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Abstract

Controllable image denoising aims to generate clean
samples with human perceptual priors and balance sharp-
ness and smoothness. In traditional filter-based denoising
methods, this can be easily achieved by adjusting the fil-
tering strength. However, for NN (Neural Network)-based
models, adjusting the final denoising strength requires per-
forming network inference each time, making it almost im-
possible for real-time user interaction. In this paper, we in-
troduce Real-time Controllable Denoising (RCD), the first
deep image and video denoising pipeline that provides a
fully controllable user interface to edit arbitrary denois-
ing levels in real-time with only one-time network inference.
Unlike existing controllable denoising methods that require
multiple denoisers and training stages, RCD replaces the
last output layer (which usually outputs a single noise map)
of an existing CNN-based model with a lightweight module
that outputs multiple noise maps. We propose a novel Noise
Decorrelation process to enforce the orthogonality of the
noise feature maps, allowing arbitrary noise level control
through noise map interpolation. This process is network-
free and does not require network inference. Our experi-
ments show that RCD can enable real-time editable image
and video denoising for various existing heavy-weight mod-
els without sacrificing their original performance.

1. Introduction
Image and video denoising are fundamental problems

in computational photography and computer vision. With
the development of deep neural networks [12, 26, 49, 59],
model-based denoising methods have achieved tremendous
success in generating clean images and videos with superior
denoising scores [4,55,57]. However, it should be noted that
the improvement in reconstruction accuracy (e.g., PSNR,
SSIM) is not always accompanied by an improvement in
visual quality, which is known as the Perception-Distortion
trade-off [6]. In traditional denoising approaches, we can
easily adjust the denoising level by tuning related control

*Equal contribution.

Perception

Distortion

Real-time tuning for user preference
GT

Initial Results
Tuning

A

B

C

D

E

Intensity Perception

Noisy Sample

Figure 1. Real-time controllable denoising allows users further
tuning the restored results to achieve Perception-Distortion trade-
off. A-B: tuning with changing denoising intensity. C-E: tuning
without changing denoising intensity.

parameters and deriving our preferred visual results. How-
ever, for typical deep network methods, we can only restore
the degraded image or video to a fixed output with a prede-
termined restoration level.

In recent years, several modulation methods have been
proposed to generate continuous restoration effects be-
tween two pre-defined denoising levels. These methods can
be categorized into two kinds: interpolation-based meth-
ods [17,24,50,51], which use deep feature interpolation lay-
ers, and condition-network-based methods, which import an
extra condition network for denoising control [9, 25, 39].
Essentially, both types of methods are designed based on
the observation that the outputs of the network change con-
tinuously with the modulation of features/filters. This ob-
servation enables deep denoising control, but it also intro-
duces several limitations. First, there is a lack of explain-
ability, as the relationship between the control parameters
(how to modulate features) and the control operation (how
the network outputs are changed) is unclear [24]. This in-
dicates that black-box operators (network layers) must be
used to encode them. Second, the use of control parame-
ters as network inputs requires entire network propagation
each time control parameters change, resulting in a lack of
efficiency. Lastly, current modulation methods often re-
quire an explicit degradation level during training, which
is hard to obtain for real-world samples. As a result, cur-
rent controllable denoising methods only focus on synthetic
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Figure 2. Comparison of pipelines between conventional control-
lable denoising and our RCD. RCD achieves real-time noise con-
trol by manipulating editable noises directly.

noise benchmarks. Furthermore, both interpolation-based
and condition-network-based methods have their own draw-
backs. Interpolation-based methods often require multi-
ple training stages, including pretraining two basic models
(start level and end level). On the other hand, condition-
network-based methods are strenuous to jointly optimize
the base network and the condition network.

In this paper, we research on the problem: Can we
achieve real-time controllable denoising that abandons the
auxiliary network and requires no network forward propa-
gation for changing restoration effects at test time?

Towards this goal, we propose Real-time Control-
lable Denoising method (RCD), a lightweight pipeline for
enabling rapid denoising control to achieve Perception-
Distortion Balance (See Fig. 1). Our RCD can be plugged
into any noise-generate-based restoration methods [11, 46,
54, 55] with just a few additional calculations. Specifi-
cally, we replace the last layer of an existing denoising
network (which usually outputs a single noise map) with a
lightweight module that generates multiple noise maps with
different noise levels. We utilize a novel Noise Decorrela-
tion process to enforce the orthogonality of the noise distri-
bution of these noise maps during training. As a result, we
can attain arbitrary denoising effects by simple linear inter-
polation of these noise maps. Since this process does not
require network inference, it makes real-time user interac-
tion possible even for heavy denoising networks.

Fig. 2 illustrates the fundamental differences between
our RCD approach and conventional controllable denoising
methods. In contrast to traditional methods that rely on con-
trol networks, the RCD pipeline generates editable noises of
varying intensities/levels, providing explicit control by ex-
ternal parameters and enabling network-free, real-time de-
noising editing. Real-time editing capabilities offered by
RCD create new opportunities for numerous applications
that were previously impossible using conventional tech-
niques, such as online video denoising editing, even during
playback (e.g., mobile phone camera video quality tuning
for ISP tuning engineers), as well as deploying controllable
denoising on edge devices and embedded systems. Since
the editing stage of RCD only involves image interpolation,

users can edit their desired results on low-performance de-
vices without the need for GPUs/DSPs.

Moreover, unlike previous methods that only support
changing noise levels, RCD allows users to adjust denois-
ing results at a specific noise level by providing a new in-
terface to modify the noise generation strategy. RCD is
also the first validated method for controllable denoising on
real-world benchmarks. It is noteworthy that existing con-
trollable methods typically require training data with fixed-
level noise to establish their maximum and minimum noise
levels, which makes them unsuitable for most real-world
benchmarks comprising data with varying and unbalanced
noise levels.

Our main contributions can be summarized as follows:

• We propose RCD, a controllable denoising pipeline
that firstly supports real-time denoising control (>
2000× speedup compared to conventional controllable
methods) and larger control capacity (more than just
intensity) without multiple training stages [24] and
auxiliary networks [50].

• RCD is the first method supporting controllable de-
noising on real-world benchmarks.

• We propose a general Noise Decorrelation technique
to estimate editable noises.

• We achieve comparable or better results on widely-
used real/synthetic image-denoising and video-
denoising datasets with minimal additional computa-
tional cost.

2. Related Works
2.1. Denoising

Traditional image and video denoising methods are of-
ten based on prior assumptions such as sparse image prior
[3, 15, 16, 20], non-local similarity [7, 13, 14, 18], and other
similar techniques [22,41,52]. However, with the recent de-
velopment of deep learning networks, many learning-based
methods have been proposed and achieved state-of-the-art
performance. Early works [8] utilized multi-layer percep-
tron (MLP) to achieve comparable results with BM3D. In
recent years, there has been rapid progress on CNN-based
denoising methods [4, 10, 21, 47, 55, 57] and Transformer-
based methods [32, 42, 54, 59], which have started to dom-
inate the image/video denoising task. However, the above-
mentioned works mainly focus on designing novel network
architectures to improve the denoising performance and
usually generate a single output. Their lack of ability to
adjust the output denoising level based on user’s feedback
has greatly restricted their practical use in many real-world
applications. Moreover, although techniques like pruning
[33, 38, 60] and quantization [45, 61] can accelerate such
neural network-based methods, they are typically heavy,
which restricts their application to real-time denoising con-
trol.
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Figure 3. Pipeline overview of proposed RCD framework. A: Backbone network for generating multi-level noise maps. B: Noise
Decorrelation module for editable noises. C: AutoTune module for providing reference control parameters for users.

2.2. Controllable denoising

Most conventional deep-learning methods for im-
age/video denoising can only generate a fixed result with
a specific restoration level. Recently, some controllable
image/video denoising methods allow users to adjust the
restoration effect without retraining the network. DNI [51]
and AdaFM [24] used the observation that the learned fil-
ters of the models trained with different restoration lev-
els are similar in visual patterns. DNI interpolated all the
corresponding parameters between two related networks
to derive smooth and continuous restoration effects, while
AdaFM adopted feature modulation filters after each con-
volution layer. CFSNet [50] proposed an adaptive learning
strategy of using interpolation coefficients to couple the in-
termediate features between the main branch and the tuning
branch. Different from these interpolation-base methods,
some other methods [9, 25, 39] regarded modulation as a
conditional image restoration problem and adopted a joint
training strategy. CUGAN [9] proposed a GAN-based im-
age restoration framework to avoid the over-smooth prob-
lem, a common issue in PSNR-oriented methods. How-
ever, all of the above controllable methods can only be
trained with synthetic degradations because they require ex-
plicit degradation levels during training. When applied on
real-world data, as shown in [23], methods that trained for
blind Additive White Gaussian Noise (AWGN) [35,55] may
be overfitted and often suffer from dramatic performance
drop. Besides the real-world image issue, all these con-
trollable methods utilize an auxiliary conditional network
and require one network inference for each different target

restoration level at test time, which makes them almost im-
possible for real-time application.

3. Methods

3.1. Conventional Deep Denoising

Deep denoising methods trump traditional filter-based
techniques by leveraging the neural networks’ robust repre-
sentation learning capability. Most current denoising meth-
ods [11,32,46] reason about the relationship between clean
and noisy images by regressing noise maps with a neural
generator. Specifically, given a noisy image In and model
M : RH×W×C → RH×W×C , we can derive the predicted
clean image Ic by: Ic = In + M(In), where model M
is updated by minimizing the distance between the denois-
ing result Ic and the ground truth Igt. As we can see, this
kind of approach generates a single fixed output result in
a black-box manner, making it almost impossible to adjust
the denoise operation explicitly.

3.2. Pipeline Overview

In this section, we present Real-time Controllable De-
noising (RCD), a novel deep learning-based pipeline for
real-time controllable denoising. As illustrated in Fig. 3,
RCD essentially consists of three parts: (1) A backbone
network, i.e., Mb : RH×W×C → RH×W×LC , generates
multiple fixed-level noise maps, where L is the number of
pre-defined noise levels (see (A) in Fig. 3). (2) A Noise
Decorrelation (ND) block that enforces the editability of the
generated noise maps (see (B) in Fig. 3). (3) An AutoTune
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module that gives a default set of control parameters to gen-
erate the best denoising result.

Specifically, the backbone network will generate multi-
ple fixed-level noise maps, i.e., {Ni}Li=1, for each noisy im-
age input. The noise maps are then fed into the proposed
Noise Decorrelation (ND) block, which makes noise maps
orthogonal to each other. In this way, the decorrelated noise
maps {Ñi}Li=1 will be zero-correlated and thus become lin-
early interpolable. At last, the AutoTune module will give a
set of suggested control parameters {c̄i}Li=1 to generate the
final denoising result as follows:

Ic = In +

L∑
i=1

c̄iÑi, (1)

where
∑L

i=1 c̄i = 1. Moreover, given the zero-correlated
noise maps, users can also generate arbitrary strength de-
noising results by replacing {c̄i}Li=1 with their own cus-
tomized control parameters {ci}Li=1.

3.3. Multi-level Noise Generation
Given a noisy input image In, the backbone network

aims to generate multiple noise maps {Ni}Li=1, correspond-
ing to a set of pre-defined noise levels {li}Li=1, e.g. noise
levels {5, 10, 15, ..., 60}. Hence, we have

σ(Ni) = li,∀i = 1, ..., L, (2)

where σ is the noise level operation that calculates the stan-
dard deviation of pixels in each noise map. To obtain multi-
level noise maps, we replace the conventional last output
layer of the denoising network with a convolutional layer
with an output channel size of L ·C. Moreover, the level of
the noise map is explicitly generated with the normalization
operation, as given by

Ni = li
Mb(In)

(i)

σ(Mb(In)(i))
,∀i = 1, ..., L. (3)

Here Mb(In) ∈ RH×W×LC is network output, and
Mb(In)

(i) ∈ RH×W×C is the i-th component separated
from the channel dimension. The derived Ni can be con-
sidered as the noise map estimated at the given noise level
li.

Different from prior controllable denoising methods with
implicit interpolation in the network, we propose to explic-
itly interpolate the noise maps in Eqn. 3. Thanks to the
separation of noise interpolation and network inference, our
RCD can achieve real-time user interaction.

However, the multi-level noise maps Ni directly ob-
tained by convolutional layers are usually highly correlated,
which leads to the problem of noise level collapse. In other
words, the noise map representations in different levels are
redundant, implying that the number of noise maps at dif-
ferent noise strengths that participate in the linear interpola-
tion in Eqn. 1 is implicitly reduced. Without any constraint,

Output

Output

Learned Noise w\ ND

Learned Noise w\o ND

Noisy

Calculatable

Hard to deternmine

Figure 4. Demonstration of Noise Decorrelation’s influence on
noise editing. |Σ|F denotes norms of the covariance matrix for
corresponding learned noises and σ is noise intensity.

our experiments show that the single noise map at a cer-
tain noise level would dominate in the linear interpolation
for a variety of input noisy images. To address this issue,
we further introduce the Noise Decorrelation block to make
representations of these noise maps much more informative
in the following section.

3.4. Noise Decorrelation
The Noise Decorrelation (ND) block is designed to regu-

larize the backbone network to generate editable noise maps
at varying levels. In particular, this block is a parameter-free
computational unit that enforces Ni to be approximately
zero-correlated with each other: cov(Ni,Nj) ≈ 0,∀i, j ∈
{1, 2, ..., L}, where cov(·, ·) is covariance operator. In-
spired by the success of using the decorrelation technique
in network optimization and normalization, we adopt the
whitening-based methods [29, 30] for noise decorrelation
here. The noise maps are decorrelated using the inverse
square root of their covariance matrix.

Specifically, for each predicted fixed-level noise map
Ni, it will firstly be reshaped to Ni ∈ R1×M , where
M = HWC. By stacking the reshaped Ni over the first
dimension, we have N ∈ RL×M . We then calculate the
noise covariance matrix σ by: Σ = 1

M−1 (N−N̄)(N−N̄)T

where N̄ is mean of N over channel M .
The Noise Decorrelation block needs to compute inverse

square root Σ− 1
2 ∈ RL×L, which can be done by eigen de-

composition or SVD. Since this kind of operation involves
heavy computation [29], we instead adopt the more efficient
Newton’s Iteration to estimate Σ− 1

2 as in [5, 27]. Giving a
covariance matrix Σ, Newton’s Iteration calculates Σ− 1

2 by
following the iterations below:

Σ0 = I,
Σk = 1

2 (3Σk−1 − (Σk−1)
3Σ), k = 1, 2, .., T,

(4)

where k is the iteration index and T is the iteration num-
ber (in our experiments T = 3 or 4). Σk is guaranteed to
converge to Σ− 1

2 , if ∥I − Σ∥2 < 1 [5]. This condition can
be achieved by normalizing Σ to Σ

tr(Σ) , where tr(.) is trace
operator.

The derived Σ− 1
2 can be regarded as a whitening

matrix [43], which decorrelates the noise maps N in
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a differentiable manner. The decorrelated noise maps
˜N ∈ RH×W×LC can be obtained by calculating: Ñ =

Σ− 1
2N. We can then have our editable fixed-level noises

Ñi ∈ RH×W×C by reshaping Ñ and splitting it into L
noise maps. After Noise Decorrelation, we apply the same
normalization as Eqn. 3 to guarantee the noise strength of
the decorrelated noises.

The zero-correlated noise maps Ñi present several excel-
lent properties for controllable denoising. Firstly, the lin-
earity of the noise level’s square towards Ñi is guaranteed.
In other words, given an arbitrary set of control parameters
{ci}Li=1, we have

Var(

L∑
i=1

ciÑi) =

L∑
i=1

c2iVar(Ñi), (5)

where Var(·) denotes variance operator. Apparently,
Eqn. 5 holds when elements of {Ñi}i=1,2,..,m are mutu-
ally zero-correlated. Eqn. 5 reveals the explicit relationship
between the control parameters and the target noise level,
which allows us to directly edit noises by interpolating Ni

using ci. Secondly, the Noise Decorrelation block can be
regarded as a regularization tool that forces models to learn
different noise formats for each level, which will increase
the representation capacity of the denoising network [30].

Fig. 4 demonstrates how the Noise Decorrelation block
works. With ND block, the covariance of learned noises
is reduced to almost zero (without it, |Σ|F can be 751 and
unignorable), allowing us to derive determined interpolated
results with target noise intensity. In contrast, without the
Noise Decorrelation blocks, the output noise level can not
be guaranteed.

3.5. AutoTune Module
Given the decorrelated noise maps from the Noise

Decorrelation block, the AutoTune module will predict a
set of model-suggested control parameters, i.e., {c̄i}Li=1, to
generate the default denoising result. Users can then use
this set of parameters as a starting point to fine-tune their
final desired denoising strength. Our AutoTune module is
extremely lightweight, and is formulated as a single-layer
module with temperature softmax activation. Specifically,

{c̄i}Li=1 can be obtained by : c̄i = e
A(f)i

τ∑n
j=1 e

A(f)j
τ

, where A is

the NN layer, f is the input feature maps, and τ is tempera-
ture. In our experiments, τ is set to be 0.05 for best perfor-
mance. Following the design ethos of efficiency and least
coupling to the backbone architecture, we directly choose
the unnormalized model outputs M(In) as f (see (C) in
Fig. 3).

3.6. New Cardinality for Denoising Control.
Unlike existing methods that only modulate noise in-

tensity, our RCD control scheme allows users to further
optimize the denoising result to a given noise intensity

AutoTune HumanTune

PSNR: 30.71 PSNR: 31.23

=[0, 0, 0, 0, 0, 0, 0.28, 0.4, 0.32, 0, 0,0 ]

Ground Truth

[0, 0, 0, 0, 0.008, 0.102, 0.446, 0.373, 0.063,0.010, 0,0]

=[5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,60 ]

Control Parameters:

Noise Levels: 
Optimize RCD results by tuning 

Figure 5. Example of RCD denoising results by AutoTune and
HumanTune on Set8. AutoTune module provides reference con-
trol parameters, i.e., {c̄i}Li=1), to generate the denoising result, and
it can be further improved by fine-grained artificial tuning (Hu-
manTune), i.e., {ci}, without changing the noise intensity (both
σ = 40).

by tuning {ci}, as long as the weighted mean of li to-
wards ci remains the same. Eqn. 5 shows that when∑L

i=1 c
2
iVar(Ñi) =

∑L
i=1 c

2
i l

2
i is fixed, the variance of the

output noise Var(
∑L

i=1 ciÑi) would be also fixed. By ex-
ploring ci under the condition of fixed

∑L
i=1 c

2
i l

2
i , we can

further optimize the denoising results at a specific noise
level by involving different components (Ni) in the noise in-
terpolation. As shown in Fig. 5, our AutoTune module can
generate high-quality results using just the reference control
parameters {c̄i}. Users can further improve the result by ar-
tificially tuning {ci} around {c̄i}, even at the same noise
level.

3.7. Optimization Targets

To guarantee the visual quality of arbitrarily edited noise∑L
i=1 ciÑi for any given set of control parameters {ci}Li=1,

we adopt a multi-level concurrent training strategy by mini-
mizing the difference between each level’s noise output and
the ground truth noise, i.e., Llevel, which is derived by:

Llevel =
1

L

L∑
i=1

L(Igt, In + Ñi) (6)

where Igt, In are ground truth clean image and the input
noisy image. L(.) can be any loss functions (e.g., L2 loss or
PSNR loss).

Spectacularly, In + Ñi can be regarded as corner cases
of RCD when we use one-hot control parameters as input.
Joint optimization of all the noise levels ensures that each
element of Ni can be trained as optimal noise estimation
under the condition of fixed noise level li.

Together with the AutoTune module optimization, our
final cost function can be written as:

Ltotal = λLlevel + L(Igt, In +

L∑
i=1

c̄iÑi), (7)
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Table 1. Gaussian single image denoising results (PSNR). RCD is evaluated with AutoTune results. “-”: not reported

Method Controllable CBSD68 Kodak24 McMaster Urban100
σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50

IRCNN [56] ✗ 33.86 31.16 27.86 34.69 32.18 28.93 34.58 32.18 28.91 33.78 31.20 27.70
FFDNet [57] ✗ 33.87 31.21 27.96 34.63 32.13 28.98 34.66 32.35 29.18 33.83 31.40 28.05
DnCNN [55] ✗ 33.90 31.24 27.95 34.60 32.14 28.95 33.45 31.52 28.62 32.98 30.81 27.59
DSNet [40] ✗ 33.91 31.28 28.05 34.63 32.16 29.05 34.67 32.40 29.28 -

CResMD [25] ✓ 33.97 - 28.06 - - -
AdaFM-Net [24] ✓ 34.10 31.43 28.13 - - -

NAFNet [11] ✗ 34.11 31.49 28.27 35.14 32.70 29.68 35.07 32.82 29.79 34.41 32.09 29.00
NAFNet-RCD (ours) ✓ 34.13 31.49 28.26 35.15 32.72 29.69 35.11 32.84 29.81 34.45 32.12 29.02

Table 2. Running time comparison for RCD and other controllable
methods during test time. Full Pipeline compares full pipeline la-
tency for the model to infer 1000 images, and Edit-only compares
latency for editing one image with 1000 different control parame-
ters.

Method Multi-stage training Full Pipeline Edit-only
AdaFM-Net required 81.03s 81.03s
CResMDNet not required 128.08 128.08s

NAFNet-RCD not required 64.84s 0.04s

where λ is the loss weight (λ = 0.1 in our experiments),
and L(Igt, In +

∑n
i=1 c̄iÑi) optimizes the denoising result

derived by the model-suggested control parameters.

4. Experiments
This section is organized as follows: First, we demon-

strate the effectiveness of our plug-in RCD with SOTA im-
age denoising methods [11] in different scales on synthetic
noise datasets. Next, to evaluate the ability of blind denois-
ing on real-world data, we conduct experiments on popu-
lar real-world denoising dataset SIDD [1]. Then, we apply
our real-time controllable RCD pipeline on video denoising
applications. At last, we empirically discuss some design
details described in the previous sections.

4.1. Gaussian Single Image Denoising

Experimental Setup. To fully demonstrate the effec-
tiveness of the proposed RCD, we choose the most re-
cent SOTA method NAFNet [11] as our backbone. Fol-
lowing [54], we first conduct denoising experiments on
several widely-used synthetic color image benchmarks
(DIV2K [2], BSD400 [36], Flickr2K [53] and Water-
looED [34]) with additive white Gaussian noise (σ ∈
[0, 60]). The training patch size is 128 × 128 and the batch
size is 64. We train our model with Adam [31] optimizer
and learning rate 1e− 3 for total 60K iterations. Consistent
to [11], PSNR loss is adapted as the loss function. Both the
baseline model (NAFNet) and its RCD variants (NAFNet-
RCD) are trained from scratch. For settings of RCD, we
initialize L = 12 and {li} = [5, 10, ..., 60] for synthetic
denoising training.

Complexity analysis. Extensive adjustments of con-
trollable parameters are often required to obtain one sat-
isfying result for users. Therefore, editing time is vital

for controllable methods. This section compares the infer-
ence and editing latency of our RCD and conventional con-
trollable pipelines on GTX 1080Ti. As shown in Tab. 2,
the proposed RCD not only outperforms other conventional
controllable pipelines on inference time, but more impor-
tantly, can overwhelm those traditional controllable designs
on editing time, which can be more than 2000 times faster
(as editing process of RCD is network-free, without reliance
on sub-networks). This comparison confirms that our RCD
is more than enough for real-time image editing.

Results Analysis. We evaluate our proposed method
on widely used synthetic noise datasets CBSD68 [37], Ko-
dak24 [19], McMaster [58] and Urban100 [28] with noise
levels σ(15), σ(15) and σ(50). RCD is evaluated with de-
noising results using AutoTune outputs{c̄i}. As shown in
Tab. 1, NFANet-RCD achieves comparable performance to
the baseline NFANet consistently on multiple datasets, indi-
cating that our plug-in RCD module enables real-time con-
trollable denoising for NAFNet without sacrificing its orig-
inal denoising performance. Please note that NAFNet-RCD
can yield comparable results to the backbone just by using
the AutoTune outputs, and the performance can be further
improved by manually tuning the control parameters ( See
Sec. 3.6.) We further show the qualitative performance of
NAFNet-RCD in Fig. 6. NAFNet-RCD can recover more
details of some degraded images, which may be benefited
from RCD’s richer representation capacity by integrating
multiple noise maps.

Slimmer Model Variants. Towards the goal of eval-
uating the compatibility and robustness of RCD, we con-
duct ablations by applying RCD to different-sized back-
bones. Specifically, we shrink the width and block num-
bers of NAFNet, denoting derived models as NAFNet-small
( 14×) and NAFNet-tiny ( 1

16×). Tab. 3 reports the results of
RCD with those scaled backbones. It can be observed that
the RCD-variants can achieve comparable and even slightly
better denoising results compared to their baselines, which
further demonstrates RCD’s robustness and effectiveness
for different-sized backbones.

4.2. Real Single Image Denoising
Experimental Setup (Real Image) Unlike existing

controllable denoising methods [24,50] which focus on syn-
thetic benchmarks, we are the first solution that attempts to
extend controllable denoising to real-world SIDD datasets.
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Figure 6. Visual comparison of RCD and their baseline results on σ = 50 denoising. GT: Ground truth. Base: Baseline model without
RCD. AutoTune: RCD results by applying control parameters from AutoTune module.

Table 3. Ablation of RCD on various backbone sizes.

Method CBSD68 Kodak24 McMaster Urban100
σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50

NAFNet-tiny 33.58 30.91 27.62 34.33 31.84 28.63 33.85 31.61 28.55 32.96 30.37 26.92
NAFNet-RCD-tiny 33.71 31.06 27.68 34.46 31.98 28.65 34.07 31.78 28.61 33.22 30.66 27.18

NAFNet-small 33.84 31.18 27.91 34.68 32.18 29.01 34.68 32.18 29.01 33.61 31.10 27.68
NAFNet-RCD-small 33.96 31.31 28.05 34.83 32.32 29.14 34.71 32.40 29.26 33.92 31.46 28.08

NAFNet 34.11 31.49 28.27 35.14 32.70 29.68 35.07 32.82 29.79 34.41 32.09 29.00
NAFNet-RCD 34.13 31.49 28.26 35.15 32.72 29.69 35.11 32.84 29.81 34.45 32.12 29.02

Table 4. Image denoising results on SIDD. Real noise: results on
real-world SIDD test sets. Synthetic noise: results on SIDD test
set with additive Gaussian noise (σ = 25).

Method Real noise Synthetic noise
PSNR SSIM PSNR SSIM

NAFNet-tiny 42.19 0.9796 38.46 0.9551
NAFNet-RCD-tiny 41.86 0.9781 38.60 0.9558

NAFNet 43.22 0.9818 38.85 0.9481
NAFNet-RCD 42.91 0.9806 39.14 0.9580

SIDD consists of real noisy images captured by smart-
phones with σ ∈ [0, 50]. Instead of using full SIDD data,
we choose subsets of SIDD with σ ∈ [0, 12] (around 70% of
the entire dataset) to train our RCD model, which is initial-
ized with L = 4 and {li} = [3, 6, 9, 12]. The main reason
is the lacking of high σ data at given levels in SIDD be-
cause of SIDD’s highly long-tailed noise level distribution.
Specifically, most noisy images in SIDD gather in σ < 12
and the samples distribute sparsely when σ is large. Con-
sistent to Sec. 4.1, we adopt NAFNet (SOTA methods for
SIDD challenge [11]) as our backbone at two scales (1×,
1
16×). Both NAFNet-RCD and the corresponding baselines
are trained on this subset with the same training settings as
in [11].

Results and Analysis We conduct blind denoising ex-
periments on SIDD with different RCD model scales to
evaluate its adjustability to the real-world dataset. As
shown in Tab. 4 (left), our RCD (AutoTune results) can

achieve high-quality controllable real-world denoising in
both model scales. However, we note that enabling con-
trollable denoising with RCD may still result in a slight de-
crease in quantitative results (about 0.3dB), which may be
a result of unbalanced data for each level and short noise
level interval (|li+1 − li|, see more discussion in Sec. 4.4).

SIDD with synthetic noise. We extensively conduct
synthetic denoising experiments on SIDD to further show
the compatibility of RCD on SIDD datasets. Following
Sec. 4.1, we add random Gaussian noise σ ∈ [0, 60] to
SIDD training data, and both methods are evaluated on
σ = 50 SIDD test samples. As shown in Tab. 4 (right), RCD
models slightly outperform their baselines, demonstrating
RCD’s compatibility for SIDD. Moreover, this result can
also indicate that RCD’s performance drop on SIDD real
image may arise from the noise distribution and RCD con-
figurations, rather than RCD’s adaptive capacity to SIDD
data. See Appendix for more results and visualizations.

4.3. Video Denoising
Experiment Setup Following common practice [32, 44,

46], we train our models on DAVIS training set and use
DAVIS-test and Set-8 for benchmarking. Like in [46], we
add Gaussian noise with random standard deviation be-
tween 5-50 on the DAVIS clean videos for training. The
DAVIS set contains 30 color sequences of resolution 854×
480, which will be randomly cropped into 128×128 patches
during training. Other training settings and hyperparame-
ters are kept the same as [46] for a fair comparison.

Choice of Basic model. We choose FastDVD [46] as
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Figure 7. Illustration of RCD control logics. Users can retouch the denoising level by tuning the Intensity bar (σ =
√∑L

i=1 c
2
i l

2
i ) and

setup their perceptual preference at fixed level by tuning Component bar (changing {ci} while keeping σ).

our backbone model. Although recent methods [32,48] out-
perform FastDVD by 1-2 PSNR at most, they actually in-
troduce huge models and extra heavy operations like patch
clustering [48] and layer-wise frame-to-frame wrapping us-
ing optical flow [32] ( > 100× slower than FastDVD).

Results and Analysis. Like [44], we evaluate our video
denoising models with the input length of one frame and
five frames. We denote RCD models for video denoising as
“FastDVD-RC” and compare their quantitative AutoTune
denoising results to baseline FastDVD in Tab. 5. Consis-
tent with preceding sections, AutoTune results of FastDVD-
RCD can demonstrate comparable performance to the de-
fault FastDVD, which means our RCD can also achieve
lossless real-time noise editing in video scenarios. Unlike
previous heavy controllable denoising methods, our real-
time RCD can even allow users to do online video denoising
editing without any latency.

Table 5. Video denoising results.

Test set σ
1 frame 5 frames

FastDVD FastDVD-RCD FastDVD FastDVD-RCD

DAVIS

20 34.17 34.21 35.69 35.65
30 32.45 32.69 34.06 34.04
40 31.39 31.60 32.80 32.78
50 30.26 30.57 31.83 31.85

Set 8

20 31.99 32.01 33.43 33.46
30 30.61 30.65 31.62 31.71
40 29.62 29.83 30.36 30.42
50 28.61 28.85 29.41 29.60

4.4. Discussions
Selection of Denoising Levels. Differing from conven-

tional denoising methods, RCD requires a group of prede-
fined noise levels {li}Li=1. To evaluate how the selection
of {li}Li=1 affects RCD’s performance, we conduct abla-
tion studies on FastDVD-RCD by changing the number of
noise maps (L) (See Tab. 6.) All of the models are trained
on noisy images with σ ∈ (0, 60] and uniformly sampled
noise levels that {li = 60

L ∗ i}Li=1. We observe that larger
L means more fine-grained control on denoising, but it may
incur a performance drop. In fact, when n is large we find
that Llevel will also keep large and be hard to optimize.
Trading-off performance and control precision, we empir-
ically choose L = 12 and noise level interval |li+1− li| = 5
as defaults.

Table 6. Ablations of FastDVD-RCD on different number of noise
levels. Reported scores are PSNR of AutoTune outputs and GT.

Test Set σ L = 1 L = 2 L = 12 L = 30 L = 60

Set8

20 31.87 31.42 32.01 31.39 31.07
30 30.51 30.09 30.65 30.12 29.75
40 29.60 29.31 29.83 29.33 29.01
50 28.62 28.29 28.85 28.22 28.05

Control Capacity. This section discusses the represen-
tation capacity of ci as control parameters. Generally, ci
controls the denoising process on two aspects: intensity
and components. Firstly, the noise levels of RCD outputs

are identical and can be derived by σ =
√∑L

i=1 c
2
i l

2
i (See

Sec. 3.4), which allows us to control the denoising intensity
by changing {ci}. Fig. 7 depicts visualizations of RCD-
controlled denoising under different intensity settings. Be-
sides, as discussed in Sec. 3.6, RCD supports further op-
timization of the denoising results at specific noise inten-
sity by tuning ci by involving different components of Ñi.
(Please be reminded that Ñi is trained by Llevel, denoting
learned optimal denoising results at every fixed level li.)

5. Summary
We present RCD framework that enables real-time

noise editing for controllable denoising. Unlike existing
continual-level denoising methods, RCD doesn’t require
multiple training stages and auxiliary networks. With the
proposed Noise Decorrelation module, RCD transforms
the control of denoising into white-box operations, with
no requirement to feed control parameters to networks at
test time, which enables real-time editing even for heavy
network models. Extensive experiments on widely-used
real/synthetic image and video denoising datasets demon-
strate the robustness and effectiveness of our RCD.
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