
PHA: Patch-wise High-frequency Augmentation for Transformer-based
Person Re-identification

Guiwei Zhang1, Yongfei Zhang1,2,3*, Tianyu Zhang1, Bo Li1,2, Shiliang Pu4

1Beijing Key Laboratory of Digital Media, School of Computer Science and Engineering, Beihang University.
2State Key Laboratory of Virtual Reality Technology and Systems, Beihang University.

3 Pengcheng Laboratory. 4 Hikvision Research Institute.

{zhangguiwei,yfzhang,zhangtianyu,boli}@buaa.edu.cn, pushiliang.hri@hikvision.com

Abstract

Although recent studies empirically show that injecting
Convolutional Neural Networks (CNNs) into Vision Trans-
formers (ViTs) can improve the performance of person re-
identification, the rationale behind it remains elusive. From
a frequency perspective, we reveal that ViTs perform worse
than CNNs in preserving key high-frequency components
(e.g, clothes texture details) since high-frequency compo-
nents are inevitably diluted by low-frequency ones due to
the intrinsic Self-Attention within ViTs. To remedy such
inadequacy of the ViT, we propose a Patch-wise High-
frequency Augmentation (PHA) method with two core de-
signs. First, to enhance the feature representation ability
of high-frequency components, we split patches with high-
frequency components by the Discrete Haar Wavelet Trans-
form, then empower the ViT to take the split patches as aux-
iliary input. Second, to prevent high-frequency components
from being diluted by low-frequency ones when taking the
entire sequence as input during network optimization, we
propose a novel patch-wise contrastive loss. From the view
of gradient optimization, it acts as an implicit augmentation
to improve the representation ability of key high-frequency
components. This benefits the ViT to capture key high-
frequency components to extract discriminative person rep-
resentations. PHA is necessary during training and can be
removed during inference, without bringing extra complex-
ity. Extensive experiments on widely-used ReID datasets
validate the effectiveness of our method.

1. Introduction
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Figure 1. Performance comparisons between ResNet101 (44.7M
#Param) and TransReID ( 100M #Param) on (a) original person
images, (b) low-frequency components, and (c) high-frequency
components of Market1501 and MSMT17 datasets, respectively.
Note that “#Param” refers to the number of parameters.

Person re-identification (ReID) aims to retrieve a specific
person, given in a query image, from the search over a large
set of images captured by various cameras [33, 36, 37, 45].
Most research to date has focused on extracting discrimi-
native person representations from single images, either by
Convolutional Neural Networks (CNNs) [24, 25, 39, 42],
Vision Transformers (ViTs) [2, 8, 23, 27, 41, 43] or Hybrid-
based approaches [10, 11, 14, 16, 35]. These studies empir-
ically show that injecting CNNs into ViTs can improve the
discriminative of person representations [8, 35].

Despite a couple of empirical solutions, the rationale for
why ViTs can be improved by CNNs remains elusive. To
this end, we explore possible reasons from a frequency per-
spective, which is of great significance in digital image pro-
cessing [4, 12, 32]. As shown in Fig. 1, we first employ
Discrete Haar Wavelet Transform (DHWT) [19] to trans-
form original person images into low-frequency compo-
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nents and high-frequency components, then conduct perfor-
mance comparisons between the ResNet101 [6] and Tran-
sReID [8] on original images, the low-frequency compo-
nents and high-frequency components of Market1501 and
MSMT17 datasets, respectively. Our comparisons reveal:

(1) Certain texture details of person images, which
are more related to the high-frequency components, are
crucial for ReID tasks. Specifically, from Fig. 1 (a) and
(b), with the same model, the performance on the origi-
nal images is consistently better than that on low-frequency
components. Taking the TransReID as an example, the
Rank-1/mAP on original images of MSMT17 dataset is
6.5%/10.0% higher than that on the low-frequency compo-
nents. The root reason might be that low-frequency compo-
nents only reflect coarse-grained visual patterns of images,
and lose texture details (e.g., bags and edges). In contrast,
the lost details are more related to the high-frequency com-
ponents, as shown in Fig. 1 (c). The degradation from Fig. 1
(a) to (b) indicates that certain details are key components
to improve the performance of ReID.

(2) The ViT performs worse than CNNs in preserv-
ing key high-frequency components (e.g., texture de-
tails of clothes and bags) of person images. As shown
in Fig. 1 (c), although the TransReID outperforms the
ResNet101 consistently on the original images and low-
frequency components, the ResNet101 exceeds the Tran-
sReID by 4.6%/2.4% and 5.9%/1.9% Rank-1/mAP on
high-frequency components of Market1501 and MSMT17
datasets. The poor performance of the TransReID on high-
frequency components shows its inadequacy in capturing
key high-frequency details of person images.

In view of the above, we analyze the possible reason
for such inadequacy of the ViT by revisiting Self-Attention
from a frequency perspective (Sec. 3.1). We reveal that
high-frequency components of person images are inevitably
diluted by low-frequency ones due to the Self-Attention
mechanism within ViTs. To remedy such inadequacy of
the ViT without modifying its architecture, we propose a
Patch-wise High-frequency Augmentation (PHA) method
with two core designs (Sec. 3.2). First, unlike previous
works that directly take frequency subbands as network in-
put [1, 4, 5, 17], we split patches with high-frequency com-
ponents by the Discrete Haar Wavelet Transform (DHWT)
and drop certain low-frequency components correspond-
ingly, then empower the ViT to take the split patches as
auxiliary input. This benefits the ViT to enhance the fea-
ture representation ability of high-frequency components.
Note that the dropped components are imperceptible to hu-
man eyes but essential for the model, thereby preventing
the model from overfitting to low-frequency components.
Second, to prevent high-frequency components from be-
ing diluted by low-frequency ones when taking the entire
sequence as input during network optimization, we pro-

pose a novel patch-wise contrastive loss. From the view
of gradient optimization, it acts as an implicit augmentation
to enhance the feature representation ability of key high-
frequency components to extract discriminative person rep-
resentations (Sec. 3.3). With it, our PHA is necessary dur-
ing training and can be discarded during inference, without
bringing extra complexity. Our contributions include:

• We reveal that due to the intrinsic Self-Attention mech-
anism, the ViT performs worse than CNNs in capturing
high-frequency components of person images, which
are key ingredients for ReID. Hence, we develop a
Patch-wise High-frequency Augmentation (PHA) to
extract discriminative person representations by en-
hancing high-frequency components.

• We propose a novel patch-wise contrastive loss, en-
abling the ViT to preserve key high-frequency com-
ponents of person images. From the view of gradi-
ent optimization, it acts as an implicit augmentation to
enhance the feature representation ability of key high-
frequency components. By virtue of it, our PHA is
necessary during training and can be removed during
inference, without bringing extra complexity.

• Extensive experimental results perform favorably
against the mainstream methods on CUHK03-NP,
Market-1501, and MSMT17 datasets.

2. Related Work
2.1. Transformer-based Person Re-identification

Recently, many works introduce the Vision Transformer
(ViT) [2] into ReID tasks with great success, which can be
roughly summarized into the following two aspects. (1)
Pure ViT-based methods. He et al. [8] propose a pure
ViT-based ReID framework, which outperforms the state-
of-the-art CNN-based approaches. PASS [43] extracts
fine-grained discriminative information with the ViT for
person ReID. PFD [27] proposes a pose-guided Trans-
former encoder-decoder architecture for occluded person
ReID tasks. DCAL [41] removes misleading attentions to
extract complementary and discriminative part features. (2)
Introducing CNNs into ViTs. PAT [16], DRL-Net [9] and
APD [11] combine the CNN backbone and Transformer
layers to extract discriminative parts representations. Wang
et al [26] propose the Neighbor Transformer followed by
a convolutional network to enhance interactions across all
person images during training. Zhang et al propose the
HAT [35], in which multi-scale features from CNNs are
aggregated by Transformer blocks. Rather than modifying
the model architecture, our PHA benefits the vanilla ViT to
capture pivotal high-frequency components of person im-
ages, without bringing extra complexity during inference.
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2.2. Application of Frequency Information in Vision

Frequency information is of great significance in digi-
tal image processing [4, 12]. Some works leverage the fre-
quency information to improve the performance in vision
tasks [1,5,29,31,32], while others accelerate the network in
the frequency domain [20, 21]. Yang et al [31] transfer fre-
quency components of images to improve domain adaptive
semantic segmentation. Guo et al [5] takes low-frequency
components of images as inputs to recover the missing de-
tails. Yao [32] et al leverage wavelet transform to down-
sample key/values within Transformer blocks, without in-
formation dropping. On the other hand, Rao et al [21] pro-
pose the GFNet to establish long-term spatial dependencies
from a frequency perspective with only log-linear complex-
ity. Oyallon [20] et al propose a wavelet scattering network,
achieving comparable performance on image recognition
with fewer parameters. Differently, our PHA benefits the
ViT to extract discriminative person representations by en-
hancing key high-frequency components.

3. Method
We first analyze the possible reason for the above inad-

equacy of the ViT by revisiting Self-Attention from a fre-
quency perspective (Sec. 3.1). Then, we propose the Patch-
wise High-frequency Augmentation (Sec. 3.2), including ➊
high-frequency enhancement and low-frequency drop, and
➋ the patch-wise contrastive loss. Finally, we analyze the
effectiveness of the patch-wise contrastive loss from the
view of gradient optimization (Sec. 3.3).

3.1. Analysis

Revisit Self-Attention. Given a person image x ∈
RH×W×C , where H, W and C represent its height, width
and the number of channels respectively, we first split it
into N fixed-sized patches {xi|i = 1, 2, · · · , N}. A learn-
able [cls] token denoted as xcls is prepended to the input
sequence. Learnable position embeddings P ∈ R(1+N)×D

are also applied to introduce spatial information. Hence, the
input sequence fed into the ViT is formulated as below:

y = [xcls;F(x1);F(x2); ...,F(xN )] + P (1)

where y ∈ R(1+N)×D denotes the input sequence. F is
a learnable projection that maps patches to D dimensions.
Let WQ,WK ,W V ∈ RD×D denote the query, key and
value projection matrices, respectively, the Self-Attention
encodes each embedding in y, formulated as below:

Aij =
yiW

Q(yjW
K)⊤

√
D

(2)

zi =
∑
j

σ(Aij)yjW
V (3)

where σ(·) denotes the softmax function, yi represents the
i-th embedding in y and zi is the corresponding output.

Analysis from a frequency perspective. One reason for
such inadequacy may be that as the Transformer layer deep-
ens, the high-frequency components are inevitably diluted
by low-frequency ones due to Self-Attention. To verify it,
we use the Discrete Haar Wavelet Transform (DHWT) to
decompose a person image x into four wavelet subbands:
xLL, xLH , xHL, and xHH ∈ RH/2×W/2×C . Note that
xLL denotes the low-frequency components that reflect the
person structure at a coarse-grained level. We concatenate
the later three subbands along the channel dimension:

Mh(x) = concat(xLH ,xHL,xHH) (4)

where Mh(x) ∈ RH/2×W/2×3C denotes the high-
frequency components of images, which reflect fine-grained
texture details. Then, we define set Ω, which contains the
indices of patches with top-K high-frequency responses:

Ω := {j|j ∈ top-K(||G (Mh(x))||2)} (5)

where the function G : RH/2×W/2×3C → RN×3C includes
the downsampling and flattening operations and ||·||2 is the
ℓ2-norm. Hence, we rewrite Eq. (3) as a sum of two parts:

zi =
∑
j∈Ω

σ(Aij)yjW
V +

∑
j /∈Ω

σ(Aij)yjW
V (6)

Assuming that the subscript i in Eq. (6) denotes an ar-
bitrary index belonging to set Ω, the embedding zi with
high-frequency components is arguably a convex combina-
tion of embeddings with top-K high-frequency responses
(first part) and the rest reflecting low-frequency compo-
nents (second part). As the Transformer layer deepens,
embeddings with high-frequency components are continu-
ously affected by the significant presence of embeddings
with low-frequency components in the current and previ-
ous layers. Although low-frequency components are criti-
cal, certain high-frequency ones, which are key ingredients
for ReID, are inevitably diluted. To validate it, we define s
as the indicator to evaluate the similarity between patches
with top-K high-frequency responses and the rest:

p = [pclass, p1, p2, ..., pN ] ,p ∈ R(1+N)×D (7)

s =
1

K

∑
k∈Ω

1

N −K

∑
l/∈Ω

|p⊤k pl|
||pk||2||pl||2

(8)

where p denotes the sequence of embeddings encoded when
the entire sequence y is taken as input. Note that all embed-
dings except pclass in Eq. (7) participate in Eq. (8). Let
sim = 1

T

∑
t=1 st, where T is the number of all images
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in the training set, Fig. 3 shows the comparisons in sim
with “after the 0th- and 11th- Transformer layer” on two
ReID datasets during training. Intuitively, the larger sim is,
the more severe high-frequency components are smoothed.
This is not beneficial to preserve key high-frequency com-
ponents, which validates our analysis.

3.2. Patch-wise High-frequency Augmentation

To remedy such inadequacy of the ViT, we propose the
Patch wise High-frequency Augmentation (PHA) method.

Fig. 2 shows the overall framework during training, which
consists of ➊ High-frequency enhancement and low-
frequency drop, and ➋ a novel patch-wise contrastive loss.

➊ High-frequency Enhancement and Low-frequency
Drop. The purpose is to prevent key high-frequency com-
ponents from being diluted by low-frequency components.
Given the input sequence y depicted in Eq. (1), we first sam-
ple a subset of patches. The sampling strategy is straightfor-
ward: only the patches belonging to set Ω, which is depicted
in Eq. (5), are sampled. Subsequently, we combine the [cls]
token xcls in Eq. (1) with the sampled subset to form the
high-frequency sub-sequence yh. Then we empower the
vanilla ViT to take yh as auxiliary input, and the encoded
output is formulated as below:

ph =
[
phclass, p

h
1 , p

h
2 , ..., p

h
K

]
,ph ∈ R(1+K)×D (9)

To further prevent the ViT from overfitting to low-
frequency components of person images, we drop certain
low-frequency components by quantization:

Q(xLL, q) =

⌊
xLL + 0.5

q

⌋
· q (10)

where q denotes the interval length, which determines the
nearest quantization point for values of xLL. Intuitively,
the larger of q, the more low-frequency components are
dropped. Note that the dropped low-frequency components
are imperceptible to human eyes but essential for the ViT
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model. This is beneficial to prevent the model from over-
fitting to low-frequency components. Afterward, we apply
inverse DHWT to reconstruct person images. Note that both
original images and reconstructed images contribute to the
high-frequency enhancement scheme.

Subsequently, the encoded representations pclass and
phclass in Eq. (7) and Eq. (9) serve as the global person rep-
resentation fg and high-frequency enhanced representation
fh. By convention, we optimize the representations fg and
fh with the ID loss LID and the triplet loss LT :

L = LID(fg) + LT (fg) + LID(fh) + LT (fh) (11)

This benefits the ViT to enhance the representation ability
of pivotal high-frequency components, e.g., clothes texture,
to extract discriminative person representations.

➋Patch-wise Contrastive Loss. To prevent key high-
frequency components from being over-smoothed by low-
frequency ones when the ViT takes the entire sequence
as input during network optimization, we propose a novel
patch-wise contrastive loss. Let P ∈ RB×(1+N)×D and
P h ∈ RB×(1+K)×D correspond to the encoded entire
sequence (Eq. (7)) and the high-frequency enhanced sub-
sequence (Eq. (9)) in each mini-batch. We aim to pull the
embeddings in P , which belong to set Ω, closer together
with high-frequency enhanced embeddings from the same
identity in P h, while pushing the embeddings from differ-
ent identities apart. Specifically, we have:

S(i, j, k) = exp(
P i,k

||P i,k||2

⊤
·

P h
j,k

||P h
j,k||2

) (12)

LC = − 1

K

∑
k∈Ω

1

B

B∑
i=1

log 1

M

∑
j:lj=li

S(i, j, k)

− log

 1

M

∑
j:lj=li

S(i, j, k) +
τ

B −M

∑
j:lj ̸=li

S(i, j, k)


(13)

where M is the number of images per identity in each mini-
batch, li is the label of the i-th image, and τ denotes the
temperature factor. Please note that we only regularize the
patches in P that belong to set Ω. (underlined in Eq. (13)
for emphasis).

By virtue of it, the ViT could enhance the feature repre-
sentation ability of embeddings with top-K high-frequency
responses even when taking the entire sequence y as input.
This benefits the ViT to preserve key high-frequency com-
ponents (e.g., texture details of clothes) of person images,
to extract discriminative person representations.

3.3. Why the Contrastive Loss Works?

We analyze the effectiveness of Patch-wise Contrastive
Loss (PCL) LC from the perspective of gradient optimiza-
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Figure 4. Illustration of the patch-wise contrastive loss. Dashed
lines denote B kinds of different gradient propagations among
each high-frequency enhanced embedding in P̃

h

k . The [cls] to-
kens in P and P h are omitted from the figure for simplicity.

tion. Specifically, the PCL propagates new gradients on
high-frequency enhanced embeddings in P h. As illustrated
in Fig. 4, given an arbitrary spatial position k belonging

to set Ω, let P̃ k = {P i,k|i = 1, 2, ..., B} and P̃
h

k =

{P h
i,k|i = 1, 2, ..., B} represent the corresponding patch

embeddings in P and P h, and L̃k = {Lk,i|i = 1, 2, ..., B}
denotes the corresponding contrastive loss. Then, we have:

∂L̃k

∂P̃
h

k

=

B∑
i

 ∂Lk,i

∂P h
i,k

+

B∑
j ̸=i

∂Lk,i

∂P h
j,k

 (14)

Eq. (14) shows that the contrastive loss propagates B
kinds of different gradient items on each high-frequency

enhanced embedding in P̃
h

k . In contrast, without the con-
trastive loss, all losses only propagate gradients on the
[cls] token. We emphasize that the patch-wise contrastive
loss can be viewed as an implicit augmentation that brings

each embedding in P̃
h

k close to embeddings from the same
identity in P̃ k. This is beneficial to prevent the network
from overfitting to identity-irrelevant high-frequency com-
ponents, while enhancing the feature representation ability
of key high-frequency components.

Finally, we optimize our PHA method by minimizing the
overall objective with identity labels:

Loverall = L+ LC (15)

Note that our proposed PHA method is only necessary dur-
ing training and can be discarded during inference, without
bringing extra complexity.
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Method Market1501 MSMT17 CUHK03-NP
Labeled Detected

R1(%) mAP(%) R1(%) mAP(%) R1(%) mAP(%) R1(%) mAP(%)

CNN-based methods

STF (ICCV 19) [18] 93.4 82.7 73.6 47.6 68.2 62.4 - -
BAT-net (ICCV 19) [3] 94.1 85.5 79.5 56.8 78.6 76.1 76.2 73.2
ISP (ECCV 20) [42] 95.3 88.6 - - 76.5 74.1 75.2 71.4
RGA-SC (CVPR 20) [38] 96.1 88.4 80.3 57.5 81.1 77.4 79.6 74.5
CBN (ECCV 20) [45] 94.3 83.6 72.8 42.9 - - - -
CBDB-Net(TCSVT 21) [22] 94.4 85.0 - - 77.8 76.6 75.4 72.8
CDNet (CVPR 21) [13] 95.1 86.0 78.9 54.7 - - - -
C2F (CVPR 21) [34] 94.8 87.7 - - 80.6 79.3 81.3 84.1

ViT-based methods

DRL-Net (TMM 21) [9] 94.7 86.9 78.4 55.3 - - - -
AAformer (arXiv 21) [44] 95.4 87.7 63.2 83.6 79.9 77.8 77.6 74.8
HAT (ACM 21) [35] 95.6 89.5 82.3 61.2 82.6 80.0
TransReID (ICCV 21) [8] 95.2 88.9 85.3 67.4 81.7 79.6 79.6 77.0
PFD (AAAI 22) [27] 95.5 89.7 83.8 64.4 - - - -
ABDNet+NFormer (CVPR 22) [26] 95.7 93.0 80.8 62.2 80.6 79.1 79.0 76.4
DCAL (CVPR 22) [41] 94.7 87.5 83.1 64.0 - - - -

TransReID + PHA 96.1 90.2 86.1 68.9 84.5 83.0 83.2 80.3

Table 1. Comparison with the state-of-the-art models on Market-1501, MSMT17, and CUHK03-NP datasets. R1 means Rank-1 accuracy.
Optimal and suboptimal results are highlighted in bold and underlined, respectively.

Dataset ID image cams

MSMT17 4101 126441 15
Market-1501 1501 32668 6
CUHK03-NP 1467 13164 2

Table 2. Statistics of datasets used in the paper.

4. Experiments
4.1. Datasets and Evaluation Metrics

We conduct extensive experiments on three standard
person ReID benchmarks: Market-1501 [40], CUHK03-
NP [15] and MSMT17 [28]. Table 2 shows details of
above datasets. Following conventions in the ReID commu-
nity [7, 8, 30], we adopt Cumulative Matching Characteris-
tic (CMC) curves and the mean Average Precision (mAP)
to evaluate the quality of different methods.

4.2. Implementation Details

Following TransReID [8], all input images are resized
to 256 × 128 and the training images are augmented with
random horizontal flipping, padding, random cropping and
random erasing. The batch size is set to 64 with 4 images
per ID and SGD optimizer is employed with a momentum
of 0.9 and the weight decay of 0.0001. The learning rate
is initialized as 0.008 with cosine learning rate decay. The
parameter K in Eq. (5) is set to 35% and the interval length
in Eq. (10) is set to 5. All experiments are performed with
one Nvidia V100 GPU with FP16 training.

4.3. Comparison with the State-of-the-Art

We compare our method with the state-of-the-art ap-
proaches on widely-used person ReID datasets in Table 1.
Our method achieves competitive performance compared to
the prior CNNs-based and ViTs-based methods. Particu-
larly, with the TransReID baseline, our method achieves
96.1%/90.2%, 86.1%/68.9%, 84.5%/83.0%, 83.2%/80.3%
Rank-1/mAP on Market1501, MSMT17, CUHK03-NP la-
beled and CUHK03-NP detected datasets, respectively.

Comparison to ViT-based Methods. Some typical
works (e.g., PAT [16], PFD [27] and DCAL [41]), extract
discriminative part features for accurate alignment. Rather
than aligning fine-grained parts, our PHA method bene-
fits the ViT to preserve pivotal high-frequency components
of images, to extract discriminative person representations.
Compared to HAT [35] which aggregates hierarchical fea-
tures from CNN with Transformer blocks, our PHA method
does not modify the model architecture. It is only neces-
sary during training and can be discarded during inference,
without bringing extra computation costs.

Comparison to CNN-based Methods. Compared with
the competing method C2F [34], our PHA outperforms it
by 1.3%/2.5% and 3.9%/3.7% Rank-1/mAP on Market1501
and CUHK03-NP labeled datasets when taking the Tran-
sReID as the baseline. By virtue of our PHA, the ViT could
not only build long-distance dependencies of low-frequency
components but also capture key high-frequency compo-
nents of person images. This benefits the ViT to extract
discriminative person representations.
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Index HE LD PCL CUHK03-NP
R1 (%) mAP (%)

1 81.7 79.6
2 ✓ 82.9 80.7
3 ✓ ✓ 83.3 81.7
4 ✓ ✓ 83.9 82.5
5 ✓ ✓ 83.0 81.1
6 ✓ ✓ ✓ 84.5 83.0

Table 3. Ablation study over CUHK03-NP labeled dataset.

Method Market-1501 CUHK03-NP
R1 (%) mAP (%) R1 (%) mAP (%)

w/ stop gradient 95.6 89.5 83.6 82.1
w/o stop gradient 96.1 90.2 84.5 83.0

Table 4. Comparison with “with vs without stop gradient on LC”
on Market-1501 and CUHK03-NP labeled datasets.

4.4. Ablation Study

We conduct ablation studies on CUHK03-NP labeled
dataset to analyze each core design, including High-
frequency Enhancement (HE), Low-frequency Drop (LD),
and the Patch-wise Contrastive Loss (PCL). We consider
TransReID as the Baseline, and results are shown in Table 3.

Effectiveness of High-frequency Enhancement. From
index-1 and index-2, when High-frequency Enhancement
is applied, the Rank-1/mAP is greatly improved by
1.2%/1.1%. From index-5 and index-6, the Rank-1/mAP
is further improved by 1.5%/1.9%. The results indicate that
High-frequency Enhancement plays a vital role in enhanc-
ing the feature representation ability and discrimination of
key high-frequency components (e.g, clothes texture).

Effectiveness of Low-frequency Drop. From index-
2 and index-3, the Low-frequency Drop can improve the
Rank-1/mAP by 0.4%/1.0%. From index-4 and index-6,
the Rank-1/mAP is further improved by 0.6%/0.5%. The
results show that the dropped low-frequency components,
although imperceptible to human eyes, are beneficial to
prevent ViT from overfitting the low-frequency compo-
nents. Moreover, Low-frequency Drop complements High-
frequency Enhancement to enhance the representation abil-
ity of key high-frequency components.

Effectiveness of Patch-wise Contrastive Loss. From
index-2 and index-4, the Rank-1/mAP is improved by
1.0%/1.8%. From index-3 and index-6, the Rank-1/mAP
is further improved by 1.2%/1.3%. The improvements in-
dicate that the PCL benefits the ViT to enhance the feature
representation ability of key high-frequency components, to
extract discriminative person representations.

To verify that PCL works as an implicit augmentation,
we further conduct a comparison on “with vs. without stop-
gradient (stopgrad)” on high-frequency enhanced embed-
dings in P h

k . We implement it by modifying Eq. (12) as:

Sh  (w o PCL)⁄
	Sl   (w o PCL)⁄
Sh  (w . PCL)⁄
Sl  	(w . PCL)⁄

epoch

0.2

0.3

0.4

0.5

0.6

0.7

1 41 81 120

Sh (w/o PCL)
Sl  (w/o PCL)
Sh (w/. PCL)
Sl  (w/. PCL)

Figure 5. Comparisons in Sh and Sl between “with vs. without
PCL” on CUHK03-NP labeled dataset.

5 10 15 20

Rank-1 (%) mAP (%)

82.782.8
83.383.0

84.384.684.9
84.5

(b) CUHK03-NP 
q

qq

5 10 15 20

Rank-1 (%) mAP (%)

89.990.1
90.490.2

95.89696.396.1

q
(a) Market-1501

Figure 6. Comparison in Rank-1/mAP with different q on (a)
Market-1501 and (b) CUHK03-NP labeled datasets.

S(i, j, k) = exp(
P i,k

||P i,k||2

⊤
· stopgrad(

P h
j,k

||P h
j,k||2

)) (16)

This means that the enhanced embedding in P h
k is treated

as a constant without gradient items propagating over it, and
hence cannot be implicitly augmented by embeddings from
P k. The results in Tab. 4 validate that propagating new gra-
dient terms over P h

k is of great significance in elevating the
representation ability of key high-frequency components.

Another important contribution of PCL is to effectively
balance the effects of high-frequency and low-frequency
components. To explain it intuitively, we compute the row
average of the attention matrix 1

L

∑L
i=1 Ai, where L is the

number of ViT layers, then generate an attention vector
a ∈ R1+N . Since each row vector of Ai reveals how
much each input embedding influences the resulting em-
beddings, we consider each value in a as the contribution
of the embedding. We design two scores Sh =

∑
i∈Ω ai

and Sl =
∑

j /∈Ω aj to evaluate the contribution of embed-
dings with high-frequency responses and the rest reflecting
low-frequency ones, respectively. In Fig. 5, PCL ampli-
fies high-frequency components and effectively adjusts the
contribution of low-frequency ones, validating our analysis.

The Impact of interval length q in Eq. (10). We fur-
ther conduct experiments to explore the most suitable q. As
shown in Fig. 6, when q is set to 10, the Rank-1/mAP accu-
racy achieves the best. When q exceeds 10, the performance
continuously decays. One possible reason might be that a
too-high value of q falsely dropped key low-frequency com-
ponents, which are also crucial for ReID tasks.
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Figure 7. Comparison in top-3 ranking results and t-SNE visualization between the Baseline and our PHA method. In (a) and (d), the 1st-
and 2nd- rows show the top-3 ranking results of the Baseline and our PHA method, respectively. The top-3 ranking results of the Baseline
are wrong, while the results of our PHA are correct. In (b) and (e), we apply DHWT to find high-frequency patches of the query image
“Q1”/“Q2”, the wrong top-1 result “W”, and the correct result “C”. In (c) and (f), we conduct a comparison in t-SNE visualization of
embeddings from “Q1”/“Q2”, “W” and “C” between the Baseline (top plot) and our PHA method (bottom plot). To intuitively visualize
the distribution of patch embeddings with high-frequency components, the low-frequency patch embeddings are omitted from the plot.
Note that the symbol “CLS” in the plot denotes the constructed person representation.

(a)

(b)

(c)

Figure 8. Grad-CAM visualization of attention maps in inference.
(a) original person images. (b) attention maps of the Baseline. (c)
attention maps of our PHA method, which could generate higher
responses on key high-frequency ingredients.

4.5. Visualization

Top-3 ranking results and t-SNE visualization. Fig. 7
exhibits comparisons in top-3 ranking results and t-SNE
visualization between the Baseline and our PHA method.
Taking the query image “Q1” in Fig. 7 (a) as an example,
the 1st- and 2nd- rows show the top-3 ranking results of
the Baseline (wrong) and our method (correct), respectively.
To explain the effectiveness of our PHA against the Base-
line, we first apply DHWT to find high-frequency patches
of the query image “Q1”, the wrong top-1 result “W”, and
the correct result “C”, respectively, as shown in Fig. 7 (b).
In Fig. 7 (c), we conduct a comparison in t-SNE visualiza-
tion of embeddings from “Q1”, “W” and “C” between the
Baseline (top plot) and our PHA (bottom plot). To intu-

itively visualize the distribution of patch embeddings with
high-frequency components, the low-frequency patches are
omitted from the plot. Note that the symbol “CLS” in the
plot denotes the constructed person representations. Ob-
viously, our PHA preserves a more diverse distribution of
high-frequency patches, hence enabling the ViT to capture
key high-frequency ingredients, e.g., the texture details of
the red shirt and white shirt in “Q1” and “W”. By virtue
of it, the constructed person representations from different
identities are pushed apart, while the representations from
the same identity are pulled together.

Grad-CAM visualization of attention maps. Fig. 8
exhibits the attention maps of the Baseline and our PHA
during inference. It can be seen that the Baseline performs
poorly in capturing key high-frequency ingredients ( e.g.,
bags, heads, and texture details of clothes). In contrast, our
PHA could generate higher responses on the above details.
This benefits the ViT to preserve key high-frequency com-
ponents to extract discriminative person representations.

5. Conclusion
In this work, we reveal that the ViT perform worse than

CNNs in preserving high-frequency components of person
images. To remedy such inadequacy, we developed a Patch-
wise High-frequency Augmentation (PHA) method. To el-
evate the feature representation ability of high-frequency
components when taking the entire sequence as input, a
novel patch-wise contrastive loss is proposed. Note that
the PHA is only necessary during training, without bringing
extra complexity during inference. Extensive experimental
results outperform almost all kinds of methods.
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