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Abstract

This paper proposes a novel method to improve the per-
formance of a trained object detector on scenes with fixed
camera perspectives based on self-supervised adaptation.
Given a specific scene, the trained detector is adapted using
pseudo-ground truth labels generated by the detector itself
and an object tracker in a cross-teaching manner. When
the camera perspective is fixed, our method can utilize the
background equivariance by proposing artifact-free object
mixup as a means of data augmentation, and utilize accu-
rate background extraction as an additional input modal-
ity. We also introduce a large-scale and diverse dataset
for the development and evaluation of scene-adaptive ob-
ject detection. Experiments on this dataset show that our
method can improve the average precision of the original
detector, outperforming the previous state-of-the-art self-
supervised domain adaptive object detection methods by
a large margin. Our dataset and code are published at
https://github.com/cvlab-stonybrook/scenes100.

1. Introduction

The need to detect objects in video streams from station-
ary cameras arises in many computer vision applications,
including video surveillance and autonomous retail. In gen-
eral, different applications require the detection of different
object categories, and each computer-vision-based product
will have its own detector. However, for a specific product,
there is typically a single detector that will be used for many
cameras/scenes. For example, a typical video surveillance
product would use the same detector to detect pedestrians
and vehicles for network cameras installed at different loca-
tions. Unfortunately, a single detector might not work well
for all scenes, leading to trivial and unforgiving mistakes.

This fundamental problem of many computer vision
products stems from the limited generalization power of a
single model, due to limited training data, limited model ca-
pacity, or both. One can attempt to address this problem by

using more training data, but it will incur additional cost for
data collection and annotation. Furthermore, in many cases,
due to the low latency requirement or the limited comput-
ing resources for inference, a product is forced to use a very
lightweight network, and this network will have limited rep-
resentation capacity to generalize across many scenes.

In this paper, instead of having a single scene-generic
detector, we propose using scene-specific detectors. This
yields higher detection performance as each detector is
customized for a specific scene, and allows us to use a
lightweight model without sacrificing accuracy as each de-
tector is only responsible for one scene.

Obtaining scene-specific detectors, however, is very
challenging. A trivial approach is to train a detector for
each scene separately, but this requires an enormous amount
of annotated training data. Instead, we propose a self-
supervised method to adapt a pre-trained detector to each
scene. Our method records the unlabeled video frames
in the past, uses the trained detector to detect objects in
those frames, and generates augmented training data based
on those detections. Although the detections made by the
pre-trained model can be noisy, they can still be useful for
generating pseudo annotated data. We further extend those
pseudo bounding boxes by applying object tracking [2, 57]
along the video timeline, aiming to propagate the detections
to adjacent frames to recover some of the false negatives not
returned by the detector. We also use multiple detectors to
obtain the pseudo labels and train the detector in a cross-
teaching manner, taking the advantage of the ensemble of
models [13, 24].

Exploiting the stationary nature of the camera, we pro-
pose two additional techniques to boost the detection perfor-
mance: location-aware mixup and background-augmented
input. The former is to generate more samples during train-
ing through object mixup [76] that contains less artifacts,
based on the aforementioned pseudo boxes generated from
detection and tracking. The latter involves estimating the
background image and fusing it with the detector’s input.

In short, the main contribution of our paper is a novel
framework that utilizes self-supervision, location-aware ob-
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ject mixup, and background modeling to improve the detec-
tion performance of a pre-trained object detector on scenes
with stationary cameras. We also contribute a large scale
and diverse dataset for the development of scene adap-
tive object detection, which contains sufficient quantity and
quality annotations for evaluation.

2. Related Work
Despite much recent improvement in object detection re-

search [3,5,6,8,12,18,19,21,25,28,31,36,40,43,45,47–50,
53–56,64,65,67–69,77,79], trained detectors still encounter
problems with domain shift or domain gap. Scene adaptive
object detection can be viewed as a special case of domain
adaption, in which an object detector trained on a fully-
supervised source domain is adapted to a target domain.
Most research in this direction focuses on semi-supervised,
weakly-supervised, or self-supervised adaptation. In addi-
tion, source-free adaptation [26, 33, 35, 71] has been pro-
posed to address the situation where the source domain data
is unavailable during adaptation.

Self-labeling methods [11,27,29,33,37,44,46,57,60,73]
uses the teacher-student setup from semi-supervised im-
age classification [30, 62]. A teacher detector trained on
the source domain generates pseudo bounding boxes on
the target domain images, and a student model is trained
with those boxes to improve its performance on the tar-
get domain. Techniques such as weak/strong augmenta-
tion [37,44,60], knowledge distillation [11], and weight av-
eraging [33, 37] have been used to deal with noisy pseudo
labels from the teacher detector due to the domain gap. Our
proposed pseudo-labeling method uses two teacher models
trained on the source domain to train a student model, and
their pseudo boxes are aggregated and refined. We further
apply tracking as in [57], but with both forward and back-
ward directions, to extend the pseudo labels. The pseudo
boxes also form the basis for later location-aware mixup and
dynamic background extraction steps.

Domain alignment methods [7, 11, 22, 33, 34, 58, 72, 78]
aim to reduce the domain gap by enforcing the models to
output similarly on the source and target domain at image,
proposal, or instance levels. They use domain adversarial
learning through gradient reversal [15, 16] or graph match-
ing [34] for domain alignment. This approach involves
adding domain alignment losses to existing object detection
models and is complementary to our proposed method.

Another seemingly related research area is continual or
incremental learning. Scene adaptive and domain adaptive
object detection are in between task-continual learning [38]
and data-continual learning [52], for that the object cat-
egories of the source and target domains are the same, but
the data distribution differs. It is possible to formulate scene
adaptive object detection as an online learning problem, but
this approach would require additional annotations.

fusion
faster-RCNN

(a) Input image I.

(c) Object mask MO .

(b) Learned background
image B.

(d)

Figure 1. Inference flow of the proposed detector that can adapt to
a specific scene. The background image and fusion faster-RCNN
model are learned during training, discussed in Sec. 3.

3. Methods

For an object detector pre-trained on a source dataset re-
ferred as the base model, we aim to improve its performance
on video stream from a stationary camera in a given scene,
with unlabeled videos captured by the same camera in the
past as adaptation training samples. The categories of ob-
ject of interest in the scene are also present in the source
dataset, but the data distribution is shifted. The base model
is adapted to each scene independently.

Assuming the distribution shift is moderate, the base de-
tector can generate partially decent bounding boxes on the
unlabeled frames. We use them as pseudo-labels to improve
the base model itself. Many objects are ignored by the base
detector, as their appearance can be very different from the
source dataset. However, videos contain temporal correla-
tion information, making it possible to apply object tracking
in both time directions to recover some of those false neg-
atives. The pseudo-labels are then refined to remove low-
confidence boxes and duplicates. We refer to this process of
obtaining pseudo bounding boxes as pseudo-labeling.

As data augmentation is beneficial for training on less
reliable labels [51], we take advantages of object mixup to
generate new sample images. Since the background is sta-
tionary, those images contain fewer artifacts, which is ben-
eficial for detectors. We further adopt the idea of ensemble
models [13, 24] by using two base detectors to obtain the
pseudo labels, for they can be complementary to each other.
The pseudo boxes are used to train one base model, which
we refer as cross-teaching.

Since the job of a detector is to separate foreground ob-
jects from the background, having information about the
background is advantageous. In a stationary camera video
with moving objects, different parts of the background are
covered by objects in different frames, making it possible
to model the complete background. We use the aforemen-
tioned pseudo bounding boxes to mark the uncovered parts
of the background in each frame. Combining the partial
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(a) A series of unlabeled
training images.

(b) Pseudo-labeling from detection and tracking.

(c) Location-aware object mixup.

(d) Dynamic background extraction.

Figure 2. Training flow of the proposed self-supervised scene adaptation object detection framework with sample images. The mixup
training images with pseudo bounding boxes and background image are used in the fusion training. The details are discussed in Sec. 3.

background from a sequence of frames can give an accu-
rate and complete background model. We then modify the
Faster-RCNN [56] architecture to fuse the background with
the input image to improve detection performance.

The overall structure and data flows of the proposed
methods are shown in Fig. 1 and Fig. 2. Our proposed
methods are highly flexible and can be configured to trade-
off between performance and speed. Object tracking can
be bypassed to reduce the time to get the pseudo-bounding
boxes. Mixup and object mask fusion can also be disabled
for faster training and inference. In Sec. 5.5 we will show
ablation study results on how those components affect the
performance of the adapted models. We now describe each
components in more details. For consistency, the images
are all from the first video in our collected dataset, which
will be described in Sec. 4.

3.1. Base Detection Models on Source Domain

We use Faster-RCNN [56] in our experiments for its
high precision and flexible modular architecture. Among
the techniques proposed for self-supervised scene adapta-
tion, both pseudo-labeling and mixup can be directly ap-
plied to any object detection model. The object mask fusion
technique requires modification to the network architecture,
but it can be easily extended to most types of detectors by
adding a parallel branch to the existing network.

The object labels in MSCOCO training set are remapped
to person and vehicle as described in Sec. 4.2. All objects
other than person, car, bus, and truck are discarded. We
take Faster-RCNNs pre-trained on the original MSCOCO
training set, and finetune them on the remapped training
set. We choose two models with ResNet-50 and ResNet-
101 backbones as base models, referred as M1 and M2.

3.2. Pseudo Labels from Detection and Tracking

We take the frames from the first training portion of each
video, and adopt the idea of detection and tracking similar
to [57], then apply our proposed bounding box refinement
and cross-teaching schemes. Base detectors described in

Sec. 3.1 are applied on the frames, and any bounding box
with confidence score higher than λdet is kept as a valid
pseudo box.

Single-object trackers are initialized with detected ob-
jects having confidence scores higher than λsot. We use
DiMP-50 [2] to track the objects in both forward and back-
ward directions in the video timeline, and the tracked ob-
ject bounding boxes are used as pseudo boxes. The reason
for tracking in both directions is that if an object is mov-
ing towards the camera and appears bigger by time, back-
ward tracking is more accurate because the initial bounding
box contains more detailed texture. To prevent drifting, the
maximum length of each track is capped at two seconds.

Bounding box refinement is applied to eliminate dupli-
cated boxes of the same object from combining pseudo
bounding boxes from detector and tracker. Each candidate
box in the same frame is regarded as a graph node. If two
boxes have the same object label, and their IoU is above
a threshold λiou, then an edge is added to connect them.
We assume that each connected component of the graph
represents one single object, and the nodes in the compo-
nent are duplicated. We only keep the node with the high-
est degree (i.e., the node with the highest number of con-
nected edges). An example of refinement results is shown
in Fig. 2b. Refinement can effectively remove duplicated
bounding boxes. However, it can neither remove false posi-
tives nor recover false negatives.

Both M1 and M2 are used in detection and tracking. The
pseudo bounding boxes from both base models are then re-
fined jointly, and the refined boxes are used to train M2 in
adaptation. We refer this setting as cross-teaching.

3.3. Location-Aware Object Mixup

Mixup [76] is originally proposed as a simple but pow-
erful data augmentation method in for image classification.
It is quickly improved by many modifications [1, 23, 32, 66,
75]. Mixup is also used in object detection tasks [4, 75],
where it can be applied at image or instance levels. Dur-
ing adaptation training, a frame with its pseudo bounding
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(a) Random mixup. (b) Location-aware mixup.

Figure 3. An example of location-aware object mixup. Compared
to random mixup, less artifacts are introduced.

boxes has the probability pmixup of being paired with an-
other randomly select source frame for mixup. A portion
rmixup of the pseudo bounding boxes in the source frame
are cropped out and pasted onto the original frame, along
with their locations and labels. If a pasted box covers
more than αcover of a pseudo box in the original frame, the
pseudo box will be excluded from the pseudo labels. An
example of this location-aware object mixup is shown in
Fig. 2c and Fig. 3. Since the background is stationary, we
propose to use location-aware mixup instead of the original
random mixup to reduce the amount of artifacts in the gen-
erated mixup images and to keep the location distribution of
the objects in the scene. This will be shown to be beneficial
in the experiments.

3.4. Dynamic Background Extraction

For a video frame I of dimension W×H associated
with a set of K pseudo-annotated object bounding boxes
{(x1

k, y
1
k, x

2
k, y

2
k)|k = 1 . . .K}, a background mask M

of the same dimension as I can be constructed as fol-
lows. For each location (x, y) in M, we set M [x, y] = 0
if (x, y) is inside of any pseudo-annotated bounding box
and 1 otherwise. Then for a sequence of frame-mask pairs
{(Il,Ml)|l = 1 . . . L}, the background image is deter-
mined as

B =

∑L
l=1 Il ⊗Ml∑L

l=1 Ml

, (1)

where ⊗ is the pixel-wise multiplication operator.
There might exist a location (x′, y′) that lies inside an

object bounding box in every image, i.e., Ml[x
′, y′] = 0. In

this case, the background at this location is never observed
and its pixel value cannot be determined. In this case, we
“guess” the background value by inpainting inside such ar-
eas using the inpainting algorithm of [63].

Fig. 2d shows an example background, which is reason-
ably accurate. Although in each video, the camera perspec-
tive is fixed, the background can change overtime due to
some factors such as illumination change. To incorporate
this, the background extraction is operated every Tbg sec-
onds, giving a dynamic background modeling.

We construct an object mask as an additional input
modality for the detector, to utilize the extracted back-
ground to improve detection performance during adapta-

tion. For a frame I and its corresponding background
model image B, we define its object mask image as

MO = (I − B + 1)× 0.5, (2)

where we assume the pixel values in both I and B have
been normalized to the range [0, 1]. An object mask exam-
ple is shown in Fig. 1c, in which objects are clearly sepa-
rated from the background. Note that since I, B, and MO

are linearly dependent, no information is lost.
Before the adaptation training process, the base detec-

tor needs to be modified to use object mask input modal-
ity and trained on the MSCOCO training set with back-
ground images. However, dynamic background extraction
on MSCOCO is impossible since it only consists of static
images. Therefore, we rely on the object mask annotations
in the dataset and apply the same inpainting algorithm [63]
to generate the background image for each training image.

3.5. Object Mask Fusion

The architecture of Faster-RCNN [56] is depicted in
Fig. 4a. First, a CNN backbone with a feature pyramid net-
work (FPN) [39] is utilized to extract the Feature Pyramid
(FP). The first layer in the CNN that takes the input image is
also shown here. Then, an RPN [39] is employed to produce
object bounding box proposals. Lastly, an ROI head [19,20]
is used to assign object labels and refine the bounding boxes
on the pooled feature maps of the proposals. The entire net-
work is trained utilizing two sets of losses: localization loss
and objectness loss from RPN, and localization loss and
classification loss from the ROI head. The fusion models
explained below start with the base model that is trained on
the remapped MSCOCO training set.
Early-fusion. The input to the Faster-RCNN network is the
stacked image [I;MO], with the two modalities stacked
along the color channels, as shown in Fig. 4b. To enable
the network to take a 6-channel image as input instead of
the vanilla 3-channel image, the first layer of the backbone
CNN is duplicated and stacked. The convolution kernel
weights are first copied, then halved. This ensures that the
feature map after the first layer conv1|conv2 is the same as
in the vanilla model when [I; I] is fed into it, providing a
smooth start for adaptation training. This modification in-
troduces only a small number of additional model parame-
ters, and the increase in computational cost is negligible.
Mid-fusion. Both I and MO are fed into the FPN in par-
allel, which yields two feature pyramid FP1 and FP2, as
shown in Fig. 4c. Two sets of RPNs and ROI heads are
used in parallel, and their initial weights are copied from
the base model. FP1 is used in the left branch with RPN1
and ROI1, which is the same as the vanilla model. In the
right branch with RPN2 and ROI2, the input feature pyra-
mid is the fusion of FP1 and FP2:

FPfusion = FP1 ⊕ FP2. (3)
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(b) Early-fusion Faster-RCNN.
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(c) Mid-fusion Faster-RCNN.
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I MO

(d) Late-fusion Faster-RCNN.

Figure 4. Illustration of different fusion models for Faster-RCNN.
Network modules are indicated by green, and feature maps and
outputs are indicated by yellow.

The fused feature pyramid has the same dimension as both
FP1 and FP2. The fusion operator can be either non-
parametric such as average pooling, or parametric such
as convolution layers. The whole network is trained with
losses from both branches

Lmid = (1−αmid)(LI
rpn+LI

roi)+αmid(Lfusion
rpn +Lfusion

roi ),
(4)

where αmid is the weights of different losses.
Late-fusion is similar to mid-fusion as shown in Fig. 4d.
The key difference is that only the ROI head is branched.
The region proposals are only generated from FP1, and the
fused feature pyramid is only used in ROI head in the right
branch. As a result, the total loss is

Llate = LI
rpn + (1− αlate)LI

roi + αlateLfusion
roi . (5)

Both mid-fusion and late-fusion introduce significant ad-
ditional parameters and computation. I and MO need
to pass the backbone, requiring more computation even at
inference time. The quantitative comparison of inference
speed of different fusion models can be found in the sup-
plementary material.

To train the fusion models in adaptation, we first fine-
tune the base models on MSCOCO training set with the in-
painted background models described in Sec. 3.4 until con-
vergence. During evaluation, we use the last background
image to obtain the object masks, as it is the closest to the
evaluation images on the timeline.

4. Scenes100 Dataset
For our proposed scene-adaptive object detection prob-

lem, there is no existing dataset with long enough videos
of stationary backgrounds for the development and evalua-
tion of self-supervised adaptation techniques. We therefore
collected a new dataset called Scenes100, which will be de-
scribed in this section.

Figure 5. Some annotated frames from the evaluation portions.
The green mask shows the part of the frame that is excluded for
annotation and evaluation. Objects are labeled by bounding boxes.
Please see the supplementary material for detailed descriptions.

4.1. Data Collection

We used keywords such as “live view”, “street camera”,
and “live webcam” to search for live streams on YouTube.
We look for streams that are of decent quality and have fixed
camera perspective. Around 200 candidate videos were
recorded between September 2020 and February 2022. We
picked 100 videos to compile our Scenes100 dataset, ensur-
ing that each video is longer than two hours and has mini-
mum width and height of 720 pixels. We also aimed for a
dataset with high diversities. The 100 videos of Scenes100
were recorded in a variety of 16 countries and territories,
and during different time periods of day and year. The
dataset contain videos from both indoor and outdoor scenes,
with different camera perspectives. The density and scale of
visual objects also vary significantly from one video to an-
other. Some sample frames is presented in Fig. 5 to show
the diversity of our dataset.

4.2. Manual Annotation

We are interested in detecting objects from two cate-
gories: person and vehicle. The person category includes
any visible and recognizable people in the frames; this cor-
responds to the person category in MSCOCO [41] dataset.
The vehicle category includes all vehicles with four or more
wheels, so motorbikes, bicycles, tricycles are not included.
This category corresponds to the car, bus, and truck cate-
gories in MSCOCO.

For each video, we used the first 1.5 hours for self-
supervised and weakly-supervised training, and the remain-
ing part for evaluation. Since many videos were taken with
wide-angle lenses, some frames included faraway objects
that were too small to be considered in evaluation. To ad-
dress this, we manually drew polygon masks to exclude
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dataset
contain
videos

average
length frames countries

bounding
boxes

boxes
per video

MSCOCO [41] No - - - 897K -
KITTI [17] No - - 1 80K -
BDD100K [74] Yes 40s 120M 1 1.8M 18
CityScapes [9] Yes 1.8s 150K 2 65K 13

Scenes100 Yes 2h 21.6M 16 84K 840

Table 1. Comparison of Scenes100 with other object detection
datasets (K= 103, M= 106).

these faraway parts from annotation and evaluation. We
then estimated the number of visual objects in the unmasked
parts by first using a pre-trained detector, and then refining
the estimate through human annotation. Frames for anno-
tation were uniformly sampled from the second portion of
each video, with the number of frames being inversely pro-
portional to the estimated number of objects in the frames.
This ensured that each video had roughly the same number
of annotated objects. We contracted a data annotation com-
pany to perform bounding box annotation on those sampled
frames. Some annotated frame samples for evaluation is
shown in Fig. 5.

4.3. Dataset Statistics

In Tab. 1, we compare Scenes100 with some popular ob-
ject detection datasets. MSCOCO [41] is a fully-supervised
general-purpose object detection dataset, which acts as the
supervised source domain. KITTI [17] only contains ob-
ject detection annotation associated to individual images.
In BDD100K [74], object detection annotation is given for
one key frame in each video. For CityScapes [9], we con-
sider the finely labeled instance-level segmentation masks,
which are given for the 20th image from a 30 frame video
snippets lasting 1.8s.

The scale of Scenes100 is comparable to that of KITTI
and CityScapes. However, Scenes100 has three unique fea-
tures. First, the videos in Scenes100 are much longer than
those in any other datasets with scenes, providing suffi-
cient data for a model to adapt to each of them. Sec-
ond, Scenes100 has greater diversity. Unlike some other
datasets that are recorded in only a few cities with sim-
ilar camera angles, background environments, and object
types, Scenes100 covers several different countries, with
varying weather conditions, road conditions, view of field,
camera perspectives, and vehicle types. Third, each video
in Scenes100 has a fixed camera perspective and stationary
background scene, making background modeling possible.

Note that many currently available datasets are not pri-
marily intended for self-supervised adaptive object detec-
tion tasks. They may possess other features, such as seg-
mentation masks, multi-modal sensor data, depth maps, or
annotations for object tracking. However, despite the ab-
sence of these attributes, Scenes100 holds value as the first
extensive and varied dataset that features fixed camera per-

spectives and lengthy videos. As such, it can complement
existing dataset collections and serve as a valuable resource
for researchers exploring scene adaptive object detection.

5. Experiments
5.1. Evaluation Protocols

We evaluate the performance of object detectors follow-
ing the COCO evaluation protocol [41] to calculate the aver-
age precision at IoU = 50% (AP 50) and mean average pre-
cision of different IoU thresholds from 0.5 to 0.95 (APm),
with some modifications as follows.
Non-evaluation region: before feeding the ground-truth
and detected bounding boxes to the COCO evaluator, the
bounding boxes that have at least one corner inside the non-
evaluation mask will be removed. So the faraway parts in
the frames where objects are deemed too small and blurry
will not affect the evaluation results. Please see Sec. 4.2 and
Fig. 5 for more details.
Category weighting: in the standard COCO evaluation
protocol, the overall multi-class AP is the simple average of
the AP s of the different categories. If a class is sparse in the
training set and validation set, the model tends to perform
poorly due to the scarcity of the training samples. In this
case the average AP does not truly reflect the performance
of a detector. Hence we propose an additional multi-class
AP metric with weighted average where the weight is de-
termined by the prevalence of ground truth object instances
in the evaluation set. This weighted AP can better portray
the performance of a detector in the case of long-tailed dis-
tribution. We refer the standard classes-mean COCO AP
as APco, and the proposed weighted AP as APw. We refer
the AP averaged over IoU thresholds and IoU = 50% as
APm and AP 50.
Per-video evaluation: we aim to evaluate the perfor-
mance of a scene adaption method, instead of a spe-
cific detection model. For each of the video, a model is
adapted to it from the same base model trained on the
source dataset. The performance of the base model and
adapted model on each video is calculated individually as
{(APv,base, APv,adapt)|v = 1 . . . 100}. Then we evaluate
the overall effectiveness of the adaptation method using the
averaged AP gain as:

APG =
1

100

100∑
v=1

(APv,adapt −APv,base). (6)

5.2. Implementation Details

Our implementation is based on Detectron2 [70]. The
DiMP tracker is directly taken from the official PyTrack-
ing [10] implementation without any change. More details
and hyper-parameters can be found in the supplementary
material. During training, we include the same number of
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images from MSCOCO training set as the number of unla-
beled frames from the videos. The hyper-parameters are the
same for all videos. We check the training loss for all exper-
iments, including the baseline methods, to ensure conver-
gence. We also train “compound” models where all videos
are used together for adaptation. The results and further de-
tails can be found in the supplementary material.

5.3. Domain Adaptation Baselines

We compare our methods with several domain adap-
tive object detection baselines. In their original papers,
the methods are evaluated on other domain adaptive ob-
ject detection datasets. However, those datasets do not con-
tains videos with fixed camera perspectives, so the proposed
location-aware mixup and dynamic background extraction
cannot be applied. We instead apply the methods in other
papers on Scenes100. For a fair comparison, all methods
start with the same base model and weights, and then are
adapted to and evaluated on each scene individually. We
keep the values of the hyper-parameters that are specific to
a baseline method used in the original papers. We use the
same learning rate, batch size, and number of iterations as
our experiments in those baseline methods. More details
can be found in the supplementary material.
Self-Train (ST) [57] is a method that uses detection and
tracking to obtain pseudo bounding boxes, similar to ours.
But ST applies tracking only in one direction. It assigns dif-
ferent weights to the pseudo bounding boxes during train-
ing, but no refinement nor cross-teaching.
STAC [60] uses the base model to get pseudo bounding
boxes, and trains the model on a strongly augmented ver-
sion of the target domain image with those boxes.
Adaptive Teacher (AT) [37] also uses self-training, but the
pseudo bounding boxes are detected on the fly. It utilizes
exponential moving average to update the model gradually.
It also uses weak/strong data augmentation, and a domain
classifier to align the features of the two domains.
H2FA R-CNN [72] applies feature alignment of source and
target domains at various levels of Faster-RCNN. It assumes
that image-level weak annotation is available for the target
domain. So we use the labels from our pseudo-labeling pro-
cess as image-level class labels.
TIA [78] is a method that instantiates feature alignment by
using both domain classifier and auxiliary classification and
localization heads. The model is trained in a mini-max man-
ner using gradient reverse layers [15].
LODS [33] uses style enhancement as data augmentation.
The pseudo bounding boxes are generated from the original
images, and the features from both version of the same im-
age are aligned. It also utilizes exponential moving average
for the weights. It does not use any supervised training data
from the source domain.

Model # params MSCOCO Scenes100

APm
co AP 50

co APm
co AP 50

co APm
w AP 50

w

M1 (R-50) 41.4M 50.05 76.48 40.52 62.12 41.28 64.65
M2 (R-101) 60.5M 51.29 77.46 41.11 63.10 41.96 65.74

Table 2. Performance of base models on MSCOCO validation set
with remapped categories and Scenes100 before any adaptation.
For Scenes100, AP s are evaluated on each video individually and
then averaged. R- stands for ResNet. # indicates the number of
parameters (M= 106). See Sec. 5.1 for AP notation details.

5.4. Results

The performance of the base models is shown in Tab. 2,
along with their number of trainable parameters. M2 is a
bigger model with more parameters and representation ca-
pacity, so it outperforms M1 by a noticeable margin in all
the metrics before adaptation. All the AP gains shown in
other tables are based on the performance of base model
M2. Note that the AP numbers on Scenes100 is already rel-
atively high at only about 10 points below the performance
on MSCOCO, so we do not observe very high (> 5 points)
AP gains in the results shown later.

We compare the performance of different adaptation
methods in terms of average AP gain in Tab. 3. Here we
show our best combination of methods, which incorporates
pseudo-labeling, location-aware mixup, and object mask
mid-fusion. Among the baseline methods for domain adap-
tive object detection, only ST and LODS improves the per-
formance significantly. AT only yields marginal improve-
ment in classes-weighted AP . STAC, H2FA, and TIA ac-
tually degrade the performance on Scenes100. LODS per-
forms surprisingly well considering it does not use source
domain images. However, we found that any training sched-
ule longer than 1000 iterations would lead to severe per-
formance degradation. The proposed method yields much
higher, consistent, and stable improvement.

In general, self-training-based methods (ST, AT, STAC,
and the proposed method) perform better than domain
alignment-based methods (H2FA and TIA). Domain align-
ment is usually achieved through adversarial learning,
which is known to have unstable objectives and is more dif-
ficult to optimize [14, 42, 59, 61]. Therefore, these methods
are more sensitive to hyperparameters and training sched-
ules, making it challenging to determine the optimal set-
tings for all datasets. Applying domain alignment methods
directly to our scene adaptive dataset without careful tuning
can cause problems as our dataset has less in-domain vari-
ance than domain adaptation datasets. Furthermore, since
the scenes in our dataset are very different, they might re-
quire different settings. This implies that Scenes100 has its
uniqueness compared to more generally purposed domain
adaptive object detection datasets. Our proposed method
is more robust to this setting and does not rely heavily on
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Method APGm
co APG50

co APGm
w APG50

w

ST [57] +0.80 +0.24 +1.39 +1.03
STAC [60] -1.26 -5.12 -1.97 -6.64
AT [37] -0.75 -1.11 +0.06 +0.04
H2FA [72] -3.10 -4.97 -3.77 -6.01
TIA [78] -0.32 -0.37 -0.32 -0.33
LODS [33] +0.45 +1.28 +1.02 +2.28

Proposed +3.76 +4.45 +3.78 +4.65

Table 3. Averaged AP gain of different adaptation methods. See
Sec. 5.1 for AP notation details.

Mixup Fusion APGm
co APG50

co APGm
w APG50

w

✗ ✗ +0.95 +0.54 +1.67 +1.55

Location-aware ✗ +1.72 +1.67 +2.25 +2.53
Random ✗ +1.22 +1.13 +1.76 +2.03

✗ early +1.85 +2.12 +2.22 +2.73
✗ mid +3.40 +3.81 +3.67 +3.98
✗ late +3.34 +3.60 +3.38 +3.72

Location-aware early +2.25 +2.82 +2.59 +3.46
Location-aware mid +3.76 +4.45 +3.78 +4.65
Location-aware late +3.66 +4.10 +3.73 +4.31

Table 4. Ablation study for the proposed components of our scene-
adaptive object detection method. ✗ means not being applied.
Pseudo-labeling is always applied. This table shows the averaged
AP gain; see Sec. 5.1 for AP notation details.

Mixup Fusion APGm
co APG50

co APGm
w APG50

w

✗ AVG +3.40 +3.81 +3.67 +3.98
✗ CNN +3.25 +3.52 +3.26 +3.79
✗ ATTN +3.22 +3.73 +3.23 +3.95

Location-aware AVG +3.76 +4.45 +3.78 +4.65
Location-aware CNN +3.60 +4.20 +3.71 +4.50
Location-aware ATTN +3.30 +3.89 +3.45 +4.26

Table 5. Ablation study on different feature pyramid fusion meth-
ods in term of averaged AP gain. AVG, CNN, and ATTN indicate
mid-fusion based on average pooling, CNN, or attention module,
respectively. ✗ means not being applied. Pseudo-labeling is al-
ways applied. See Sec. 5.1 for AP notation details.

hyperparameter tuning, as we use the same set of hyper-
parameters across all 100 videos. Additional analysis and
success/failure cases can be found in the supplementary ma-
terial.

5.5. Ablation Study

We explore the effect of the different components in
our methods by experimenting various combinations of
them. For all experiments, we keep the pseudo-labeling un-
changed, as it is the basis of other components. We compare

different types of object mask fusion (Fusion): early, mid,
and late. We also compare the proposed Location-aware ob-
ject mixup with Random mixup. Tab. 4 shows the results.
The experiments on hyper-parameters can be found in the
supplementary material.

The proposed pseudo-labeling, mixup, and object mask
fusion all benefit the adaptation performance. Applying
only the pseudo-labeling already leads to AP gain higher
than ST, which is more complicated involving pseudo box
weighting. Location-aware mixup is also more advanta-
geous than Random mixup, validating the assumption in
Sec. 3.3 that having fewer artifacts is better for adaptation.
Among three fusion options, mid-fusion yields the best re-
sult. That is perhaps because in a mid-fusion model, the
RPN utilizes the fused feature pyramid, which can contain
critical information of object boundaries. The combination
of mixup and object mask fusion can further improve the
performance.

We also compare different feature pyramid fusion meth-
ods described in Eq. (3). In our main experiments, we sim-
ply average the feature pyramids from the original image
and the object mask. Now at each level of the pyramid,
we use a separate CNN or an attention module to fuse the
feature maps. The comparison is shown in Tab. 5. The
parametric method performs slightly worse than average-
pooling, probably because the newly introduced modules
have randomly initialized weights and thus require addi-
tional supervised training data.

6. Summary

We have presented a self-supervised framework for
scene-adaptive object detection. Base detectors and generic
trackers are used to generate pseudo object labels as the
adaptive training targets in a cross-teaching manner. To
fully utilize the background equivariance when camera per-
spective is fixed, we propose artifacts-free location-aware
object mixup to augment the input images, and dynamic
background extraction for additional input modality to the
detector. We also introduce the first large-scale scene
adaptive object detection dataset, Scenes100, with several
unique features compared to other domain adaptive ob-
ject detection datasets. Our method outperforms domain
adaptive object detection baselines by a large margin on
Scenes100. We also conduct extensive experiments to il-
lustrate the effectiveness of the components in our frame-
work. We hope this work has demonstrated the importance
of scene adaptation, and it will spur further research interest
in this impactful but understudied area.
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