’s Tau on Pouring (Only 0.002 lower).
In the weakly-supervised track, VSP-F and VSP-P achieve
the best and second-best results respectively on all tracks.
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η δ(%) Classication AP@5 Progress τ
60 20 90.24 90.42 0.852 0.902
120 20 93.12 92.56 0.923 0.986
240 20 91.38 92.32 0.875 0.918
Multiple 20 88.70 89.85 0.763 0.885
Random - 74.83 82.18 0.618 0.654
120 0 91.08 90.74 0.821 0.893
120 10 91.73 91.43 0.862 0.910
120 20 93.12 92.56 0.923 0.986
120 50 91.82 91.81 0.819 0.851

Table 4. Ablation studies of Brownian bridge length η and overlap
ratio δ on PennAction. ‘Multiple’ means the length of Brown-
ian bridge for each training batch is chosen from {60, 120, 240}.
‘Random’ means that the bridge length is a random integer be-
tween [1, 240].

LS :LP Classication AP@5 Progress τ

1:0.1 94.45 93.48 0.647 0.712
1:10 91.32 91.76 0.865 0.990
1:1 94.24 94.89 0.952 0.994

Table 5. Ablation studies of the weights of LS and LP in VSP-F.

4.3. Ablation Study

We conduct ablation studies on the PennAction dataset to
show the effectiveness of our design choices in Section 3.
Sampling Length and Overlap. We present the ablation
results on Brownian bridge length and overlap ratio δ in Ta-
ble 4. It can be summarized that either too short or too long
Brownian bridge length is not conducive to representation
learning. And a variable length offers no benets. A proper
overlap ratio for adjacent Brownian bridges can prot VSP
training.
Weight. In Table 5, we adjust the weight of LS and LP

to show the effect. In VSP-F, LS is designed to pull the
frames of the same subaction closer in the latent space. The
LP further aligns frames in each action along the tempo-
ral dimension, thus mainly affects sequence performance
Progress and τ .
Mixed Training Strategy of VSP-F. As a contrast to VSP-
F, we test another two strategies to leverage frame labels.
a) Intersecting Brownian bridge: This method directly pro-
vides more hard-positives in LP . Specically, given P
triplets from P phases of the same subaction category, tak-
ing Pi = (xA, , xι, ,xt) as the target process where ι
represents the proportion of timestamp. We take frames at
the ι of the other process in P as the hard positive samples
of xι. We denote this branch asLI . b) Pre-training for VSP:
Considering the stationary of the Brownian bridge process,
hard positive frames may destroy the context consistency.
We propose to pre-train the network with LS for the rst
150 epochs. Then we train the network by LP for another
150 epochs. Note that, we ensure a batch includes all kinds
of sub-actions and every kind owns multiple triplets to cater

Loss Classication AP@5 Progress τ

LI 94.52 92.13 0.814 0.868
LS 94.83 93.89 0.427 0.475
LS ,LP 94.45 95.06 0.958 0.996
VSP-F 94.24 94.89 0.952 0.994

Table 6. Ablation studies of VSP-F loss or traing strategy on Pen-
nAction. The third row means training with LS for the rst 150
epoches then with LP for another 150 epoches.

Pre. Fine. Cl. Progress τ

Pe
nn

. w/o Pre. 93.12 0.923 0.986
✓ 92.35 0.894 0.952
✓ ✓ 93.57 0.944 0.988

Po
ur
. w/o Pre. 93.85 0.942 0.990

✓ 92.17 0.887 0.941
✓ ✓ 94.90 0.958 0.992

IK
E
A
. w/o Pre. 36.09 0.425 0.486

✓ 34.84 0.395 0.421
✓ ✓ 37.24 0.512 0.577

Table 7. Pre-training on Kinetics-400. ‘Cl.‘, ‘Pre.’ and ‘Fine.’
represent ‘Classication‘, ‘Pre-training’ and ‘Fine-tuning’ respec-
tively. VSP pretraining benets video understanding tasks.

to the requirement of positives in those methods.
Table 6 shows the results of the two strategies and the im-

pact of pre-training. We conclude that providing hard pos-
itives in LI promotes phase classication accuracy, but at
the same time reduces its performance on Phase Progression
and Kendall’s Tau, which demonstrates that VSP can learn
typical features from hard positive frames. While embed-
ding hard positives into the target Brownian bridge process
may be detrimental to the context consistency. Pre-training
with the LS gathers the frames with the same action phase
label into a cluster, resulting in an excellent performance in
the phase classication task. After that, training with the
LP further aligns frames in each cluster along the temporal
dimension and improves performance in Phase Progression
and Kendall’s Tau eventually.

4.4. Generalization Verication

To verify that our method can produce a universal model
using massive raw videos, we train VSP on Kinetics-
400 [4] without any semantic annotations and test on var-
ious datasets. From Table 7 we conclude that VSP can
learn from large-scale unlabeled videos and the learned rep-
resentations have great generalization ability. In addition,
the pre-trained model achieves better performance by ne-
tuning on the corresponding dataset.

4.5. Statistical Results

To verify the basic assumption that video can be taken
as a goal-directed Brownian bridge process where the rep-
resentations agree with a time-variant Gaussian distribution
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(a) Distance statistic (b) Distribution on a point

Figure 3. Statistical results (best viewed in color). (a) shows the
19 groups of mean and variance of the process distances on the
whole validation set of Pouring. (b) is the frequency histogram of
the process distance in the 10th group.

formulated in Equation (1), we calculate the mean and vari-
ance of the distances between frames and the target Brow-
nian bridge process points on the whole validation set of
Pouring. Specially, we take each action phase in the valida-
tion set as a Brownian bridge process, then we uniformly set
19 temporal nodes for each phase and get the correspond-
ing 19 frames to represent the whole action phase. Next, we
calculate their distances with the target points of the Brown-
ian bridge process as described in Equation (2). Finally, we
take the results of the same temporal node as a subset and
calculate their mean and variance, i.e., 19 groups of mean
and variance. As shown in Figure 3 (a), the means of the
distance in the action phases i.e., approximate the linear in-
terpolation between the start and end frames while the vari-
ances are higher in the middle of the process and lower in
both ends, which is consistent with our previous hypothesis.
Figure 3 (b) shows the frequency distribution histogram of
the distance in the temporal node 50% timestamps, which
conforms to a Gaussian distribution as described in Equa-
tion (1) and further veries our prior assumption. More
visualization results of the representations are given in the
supplementary materials.

4.6. Visualization of Embeddings

We randomly select a video pair of the action Baseball
Pitch from the PennAction dataset, which contains 4 phases
and each phase represents a subaction. We rst show the t-
SNE visualization of embeddings for one video in Figure 4
(a). From up to down, each color represents a subaction:
green for Winding up, purple for Taking stride, yellow for
Throwing, blue for Following through. As the visualization
result shows, the representations of frames of the same sub-
action gathered into a cluster. In each cluster, the represen-
tations show a consecutive motion trajectory. And between
clusters, the trajectory is interconnected. These observa-
tions indicate that the learned representations are tempo-
rally consistent and distinguishable between phases in the
video. We next select the second phase (i.e., Taking stride)
of the video pair and compute the similarity matrix of their

(a) t-SNE visualization (b) Similarity matrix

Figure 4. Qualitative results. (a) shows the visualization of em-
beddings for one video where each color indicates a subaction. (b)
is the similarity matrix of the same phase in a video pair. The
brighter the color, the higher the similarity.

representations. As Figure 4 (b) shows, the similarities of
the video pair are closely related to timestamps: frames of
the two videos with closer temporal distance are more simi-
lar and vice versa, which keeps in line with the expectations
of the Brownian bridge process. This proves the temporal
dynamic process and spatial consistency of the learned rep-
resentations.

5. Conclusion

In this paper, we present a novel process-based con-
trastive learning framework named modeling Video as
Stochastic Process (VSP) for ne-grained video represen-
tation learning. We capture the dynamic features by map-
ping the frame sequence into Brownian bridge-induced la-
tent space where the representations change smoothly along
timestamps. For this purpose, we design a process-based
contrastive loss (PCL) to encourage the positive frames to
fall into the target process while keeping the negatives out-
side, which can optionally leverage phase node cues to
gain better representations. In addition, PCL can serve as
the regularization term of conventional contrastive loss for
the video domain to help learn temporal dynamics further.
We have shown extensive experimental results on various
datasets and tasks, which demonstrate the effectiveness and
generalization of the representations learned by our VSP.
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