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Abstract

There is a growing interest in developing unlearnable
examples (UEs) against visual privacy leaks on the Internet.
UEs are training samples added with invisible but unlearn-
able noise, which have been found can prevent unauthorized
training of machine learning models. UEs typically are gen-
erated via a bilevel optimization framework with a surrogate
model to remove (minimize) errors from the original sam-
ples, and then applied to protect the data against unknown
target models. However, existing UE generation methods
all rely on an ideal assumption called label-consistency,
where the hackers and protectors are assumed to hold the
same label for a given sample. In this work, we propose
and promote a more practical label-agnostic setting, where
the hackers may exploit the protected data quite differently
from the protectors. E.g., a m-class unlearnable dataset
held by the protector may be exploited by the hacker as a
n-class dataset. Existing UE generation methods are ren-
dered ineffective in this challenging setting. To tackle this
challenge, we present a novel technique called Unlearn-
able Clusters (UCs) to generate label-agnostic unlearn-
able examples with cluster-wise perturbations. Furthermore,
we propose to leverage Vision-and-Language Pre-trained
Models (VLPMs) like CLIP as the surrogate model to im-
prove the transferability of the crafted UCs to diverse do-
mains. We empirically verify the effectiveness of our pro-
posed approach under a variety of settings with different
datasets, target models, and even commercial platforms Mi-
crosoft Azure and Baidu PaddlePaddle. Code is avail-
able at https://github.com/jiamingzhang94/
Unlearnable-Clusters.

1. Introduction
While the huge amount of “free” data available on the

Internet has been key to the success of deep learning and
computer vision, this has also raised public concerns on the
unauthorized exploitation of personal data uploaded to the
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Figure 1. An illustration of two different data protection assump-
tions: label-consistency vs. label-agnostic, where the hacker ex-
ploits the protected data in different manners.

Internet to train commercial or even malicious models [16].
For example, a company named Clearview AI has been
found to have scraped billions of personal images from Face-
book, YouTube, Venmo and millions of other websites to
construct a commercial facial recognition application [44].
This has motivated the proposal of Unlearnable Examples
(UEs) [17] to make data unlearnable (or unusable) to ma-
chine learning models/services. Similar techniques are also
known as availability attacks [2, 41] or indiscriminate poi-
soning attacks [14] in the literature. These techniques allow
users to actively adding protective noise into their private
data to avoid unauthorized exploitation, rather than putting
our trust into the hands of large corporations.

The original UE generation method generates error-
minimizing noise via a bilevel min-min optimization frame-
work with a surrogate model [17]. The noise can then be
added to samples in a training set in either a sample-wise
or class-wise manner to make the entire dataset unlearnable
to different DNNs. It has been found that this method can-
not survive adversarial training, which has been addressed
by a recent method [11]. In this work, we identify one
common assumption made by existing UE methods: label-
consistency, where the hackers will exploit the protected
dataset in the same way as the protector including the labels.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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This means that, for the same image, the hacker and protec-
tor hold the same label. We argue that this assumption is
too ideal, and it is possible that the hackers will collect the
protected (unlearnable) samples into a dataset for a different
task and label the dataset into different number of classes.
As illustrated in Figure 1, an image can be labelled with
different annotated labels (cat or animal), showing that a m-
class (e.g., 10-class) unlearnable dataset may be exploited
by the hacker as a n-class (e.g., 5-class or 20-class) dataset
depending on its actual needs. We term this more generic
assumption as label-agnostic and propose a novel method
Unlearnable Clusters (UCs) to generate more effective and
transferable unlearnable examples under this harsh setting.

In Figure 2 (a), we show that this more generic label-
agnostic setting poses a unique transferability challenge
for the noise generated by existing methods like Error-
Minimizing Noise (EMinN) [17], Adversarial Poisoning
(AdvPoison) [10], Synthetic Perturbations (SynPer) [41] and
DeepConfuse [9]. This indicates that the protective noise
generated by these methods are label-dependent and are ren-
dered ineffective when presented with different number of
classes. As such, we need more fundamental approaches
to make a dataset unlearnable regardless of the annotations.
To this end, we start by analyzing the working mechanism
of UEs generated by EMinN, AdvPoison as they are very
representative under the label-consistency setting. Through
a set of visual analyses, we find that the main reason why
they could break supervised learners is that the generated
noise tends to disrupts the distributional uniformity and dis-
crepancy in the deep representation space. Uniformity refers
to the property that the manifold of UEs in the deep rep-
resentation space does not deviate much from that of the
clean examples, while discrepancy refers to the property
that examples belonging to the same class are richly diverse
in the representation space. Inspired by the above obser-
vation, we propose a novel approach called Unlearnable
Clusters (UCs) to generate label-agnostic UEs using cluster-
wise (rather than class-wise) perturbations. This allows us
to achieve a simultaneous disruption of the uniformity and
discrepancy without knowing the label information.

Arguably, the choose of a proper surrogate model also
plays an important role in generating effective UEs. Previ-
ous methods generate UEs by directly attacking a surrogate
model and then transfer the generated UEs to fight against
a diverse set of target models [10, 17]. This may be easily
achievable under the label-consistency setting, but may fail
badly under the label-agnostic setting. However, even un-
der the label-consistency setting, few works have studied
the impact of the surrogate model to the final unlearnable
performance. To generate effective, and more importantly,
transferable UEs under the label-agnostic setting, we need
to explore more generic surrogate model selection strategies,
especially those that can be tailored to a wider range of un-

known target models. Intuitively, the surrogate model should
be a classification DNN that contains as many classes as
possible so as to facilitate the recognition and protection of
billions of images on the Internet. In this paper, we propose
to leverage the large-scale Vision-and-Language Pre-trained
Models (VLPMs) [22,23,30] like CLIP [30] as the surrogate
model. Pre-trained on over 400 million text-to-image pairs,
CLIP has the power to extract the representation of extremely
diverse semantics. Meanwhile, VLPMs are pre-trained with
a textual description rather than a one-hot label to align with
the image, making them less overfit to the actual class “la-
bels”. In this work, we leverage the image encoder of CLIP
to extract the embeddings of the input images and then use
the embeddings to generate more transferable UCs.

We evaluate our UC approach with different backbones
and datasets, all in a black-box setting (the protector does
not know the attacker’s network architecture or the class
labels). Cluster-wise unlearnable noise can also prevent un-
supervised exploitation against contrastive learning to certain
extent, proving its superiority to existing UEs. We also com-
pare UC with existing UE methods against two commercial
machine learning platforms: Microsoft Azure1 and Baidu
PaddlePaddle2. To the best of our knowledge, this is the
first physical-world attack to commercial APIs in this line of
work. Our main contributions are summarized as follows:

• We promote a more generic data protection assumption
called label-agnostic, which allows the hackers to ex-
ploit the protected dataset differently (in terms of the
annotated class labels) as the protector. This opens up
a more practical and challenging setting against unau-
thorized training of machine learning models.

• We reveal the working mechanism of existing UE gener-
ation methods: they all disrupt the distributional unifor-
mity and discrepancy in the deep representation space.

• We propose a novel approach called Unlearnable Clus-
ters (UCs) to generate label-agnostic UEs with cluster-
wise perturbations without knowing the label informa-
tion. We also leverage VLPMs like CLIP as the surro-
gate model to craft more transferable UCs.

• We empirically verify the effectiveness of our proposed
approach with different backbones on different datasets.
We also show its effectiveness in protecting private data
against commercial machine learning platforms Azure
and PaddlePaddle.

2. Related Work
Unlearnable examples (UEs) can be viewed as one special

type of data poisoning attacks [1, 2] that aim to make model

1https://portal.azure.com/
2https://www.paddlepaddle.org.cn/en/
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training fail completely on the poisoned (protected) dataset.
UEs should be differentiated from the other two well-known
attacks to deep learning models: backdoor attacks [5, 13,
24] and adversarial attacks [12, 37]. Backdoor attacks are
the other special type of data poisoning attacks that do not
impact the model’s performance on clean data, which is in
sharp contrast to UEs. Adversarial attacks are one type of
test-time attacks that evade the model’s prediction by adding
small imperceptible adversarial noise to the inputs.

UEs can be generated via a min-min bilevel optimiza-
tion framework with a surrogate model [17], similar to
the generation of strong data poisons via bilevel optimiza-
tion [18, 34, 36, 45]. The generated noise is termed Error-
Minimizing Noise (EMinN) as it progressively eliminates
errors from the training data to trick the target model to be-
lieve there is nothing to learn [17]. We use EMinN to denote
the original UE generation method. In addition to EMinN,
there are also UE generation methods that utilize adversarial
noise, such as Error-Maximizing Noise (EMaxN) [19], Deep-
Confuse [9] and Adversarial Poisoning (AdvPoison) [10].
Recently, Yu et al. [41] unveil a linear-separability property
of unlearnable noise and propose the Synthetic Perturbations
(SynPer) method to directly synthesize linearly-separable
perturbations as effective unlearnable noise.

The original UE method EMinN has a few limitations.
First, the generated unlearnable noise can be removed to a
large extent by adversarial training [26], although this will
also decrease the model’s performance by a considerable
amount [17]. This was later on solved by a recent work
published at ICLR 2022 [11]. The idea is to optimize the
adversarial training loss in place of the standard training loss
to produce more robust error-minimizing noise. The other
limitation is its transferability to different training schemes,
target models (the models to protect against) or datasets.
For example, it has been found that unlearnable noise gen-
erated in a supervised manner fails to protect the dataset
from unsupervised contrastive learning [14]. A unsupervised
UE generation method was then proposed to craft UEs un-
learnable to unsupervised contrastive learning. However, a
very recent work by Ren et al. [32] demonstrates that, sur-
prisingly, unsupervised UEs cannot protect the dataset from
supervised exploitation. All above UE methods all rely on
the ideal label-consistency assumption, i.e., the same (or
no) labels for the protected data will be used by both the
protectors and hackers. In this paper, we promote a more
practical label-agnostic setting where different labels could
be used by the hackers for their own purposes.

Besides UEs, strong adversarial attacks have also been
proposed to protect personal data from malicious face recog-
nition systems, such as LowKey [6] and APF [44]. They
differ from UEs by making a normally trained model unable
to recognize the protected images, rather than preventing
the proper training of any machine learning models on the

protected images. In this work, we focus on UEs rather than
other data protection techniques which we believe are of
independent interest.

3. Proposed Method
Threat Model. We introduce two parties: the protector
and the hacker. The protectors leverage a surrogate model
to generate UEs for its private data before publishing it on
the Internet. For example, online social network companies
(or users) could convert their photos to their UE versions be-
fore posting them online. These “protected” images are then
collected, without the protectors’ consent, by a hacker into a
dataset to train a commercial or malicious model. The pro-
tectors’ goal is to make the collected dataset unlearnable, i.e.,
cannot be used for model training, while the hackers’ goal
is to train accurate models on the unlearnable (protected)
dataset. Following prior works [11, 17, 25], we assume the
released dataset is 100% protected, i.e., all the samples are
perturbed to be unlearnable. While this assumption appears
to be ideal, if the protection technique is reliable, there is no
reason not to employ it to gain more protection and privacy.
Therefore, in this work we choose to focus on the unlearn-
able technique itself rather than changing the setting of the
protectors. Following our label-agnostic setting, we also as-
sume the hackers could exploit the unlearnable dataset with
different labels. E.g., a m-class dataset could be exploited
by the hacker as a n-class dataset.

Here, we give an example of such label-agnostic scenario
with a online social media company who strives to protect
the contents created by all of its users. The company could
leverage unlearnable techniques to develop systematic pro-
tection scheme against unauthorized data explorers. In this
case, we can assume all the images uploaded by the users are
protected (by the company). Potential hackers like Clearview
AI may crawl the images from the online platform without
the users’ content into one or a set of datasets for its own
purposes. Thus, the collected datasets cannot be guaranteed
to have the same labels as their original versions. The pro-
tector thus needs to craft more powerful and transferable
unlearnable examples to make data unexploitable against
different labeling strategies.

3.1. Problem Formulation

We focus on image classification tasks in this paper.
Given a clean m-class training dataset Dm

c = {(xi,yi)}ki=1

consisting of k clean training images x ∈ X ⊂ Rd and their
labels y ∈ Y , in a standard unlearnable setting [17], the
protector trains an m-class surrogate model fm

s on Dm
c . The

protector can then generate an unlearnable version of the
dataset as Dm

u = {(x′
i,y

′
i)}ki=1, based on the clean dataset

Dm
c and the surrogate model fm

s . The unlearnable images
are denoted as x′ = x+ δ (x ∈ Dm

c ) with the same labels
y ∈ Y as their original versions and δ ∈ ∆ ⊂ Rd are the
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Figure 2. (a) Current UE methods become ineffective in the label-
agnostic setting. (b) A 3D feature visualization of clean CIFAR-10
examples and the UEs derived by EMinN and AdvPoison. Points
in the same color denote samples of the same class.

generated unlearnable noise which is often regularized to be
imperceptible. The unlearnable dataset Dm

u is assumed to be
the dataset collected by the hackers, and will be exploited
to train a commercial or malicious m-class target model fm

t

without the protectors’ consent.

Label-consistency vs. Label-agnostic. The above formu-
lation follows the standard label-consistency assumption of
previous works [11, 17], where the hackers collect, annotate
and exploit the unlearnable dataset Dm

u exactly the same
as it was initially released by the protectors. Under a more
general and practical label-agnostic assumption, the hackers
could annotate the collected dataset Dm

u differently, e.g., as-
signing it with different number of classes. In this case, the
hackers may exploit the dataset as a n-class (n ̸= m) classi-
fication dataset Dn

c = {(x′
i,y

′
i)}ki=1 to train a n-class target

model fn
t . Note that the protectors have no knowledge of the

target class number n nor the target labels y′
i. Arguably, the

hackers may even exploit the dataset as an object detection
dataset rather than a classification dataset. We will explore
such a more challenging task-agnostic assumption in our
future work and focus on the label-agnostic in this work.

3.2. The Label-agnostic Challenge

Existing methods are not robust to label-agnostic ex-
ploitation. We test the effectiveness of existing unlearn-
able methods developed under the label-consistency set-
ting against label-agnostic hackers. Here we consider cur-
rent unlearnable method including Error-Minimizing Noise
(EMinN) [17], Adversarial Poisoning (AdvPoison) [10], Syn-
thetic Perturbations (SynPer) [41] and DeepConfuse [9], on
the CIFAR-10 dataset [21]. The ResNet-18 [15] models are
used for both the surrogate and target models. As shown
in Figure 2 (a), these methods are extremely effective in
preventing the training of machine learning models on the
unlearnable dataset with the same labels. However, if the un-
learnable dataset is crafted using ImageNet surrogate model
with the predicted ImageNet labels (i.e., labels predicted by
the surrogate model), it fails to prevent the model training
with the original CIFAR-10 labels. This indicates one unique
challenge of the label-agnostic setting: unlearnable noises

generated to prevent one set of labels are not transferable to
preventing other labeling strategies.

The working mechanism of existing UEs under the label-
consistency setting. Here, we investigate the representa-
tions learned by the target model on clean vs. unlearnable
examples, aiming to gain more understanding of the un-
learnable mechanism. In Figure 2 (b), we visualize the
3-dimensional PCA [39] projections of the original rep-
resentations learned by the ResNet-18 target model for a)
clean CIFAR-10 training samples, b) unlearnable CIFAR-10
examples crafted by EMinN method, and 3) unlearnable
(poisoned) CIFAR-10 examples crafted by AdvPoison. It
shows in Figure 2 (b) that the unlearnable examples crafted
by EMinN and AdvPoison tend to significantly reduce the
variance at certain dimensions. There are also classes that
collapse into smaller clusters, like the green class. This indi-
cates that the noise disrupts the distributional discrepancy
in the representation space to make the data “unlearnable”.
The other key observation is that the noise greatly shifts
the points away from the normal data manifold, causing an
unnecessary spread over a certain direction. This indicates
that the noise also breaks the distributional uniformity of
the data. Overall, it is evident the unlearnable noise crafted
by EMinN and AdvPoison cripples the learning process by
distorting both the discrepancy and uniformity of the data
distribution in the deep representation space.

Unlearnable examples can overfit to the labels. A closer
look at the visualizations in Figure 2 (b), one may notice
that the unlearning effects occur only within the classes. I.e.,
the UEs have overfitted to the class labels. This is somewhat
not surprising as the unlearnable noises are generated via
a supervised loss function (i.e., cross-entropy) defined by
the labels. The noise are thus optimized to thwart the most
predictive information to the class labels. However, this
causes the overfitting problem and fails to work if the labels
are changed. Intuitively, if we could remove the dependency
on the class labels and turn to exploit the clusters that natu-
rally arise during the learning process, we could make the
unlearnable noise more robust to different annotations.

3.3. Unlearnable Clusters (UCs)

Overview. Motivated by the above observations, in this
work we propose to generate UEs by exploiting the clus-
ters learned by a surrogate model and making the clusters
unlearnable instead of the labeled classes. We term this
approach as Unlearnable Clusters (UCs) and illustrate its
workflow in Figure 3. The key components of UC are one
generator model G and one surrogate model fs. At a high
level, UC first employs a surrogate model fs to extract the
representations E of all samples in the clean dataset Dc. It
then utilizes the K-means [35] clustering method to derive p
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Figure 3. The Unlearnable Clusters pipeline. The entire dataset is divided into p clusters via K-means clustering, where each cluster
corresponds to a certain generator with parameters θi and a cluster-wise perturbation δi.

clusters from the representations E. Subsequently, for each
cluster, it generates a cluster-wise perturbation δi using the
generator G. The noise will be generated and applied to craft
the UE for each sample inDc, with samples belonging to the
same cluster are added with the same cluster-wise noise δi.
UEs crafted in this manner can prevent the target model from
learning meaningful clusters rather than class predictions,
thus is more general to different types of label exploitations.
Next, we will introduce the details of UCs.

Cluster-wise Perturbations. In our UC framework, one
encoder-decoder [29] generator network is used to gener-
ate the cluster-wise perturbations, with each generator will
be reinitialized for one cluster. As such, we need to ex-
tract the clusters first. Here, we leverage the most classic
clustering method K-means [35] to detect clusters from the
deep representations. Particularly, the clean dataset Dc is
fed into the surrogate model fs to extract the representation
matrix before the classification layer E = [e1, · · · , ek]. K-
means clustering is then applied on the representation matrix
to detect p number of clusters C = {C1, · · · , Cp}, where
Ci = {xij}τ(i)j=1 = {xi1, · · · ,xiτ(i)} and

∑p
i=1 τ(i) =

k. The corresponding centers for the clusters are µC =
{µC1

, · · · , µCp
}.

With the detected clusters C, we can now propose the
following method to generate the unlearnable noise for each
cluster. Intuitively, for cluster Ci, we hope the unlearnable
noise δi could move all samples in the cluster to a wrong
cluster center, so as to force the model to forget the cor-
rect clusters. This is done via the following minimization
framework:

θi = argmin
θi

LDDU(Ci, g(µCi), θi)

= argmin
θi

∑
xij∈Ci

d(fs(xij + G(σ; θi)), g(µCi)),
(1)

where, LDDU is our proposed Disrupting Discrepancy and
Uniformity (DDU) loss that defines the distance (d(·)) of
samples in Ci to a permuted (wrong) cluster center by a per-
mutation function g(µCi); θi are the parameters of generator
network G; G(σ; θi)) generates the unlearnable noise for all
samples in Ci (i.e., xij ∈ Ci). Please note that the above
problem needs to be solved for p times to obtain the cluster-
wise unlearnable noise for all p clusters, and for each cluster,
the generator G is reinitialized with new parameters θi. The
complete procedure is described in Algorithm 1.

Algorithm 1 Unlearnable Cluster Generation

1: Input: surrogate model fs, distance metric d, uniform
noise σ, number of clusters p, random permutation g,
L∞-norm restriction ϵ, clean images x ∈ Dc, initialized
generator G with parameters θ

2: Output: cluster-wise perturbations δ = {δ1, · · · , δp}
3: feature matrix E = fs(x)
4: clusters and cluster centers {C, µC} = K-means(E, p)
5: for i in 1 · · · p do
6: Initialize θi
7: δi = G(σ; θi)
8: δi = Clamp(δi,−ϵ, ϵ)
9: for xij in Ci do

10: x′
ij = Clamp(xij + δi, 0, 1)

11: θi ← Optimize(x′
ij , fs, g(µCi), d)

12: end for
13: δi = G(σ; θi)
14: δi = Clamp(δi,−ϵ, ϵ)
15: end for

CLIP Surrogate Model. How to choose a surrogate model
remains to be an independent challenge for generating effec-
tive cluster-wise unlearnable noise. As shown in prior works,

3988



it plays a central role in facilitating the transferability of the
generated UEs to different datasets or target models [17]. In
the traditional label-consistency setting, the surrogate model
can be a model that directly trained on the original (unpro-
tected) dataset, which may of a different (and plausibly a
better or more complex) model architecture. It could also be
a model that trained on a larger dataset with more classes,
e.g., ImageNet-trained models [10, 17]. We thus adopt
an ImageNet-pretrained ResNet-50 as the default surrogate
model of our UC.

Analogous to the classification surrogate models used
for generating the traditional UEs, the ideal surrogate mod-
els for unlearnable clusters could be those powerful fea-
ture extractors that could lead to accurate detection of clus-
ters from an image dataset. We thus propose to also lever-
age one large-scale vision-and-language pre-trained model
(VLPM) [22, 23] CLIP [30] as our surrogate model. Pre-
trained on over 400 million text-to-image pairs, CLIP has
the power to extract the representation of extremely diverse
semantics. Moreover, CLIP was pre-trained with a textual de-
scription rather than a one-hot label to align with the image,
thus overfitting less to the actual class labels. Concretely,
we employ the image encoder of CLIP to extract the feature
matrix for the clean dataset, which is then used to compute
the clusters and cluster centers. We denote the version of
UC equipped with the CLIP surrogate model as UC-CLIP.

4. Experiments
In this section, we evaluate our UCs methods on different

datasets against different target models, which is to simulate
as many unknown cases as possible. We also examine the ro-
bustness of UCs against several advanced defenses. Finally,
we demonstrate its effectiveness in attacking commercial
machine learning platforms Azure and PaddlePaddle.

4.1. Experimental Settings

Datasets and Models. We conduct our study on 6 high-
resolution and industrial-scale vision datasets to simulate
as diverse real-world applications as possible, including
Pets [28], Cars [20], Flowers [27], Food [3], SUN397 [40]
and ImageNet [33]. For ImageNet, we only use its first
100 classes which is denoted as ImageNet⋆. For surrogate
models, we consider ResNet-50 trained on ImageNet-1k as
the default, unless otherwise explicitly stated. For target
models, we employ randomly initialized ResNet-18 [15],
EfficientNet-B1 [38] and RegNetX-1.6GF [31]. Notice that
we train the target models with data augmentations (resizing,
random crop, random horizontal flip and normalization).

For each δi, we repeated p times to train the generator G
for 10 epochs for entire ImageNet⋆ and 50 epochs for other
entire datasets. For random permutation g(·), we simply
chose i → i + 1 to build a closed loop. We consider L∞-
norm restriction in this work, i.e., ∥δ∥∞ < ϵ = 16/255.
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Figure 4. (a) The accuracy of ResNet-18 target models trained on
the unlearnable Pets dataset but with its labels were re-labeled by
the hacker into 5 to 35 classes. (b) Comparison of our approach
with the baselines on Pets dataset against ResNet-18 target model
trained via self-supervised SimCLR.

The number of clusters p is set to 10, with an analysis is
provided in Section 4.5.

Baselines. We compare our UC and UC-CLIP with 5 base-
line methods including DeepConfuse [9], Synthetic Perturba-
tions (SynPer) [41], Error-minimizing Noise (EMinN) [17],
Error-maximizing Noise(EMaxN) [19], and Adversarial Poi-
soning (AdvPoison) [10].

Label-agnostic Setup. Please note that we conduct all of
our experiments under the proposed label-agnostic setting.
The UCs (and the UEs they serve) are all generated with
the predicted labels by the surrogate models. The predicted
labels may overlap with the ground truth labels to some ex-
tent, but are highly inconsistent with the original labels. We
report the test accuracy of the target models on the respective
clean test sets.

4.2. Main Results

Effectiveness against different target models. We first
compare our UC and UC-CLIP with the 5 baselines against
different target models. Table 1 shows the results against
ResNet-18, EfficientNet-B1, and RegNetX-1.6GF. We have
the following main findings: (1) Our methods outperform
the baselines by a huge margin consistently across different
datasets and target models. This demonstrates the superi-
ority of our methods over the baselines. (2) Our UC-CLIP
achieves a better performance than UC, and in most of the
cases, by a considerable margin. This proves the great poten-
tial of using CLIP as the surrogate model to protect person
data from unauthorized exploitations.

Effectiveness Against Different Labelings. An even
more challenging label-agnostic setting is that the hacker
may exploit the unlearnable dataset using different labeling
strategies instead of one. So, a natural question is that what
if the number of labeled classes of the unlearnable dataset
is less than our cluster number p = 10? Here, we take the
37-class Pets dataset as an example and explore the impact
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Table 1. The test accuracy (%) of different target models trained on the unlearnable datasets generated by our UC/UC-CLIP and the 5
baseline methods, under the label-agnostic setting. The top-2 best results are highlighted in bold.

RESNET-18 EFFICIENTNET-B1 REGNETX-1.6GF

METHODS PETS CARS FLOWERS FOOD SUN397 IMAGENET⋆ PETS CARS FLOWERS FOOD SUN397 IMAGENET⋆ PETS CARS FLOWERS FOOD SUN397 IMAGENET⋆

CLEAN 62.31 67.18 67.18 78.97 43.08 77.76 48.68 72.33 52.46 80.29 42.84 78.04 44.86 63.84 52.69 84.02 43.27 80.78

SYNPER 52.60 53.50 52.74 74.80 38.26 74.69 28.02 58.34 42.93 74.99 35.92 72.94 34.51 45.54 47.16 77.65 37.78 60.38

EMAXN 54.70 52.95 51.70 73.77 37.57 73.82 33.71 55.64 42.66 74.40 37.30 73.72 34.26 43.40 46.25 78.76 37.82 76.72

EMINN 52.96 54.43 50.58 75.47 38.48 74.20 36.88 54.23 44.06 75.54 37.20 72.20 37.04 39.67 47.34 79.43 36.82 74.86

ADVPOISON 50.86 51.91 50.64 75.07 38.51 73.76 37.99 50.08 41.65 74.88 36.44 72.54 34.29 46.06 47.41 78.64 36.42 76.32

DEEPCONFUSE 53.72 51.11 50.94 73.13 34.41 55.12 35.54 47.15 43.28 72.91 35.22 45.74 33.71 41.15 46.01 77.26 33.52 49.88

UC (OURS) 12.21 33.57 35.55 55.29 20.38 54.80 17.06 13.92 42.28 53.45 22.97 32.30 4.28 29.46 33.79 64.48 22.28 56.10

UC-CLIP (OURS) 4.69 4.74 10.07 19.07 3.89 39.78 6.49 15.33 14.13 17.44 12.95 31.82 3.87 4.18 8.12 26.76 6.04 41.66

Table 2. The test accuracy (%) of models trained by Azure and
PaddlePaddle platforms on unlearnable Cars dataset crafted by
different methods. The training configuration on the platform was
set to “fastest training”.

METHODS Azure PaddlePaddle
CLEAN 48.45 83.74

SYNPER 42.38 47.59
EMAXN 42.83 42.99
EMINN 44.06 44.40

ADVPOISON 43.97 43.38
DEEPCONFUSE 39.47 41.88

UC (RN50) 36.40 30.96
UC-CLIP (RN50) 26.97 25.79

UC-CLIP (VITB32) 22.47 11.49

if the hacker re-labels the unlearnable version of the dataset
as a 5 to 36 class dataset. One possible labeling strategy is
that the hacker first extracts the embeddings of the original
text labels using the BERT model [8], and then clusters the
embeddings into 5-37 classes using K-means, so as to con-
struct a mapping from the old labels to the new labels. As
shown in Figure 4 (a), both our UC and UC-CLIP can bring
the test accuracy of the target model down to a level that is
close the random guess (the black curve). This verifies that
our methods can craft more generic UEs against the most
severe label-agnostic exploitations.

Robustness to Unsupervised Exploitation. We also com-
pare our methods with the baselines under an unsupervised
contrastive learning setting against SimCLR [4]. Although
our UC methods are not specifically designed for this un-
supervised setting, Figure 4 (b) shows that cluster-wise un-
learnable noise can also prevent unsupervised exploitation
against SimCLR.

4.3. Preventing Commercial Platforms

Here, we apply our UC methods to prevent two com-
mercial machine learning platforms: Microsoft Azure and

Table 3. The test accuracy (%) of ResNet-18 trained using different
defenses against our methods on Pets dataset.

METHODS NO DEFENSE MIXUP GAUSSIAN CUTMIX CUTOUT

UC 12.21 14.34 24.26 14.50 12.35
UC-CLIP 4.69 11.96 18.59 6.21 12.29

Baidu PaddlePaddle. On both platforms, the training
details are agnostic to us, including the model architecture,
learning rate, batch size, epoch, data augmentation, splitting
of the validation set, etc. Considering that ViT may be used
on commercial platforms due to its recent popularity, we
upgrade our UC-CLIP method by replacing the ResNet-50
(RN50) surrogate model by a ViT-B-32 (ViTB32) surrogate
model. The results are reported in Table 2, which are consis-
tent with that in Table 1. I.e., both of our methods can protect
the data uploaded to the two platforms against their training
algorithms. Unsurprisingly, the ViTB32-powered UC-CLIP
method achieves the best protection performance by causing
the lowest test accuracy. This suggests the effectiveness of
our methods even against commercial platforms.

4.4. Resistance to Potential Defenses

In this section, we test the robustness of our UC
methods to several augmentation based defenses, includ-
ing Mixup [43], Gaussian smoothing, Cutmix [42] and
Cutout [7]. As can be observed in Table 3, the 4 data aug-
mentation defenses have minimum impact on our UC and
UC-CLIP methods. Particularly, Gaussian smoothing ap-
pears to be the most effective defense, but the accuracy is
still below 25%.

4.5. Ablation Study
Here, we analyze the sensitivity of our methods to the

number of clusters p, which has been set to p = 10 as a
default. We take the 37-class Pets dataset as an example
and evaluate our UC and UC-CLIP method under different
values of p ∈ [5, 40]. As shown in Figure 5, our methods are
quite stable to varying hyperparameter p for p ≥ 10. This
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Figure 5. Analyzing the effect of cluster number p on Pets dataset.

indicates that, as long as the clusters can cover most of the
concepts in a dataset, the generated unlearnable noise can
effectively prevent the model from learning the real content
from the dataset. As the number of clusters increases, the
noise tends to become more effective, although there is a
slight variation at 35. Note that, even in the worst case at
p = 5, our methods still outperform the baselines.

4.6. Mixture of Clean and Unlearnable Data
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Figure 6. (a) The test accuracy (%) of ResNet-18 trained on
unlearnable-clean mixed vs. clean-only data; and (b) the accu-
racy trends on clean vs. unlearnable examples. The unlearnable
examples are crafted using our UC method on Pets dataset.

All the above experiments are conducted under the as-
sumption that all samples in the dataset are protected, a
commonly adopted assumption in the literature [10, 17, 41].
This setting is reasonable when the protectors have the access
to the entire dataset, e.g., an online social media company
adopts the technique to protect the contents created by all
of its users. A more general case is that only a certain pro-
portion of the users protect their data while others do not.
This results in mixed dataset with both clean and unlearnable
samples. Here we test our UC method under this setting
and show the change in test accuracy with the number of
clean classes in Figure 6 (a). I.e., for the mixture dataset,
the rest of the classes are made unlearnable by UC. It can be
inferred that the unlearnable classes almost do not contribute
to the model training, a similar conclusion as in previous
works [10, 17, 41]. This implies that only those who adopt
the technique will get protected.

4.7. More Understanding

Why our UCs are more powerful than standard UEs
against label-agnostic exploitation? As we explained in
Section 3.1, the idea of UCs is inspired by the effectiveness
of disrupting the uniformity and discrepancy in preventing
the model from learning useful information. However, this
also raises another question: what exactly does the target
model learn? To answer these two questions, here we ana-
lyze the learning curves of the target model on the clean vs.
unlearnable examples separately. As shown in Figure 6 (b),
as the training progresses, the training accuracy on the un-
learnable training samples steadily improves until it reaches
100%. But there is almost no improvement in the clean test
accuracy on the clean test samples. This is consistent with
the the above experimental results that the target model has
not learned the capability to perceive normal samples. Sur-
prisingly, however, the model’s accuracy on the perturbed
test samples is fairly high (> 60%), considering that the
normally trained ResNet-18 only achieves a test accuracy of
62.31% on clean Pets dataset. This implies that the unlearn-
able noise distribution contained in the UCs has effectively
concealed the real data distribution.

5. Conclusion
Unlearnable examples (UEs) have shown great potential

in preventing hackers from using users’ private data to train
commercial or malicious models. A number of methods
have been proposed to improve UEs’ transferability and ro-
bustness to different datasets, target models and training
paradigms. In this work, we identified one limitation of ex-
isting UE methods, i.e., their label-consistency assumption.
To overcome this limitation, we proposed a more general
setting where the hackers could exploit the protected data
with different sets of labels. We termed this more challeng-
ing setting as label-agnostic, and proposed an Unlearnable
Clusters (UCs) technique with conditioned generator models,
K-means clustering, and large-scale vision-and-language pre-
training model CLIP, to craft effective UEs against a wide
range of datasets and target models. We also demonstrate
its effectiveness against commercial platforms Microsoft
Azure and Baidu PaddlePaddle.
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