
Representation Learning for Visual Object Tracking
by Masked Appearance Transfer

Haojie Zhao1 Dong Wang1 Huchuan Lu1,2*

1Dalian University of Technology, China 2Peng Cheng Laboratory, China
haojie zhao@mail.dlut.edu.cn {wdice,lhchuan}@dlut.edu.cn

Abstract

Visual representation plays an important role in visual
object tracking. However, few works study the tracking-
specified representation learning method. Most trackers
directly use ImageNet pre-trained representations. In this
paper, we propose masked appearance transfer, a simple
but effective representation learning method for tracking,
based on an encoder-decoder architecture. First, we en-
code the visual appearances of the template and search
region jointly, and then we decode them separately. Dur-
ing decoding, the original search region image is recon-
structed. However, for the template, we make the decoder
reconstruct the target appearance within the search region.
By this target appearance transfer, the tracking-specified
representations are learned. We randomly mask out the
inputs, thereby making the learned representations more dis-
criminative. For sufficient evaluation, we design a simple
and lightweight tracker that can evaluate the representa-
tion for both target localization and box regression. Exten-
sive experiments show that the proposed method is effec-
tive, and the learned representations can enable the simple
tracker to obtain state-of-the-art performance on six datasets.
https://github.com/difhnp/MAT

1. Introduction
Visual object tracking is a computer vision task that

highly depends on the quality of visual representation [38].
On this basis, deep representations are adopted for track-
ing and successfully boost the development of tracking al-
gorithms in previous years. Unlike some primitive track-
ers (e.g., [10, 28, 37]) that use ready-made deep features,
SiamFC [1] integrates a convolutional neural network (CNN)
into the tracking model and learns task-specified representa-
tions by end-to-end tuning. From here on, end-to-end model
training becomes a common practice in siamese-based track-
ing methods. The assumption of the siamese tracker is that

*Corresponding author: Huchuan Lu, lhchuan@dlut.edu.cn

E
ncoder

D
ecoder

Image Image

(a) Masked autoencoder.

E
ncoder

D
ecoder

D
ecoder

Search region Search region

Template Appearance in Search

Share 
weights

��

������

� �

(b) Masked appearance transfer.

Figure 1. Comparison between the masked autoencoder [17] and
our masked appearance transfer that uses a nontrivial learning
objective.

different visual appearances of the same target can be em-
bedded to have similar representations, and tracking can be
achieved by similarity matching. Based on this assumption,
the learning objective aims to push the representations of the
same target to be close to each other.

Although we have a clear learning objective, research on
the effective representation learning methods for siamese
tracking is still lacking. The common practice is to sim-
ply fine-tune the ImageNet [33] pre-trained representations.
However, they are learned for classification rather than track-
ing. High ImageNet accuracy does not indicate good per-
formance in visual object tracking [43]. Without good rep-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

18696



resentations, simple similarity matching cannot bring good
tracking performance. Thus, most works focus on the design
of tracker neck [7, 36, 47, 50] and tracker head [25, 40, 46].
Within these works, we can notice that the entire model is
always trained end-to-end, and representation learning is cou-
pled to the box regression task and target localization task.
It means that the representation learning is totally driven by
other tracker components. To improve tracking performance,
we have to make the neck or head increasingly complex.

On the aforementioned observation, we attempt to im-
prove the tracking performance by learning good representa-
tions and propose a simple but effective representation learn-
ing method in this paper. This method aims to decouple the
representation learning from tracker training, thereby mak-
ing it a tracker-free method. It employs a transformer-based
autoencoder to learn more discriminative visual features for
object tracking. This is achieved by setting a nontrivial
learning objective for the autoencoder, as illustrated by Fig-
ure 1b. The embedded target appearance of the template
can be pushed to be close to that in the search region. We
further make the learned representations more discriminative
by masking out the input images.

To evaluate the learned representations for target localiza-
tion and box regression, we design a very simple tracker with
a matching operator and a lightweight head. We evaluate
the proposed method with different model architectures and
initial weights. We also compare our simple tracker with
many state-of-the-art trackers on the popular LaSOT [14],
TrackingNet [31], GOT10k [20], and many other tracking
datasets [15, 30, 41]. The experiments demonstrate the effec-
tiveness and generalization ability of our proposed represen-
tation learning method. Comparison results show that our
simple tracker can obtain state-of-the-art performance with
the learned representations.

To summarize, our contributions are presented as follows:

• We propose masked appearance transfer (MAT), a novel
representation learning method for visual object track-
ing that jointly encodes the template and search region
images, and learns tracking-specified representation
with a simple encoder-decoder pipeline. A nontrivial
training objective is proposed to make this method ef-
fective.

• We design a simple and lightweight tracker for tracking-
specified evaluation that has few parameters and no
hyper-parameters. It can evaluate the representations
not only for target localization but also for box regres-
sion.

• Extensive experiments demonstrate the effectiveness
and generalization ability of the proposed method. Ex-
tensive comparisons show that the proposed simple
tracker can obtain state-of-the-art performance by us-
ing the learned tracking-specified representations.

2. Related Work

2.1. Visual Representation Learning

LeCun et al. [23] first proposed the use of the convolu-
tional neural network (CNN) to extract visual representation
for document recognition. Krizhevsky et al. [21] designed a
deep CNN and train it for image classification successfully,
thereby showing the great advantage of deep visual features.
After that, many deeper convolutional neural networks, such
as VGG [34] and ResNet [19], are proposed to extract bet-
ter visual representations. Recently, the self-attention-based
transformer architecture [35] has shown great potential in
natural language processing (NLP). Inspired by the trans-
former successes in NLP, Dosovitskiy et al. [13] used a pure
transformer model to encode visual representation, thereby
obtaining excellent image recognition results. Many other vi-
sion tasks, such as detection [3, 9, 51], segmentation [16, 42],
and tracking [7, 8, 47], also used the transformer model suc-
cessfully.

To learn visual representation, the vision models are com-
monly trained with ImageNet [33] in the supervised learn-
ing fashion. However, self-supervised methods can also
bring good visual representations. Some works, such as Sim-
Siam [5] and MoCov3 [6], used contrastive methods to learn
representation. He et al. [17] used an autoencoding method
for representation learning. In our work, we also used an
autoencoder, but we assign it a nontrivial learning objective
to learn the tracking-specified representations.

2.2. Visual Object Tracking.

The siamese-based tracking methods have achieved great
success in recent years. SiamFC [1] first formulated ob-
ject tracking as a similarity matching problem and trains
a siamese convolutional network to encode the template
feature and search region feature separately. By using the
cross-correlation operator, it can generate a score map and
locate the target at the peak value. It still uses a coarse multi-
scale method to estimate the target size. To estimate a more
accurate bounding box, Li et al. [25] introduced the region
proposal network (RPN) [32] to the siamese tracker that
could regress many box candidates. The best box is selected
by finding the peak of the score map. Zhang et al. [49] and
Li et al. [24] used deeper networks to improve the tracking
performance. Many works, such as TransT [7], STARK [47],
and TrDiMP [39], used the transformer for more effective
feature fusion.

Recently, some works attempted to design one-stream
tracking frameworks that encode the template and search
region jointly. Xie et al. [45] performed multi-layer match-
ing within a transformer backbone. Cui et al. [8] proposed
mixed attention for simultaneous representation embedding.
[48] and [4] used a single ViT model for tracking. In-
stead of designing a one-stream tracking framework, we

18697



f1

f2
f3

fN

t

f1
f2

f3

fNt

(a) Make all embedded t and f be close to each other.

f1

f2
f3

fN

t

t1

t2 t3

tN

f2
f3

fN

f1

(b) Push the embedded t close to the embedded f .

Figure 2. Different assumptions on the embedding function, where t denotes the embedded template appearance, and fi denotes the
embedded visual appearance w.r.t. frame i.

propose a representation learning method with an autoen-
coder. Based on the learned representations, we can achieve
high-performance tracking.

3. The Proposed Method

Our MAT is a novel tracking-specified representation
learning method. This method employs a masked autoen-
coder, which consisted of an encoder that embedded the
search image patches and template patches jointly, and a
decoder that reconstructs the original search image and the
transferred template separately. With this learning objec-
tive, the target representation of the template is trained to be
close to that of the search region (Figure 2b), and the learned
representations are naturally suitable for visual tracking.

3.1. Reformulation

The siamese-based tracking methods [1, 7, 25, 47] formu-
late visual tracking as a similarity matching problem. These
trackers learn a deep network as the embedding function φ,
which can embed the template image Z ∈ RHz×Wz×3 and
search region image X ∈ RHx×Wx×3 to the same feature
space:

t = φ(Z), f = φ(X).

A matching function is used to locate the target by fusing the
embedded t and f and generating a score map. The siamese
tracker assumes that the same target with different visual
appearances can be embedded to be close in the feature
space (Figure 2a). On this basis, we can perform similarity
matching for tracking. However, in practice, the embedding
function is difficult to learn, and many high-performance
trackers have to implement complex models to fuse the tem-
plate feature and search region feature [7, 8, 47, 50].

In this work, we still formulate visual tracking as a
similarity-matching problem and still learn an embedding
function. What makes the difference is that, in our assump-
tion, the embedding function does not embed all appearances
to be close to each other. It is expected to push the embed-
ded target representation of the template close to that of the
search region (Figure 2b). With this assumption, we obtained

a clear supervising target that can be achieved by using a
simple autoencoder, see below.

3.2. Jointly Masked Encoding

An autoencoder can be used for visual representation
learning. It first uses an encoder to embed the input image
into the visual feature. Then, it uses a decoder to reconstruct
the input image with the embedded feature. In contrast to
the common autoencoders, our encoder takes two images,
namely, the template and search region images, as the inputs,
which encode their visual representations jointly.

Specifically, we use a vision transformer model as the
encoder. The template image Z and the search region image
X are cut into non-overlap patches in size of p×p. Then, we
use a linear layer to project these patches into vision tokens
and reform them into an input sequence s ∈ R(Nz+Nx)×C ,
where C is embedding dimensions; and Nz = HzWz/p

2

and Nx = HxWx/p
2 denote the number of patches w.r.t. Z

and X, respectively. Besides, we add sine-cosine position
embeddings to the projected patches.

Input masking has shown its effectiveness in represen-
tation learning [12, 17]. It can reduce redundancy and
make a difficult task for the autoencoder, thereby learn-
ing more discriminative features. We randomly mask out
the input tokens according to a pre-defined masking ra-
tio k. The remained sequence ssub ∈ RNsub×C , where
Nsub = ⌊(1− k)× (Nz +Nx)⌋, is encoded by vision trans-
former. After encoding, we use a learnable [mask] token to
fill the masked positions for recovering the sequence length.
Specifically, in our method (Figure 1b), we use a encoder φ
to jointly encode ssub and output the recovered sx and sz , :
φ(ssub) → sx, sz .

Based on the self-attention mechanism, the transformer
encoder can have the capability of long-range modeling.
We expect it to capture the target-specified correspondence
between the template and the search region, generate high-
quality representations for similarity matching, and bring
satisfactory tracking performance. To this end, we design a
nontrivial learning objective for our autoencoder, see below.

18698



3.3. Masked Appearance Transfer

The decoder commonly reconstructs the original input.
However, we set a nontrivial learning objective for our au-
toencoder, thereby enabling the encoder to capture the target-
specified correspondence. We use the same decoder to recon-
struct the template and search region separately (Figure 1b).

The input search region image X remains unchanged
and was used as the learning objective for the search region
branch. The decoder f takes the encoded search region
tokens sx to reconstruct the original image: f(sx) → X.
For the template branch, we crop a new template T from the
search region image as the learning objective: f(sz) → T.
By reconstructing this new template, we transfer the target
appearance from the template view to the search region view.

Note that this new template can also be reconstructed by
stargetx , which is a subset of sx and belongs to the target
area. By using the proposed nontrivial objective, sz can be
pushed to be close to stargetx . Thus, the learned representa-
tions are suitable for tracking by similarity matching. Some
visualization results are shown in Figure 3.

3.4. Evaluation Tracker

To evaluate the representation quality, a common practice
is to train a lightweight evaluator on the learned representa-
tions. Self-supervised learning (SSL) works (e.g., [5,17,18])
usually train a supervised linear classifier. For visual track-
ing, recent work [43] makes a lightweight tracker by us-
ing cross-correlation or discriminative correlation filter on
frozen features. However, this tracker does not use the fea-
ture for box regression, which is an essential part of high-
performance modern trackers (e.g., [8, 11, 25]). In this work,
we use a similar evaluation method and construct a simple
tracker on the learned representations.

We design our tracker to be lightweight and hyper-
parameter-free. In contrast to the heavy-head design, a
lightweight head can make the tracker more sensitive to
the quality of representations, and few learnable parame-
ters can make the tracking performance less related to the
training setting. We use the depth-wise correlation opera-
tor [24] in our tracker to perform similarity matching. This
operator has no learnable parameter, and the matching result
totally depends on the representations. To make the tracker
hyper-parameter-free, we use a CornerNet-based [22] head
to regress the bounding box. This head predicts the final box
by regressing the left-top corner point and the bottom-right
corner point. This head does not have any hyper-parameters,
unlike the anchor-based methods [7, 24, 50], because target
localization and scale estimation can be achieved simulta-
neously. It is also lightweight, consisting of only several
3 × 3 convolution layers. Specifically, we reshape the en-
coded sz and sx and use the matching operator to fuse them
to generate a feature map. Then, we feed this feature map
to the anchor-free head, regressing two corner probability

distribution maps. On these maps, we can use soft-argmax
to gather the corner coordinates, which are formatted to the
final bounding box.

With our design, the proposed tracker can demonstrate
the quality of representations for localization and regression.
With our learned representations, this simple tracker can
obtain competitive tracking performance.

4. Experiments
4.1. Datasets and Metrics

LaSOT [14] refers to a large-scale long-term tracking bench-
mark, which has 280 long-term test videos with an average
length of 2,448 frames. It uses Success (AUC) and normal-
ized precision (NP) as the evaluation metrics.
TrackingNet [31] refers to a large-scale visual tracking
benchmark that contains 511 short-term test videos. It also
uses AUC and NP to reflect the tracking performance.
GOT10k [20] contains more than 10,000 videos, split into
train, val, and test sets. It uses average overlap (AO) as the
primary metric and also uses success rates (SR) at different
thresholds for evaluation.
UAV123 [30] contains 123 test sequences from an aerial
viewpoint, which is more challenging for most generic track-
ers and also uses AUC metric.
TNL2K [41] is a newly proposed dataset, containing 700 test
videos with many thermal, adversarial, and virtual scenarios.
It uses AUC as the primary metric.
NFS [15] also contains 100 test videos but has many scenar-
ios with fast motion and distractors, and AUC is adopted for
evaluation.

4.2. Evaluation Methods

We build a tracker on the learned representation. By
referring to [17], we adopt the freezing protocol and the
fine-tuning protocol for tracker evaluation. The tracking per-
formance will reflect the effectiveness of our representation
learning method.
Freezing. We freeze the feature encoder and only train the
tracker head. This protocol can demonstrate whether the
learned representation is tracking-specified.
Fine-tuning. We fine-tune the learned representation. Both
the feature encoder and the tracker head are trained. This
protocol can demonstrate the advantage of our learned repre-
sentation in tracking.

4.3. Implementation Details

Autoencoder. The default encoder is ViT-B/16 [13]. The
decoder is consistent with MAE [17] and remains unchanged
in our experiments. The encoder and decoder are initialized
with MAE pre-trained weights. We use two RTX3090 GPUs
for all experiments, and all ViT models are from PyTorch
Image Models [44].

18699



Figure 3. Visualizations of the masked search regions (1st row), masked templates (2nd row), new templates from the search region (3rd
row), and reconstructed new templates (4th row). The masking ratio is 25%.

Table 1. Comparison with state-of-the-art trackers on the LaSOT test set in terms of AUC, NP. The best top-3 is marked red, blue, green.

SiamFC++ DiMP PrDiMP TrDiMP SiamRCNN TransT STARK-ST101 ToMP-101 MixFormer-1k Ours freeze Ours fine-tune

AUC(%) 54.4 56.9 59.8 63.9 64.8 64.9 67.1 68.5 67.9 65.2 67.8
NP(%) 62.3 65.0 68.8 73.0 72.2 73.8 77.0 79.2 77.3 74.8 77.3

During training, the default masking ratio k is set to 25%.
We refer to other tracking literature (e.g., [7,24,50]) for data
preparation. The training pairs are randomly sampled from
the training set of VID [33], TrackingNet [31], LaSOT [14],
and GOT10k [20]. Color jitter, horizontal flip, scale jitter,
and position jitter are used for augmentation. This processing
method is also used for tracker training. The template size
and search region size are set to 112× 112 and 224× 224,
namely 2 and 4 times the size of the target, for both training
and inference. We use the AdamW optimizer [27] to train
the model end-to-end. The total training epochs are set to
500 with 64,000 search-template pairs per epoch. We set
the weight decay to 5e−2 , and the initial learning rate is set
to 1e−4 and is dropped by a factor of 10 after 200 epochs.
Each GPU holds 32 sample pairs and accumulates gradients
for two steps. The reconstruction loss is the commonly used
mean squared error (MSE).
Tracker. We construct a tracker based on the pre-trained
encoder and make it as simple as possible: (1) We bor-
row a lightweight anchor-free head from [8]. This head
predicts only one box and does not require any complex
post-processes (e.g., cosine window, size penalty), having
no hyper-parameters. (2) We use the simple depth-wise cor-
relation operator [24] as the matching function, which does
not have any learnable parameters.

As our clean design, this tracker does not have any hyper-
parameters that can avoid performance gains from hyper-
parameter search and make our evaluation results more re-

liable. Besides, it only contains about 2M learnable pa-
rameters (v.s. 86M in the ViT-B/16 encoder), running at
approximately 120 FPS on RTX3090.

The training set includes the aforementioned datasets and
COCO [26]. Training pairs are processed in the aforemen-
tioned way. We use the AdamW optimizer [27] to train our
tracker for 300 epochs with 64, 000 search-template pairs
per epoch. We set the weight decay to 1e−4, and the initial
learning rate is set to 1e−4 and is dropped by a factor of 10
after 240 epochs. For fine-tuning experiments, the learning
rate of the encoder blocks is set to 0.1× base learning rate.
Each GPU holds 32 sample pairs and accumulates gradients
for two steps. We use a combination of generalized inter-
section over union (GIoU) loss and L1 loss to supervise the
tracker training. The final loss function is defined as

L = λ1LGIoU (b, b̂) + λ2L1(b, b̂),

where b is the predicted box, and b̂ is the ground truth. We
set the loss weight λ1 to 2 and set λ2 to 5.

During tracking, we simply take an encoding forward
pass on the search region and template. Then, we reshape
the encoded tokens to feature maps and fuse them with the
matching operator. Finally, the fused feature is fed into the
anchor-free head to regress a target box. Note that random
masking does not be used for inference.

18700



Table 2. Comparison with state-of-the-art trackers on the TrackingNet test set.

SiamFC++ DiMP PrDiMP TrDiMP SiamRCNN TransT STARK-ST101 ToMP-101 MixFormer-1k Ours freeze Ours fine-tune

AUC(%) 75.4 74.0 75.8 78.4 81.2 81.4 82.0 81.5 82.6 79.8 81.9
NP(%) 80.1 80.0 81.6 83.3 85.4 86.7 86.9 86.4 87.7 85.2 86.8

Table 3. Comparison with state-of-the-art trackers on the GOT10k test set. “†” indicates that we use the default train set for MAT pre-training
but use the GOT10k train split for tracker training. “*” indicates that we use the GOT10k train split for both MAT pre-training and tracker
training.

Ocean DiMP PrDiMP TrDiMP SiamRCNN TransT STARK-ST101 MixFormer-1k Ours freeze* Ours fine-tune* Ours freeze†

AO(%) 61.1 61.1 63.4 67.1 64.9 67.1 68.8 71.2 63.2 64.4 67.7
SR0.5(%) 72.1 71.7 73.8 77.7 72.8 76.8 78.1 79.9 72.1 72.8 78.4

Table 4. Comparison with state-of-the-art trackers on the UAV123, TNL2K and NFS datasets in terms of AUC (%).

Ocean DiMP PrDiMP TrDiMP SiamRCNN TransT STARK-ST101 ToMP-101 MixFormer-1k Ours fine-tune

UAV123 57.4 65.3 68.0 67.5 64.9 69.1 68.2 66.9 68.7 68.0
TNL2K 38.4 44.7 47.0 - 52.3 51.0 52.5 - 53.3 51.3

NFS 49.4 62.0 63.5 66.2 63.9 65.7 66.2 66.7 64.2 65.3

4.4. State-of-the-art Comparison

In this paper, we propose a representation learning
method for tracking. To evaluate the learned representa-
tion, we compare our tracker with some existing state-of-the-
art (SOTA) trackers, including SiamFC++ [46], DiMP [2],
PrDiMP [11], TrDiMP [39], SiamRCNN [36], Ocean [50],
TransT [7], STARK-ST101 [47], ToMP-101 [29], and
MixFormer-1k [8]. Both the freezing protocol and the fine-
tuning protocol are used.

Without bells and whistles, our simple tracker achieves
satisfactory tracking performance on six large-scale tracking
datasets with the learned representation. Table 1 and 2 show
that our tracker can obtain the comparable 65.2% AUC on
LaSOT with TransT [7], even though the feature encoder is
totally frozen. By fine-tuning encoder blocks, our tracker
obtains 67.8% AUC and 77.3% NP on the LaSOT test set
and obtains 81.9% AUC and 86.8% NP on the TrackingNet
test set. Our simple tracker not only has competitive tracking
performance, which is very close to recent SOTA trackers
ToMP-101 [29] and MixFormer-1k [8] but also has a fast
tracking speed.

Table 3 shows the results on the GOT10k test set. By
using only the GOT10k train split, our tracker achieves a
sub-optimal 63.2% AO. Fine-tuning the feature encoder can
bring a 64.4% AO, but the improvement is slight. How-
ever, if we use all the aforementioned datasets for MAT
pre-training, our tracker can achieve a competitive 67.7%
AO. It suggests that our method needs to take sufficient
data to learn good representation, and the proposed tracker
can demonstrate the quality of different representations for
tracking.

Besides, as reported in Tabel 4, our tracker achieves

68.0% AUC on UAV123, which outperforms ToMP-101 [29]
by 1.1% and is very close to MixFormer-1k [8]. On TNL2K,
our tracker achieves a competitive 51.3% AUC, which is
slightly higher than TransT [7] and slightly lower than
STARK-ST101 [47]. The multi-modal scenarios in TNL2K
result in more challenges for our learned RGB representa-
tions. On the NFS dataset, our tracker still achieves results
that are comparable with TransT [7] on this dataset and
outperforms MixFormer-1k [8] by 1.1%.

It’s worth noting that the best several trackers, including
STARK-ST101 [47], ToMP-101 [29], and MixFormer-1k [8],
have carefully designed online update schemes to achieve
the top performance. Our tracker can obtain competitive per-
formance with only a very simple design, highly depending
on the offline learned representations. All these results prove
the effectiveness of our representation learning method, and
the learned representation is exactly suitable for tracking.
It also proves the importance of good representations for
tracking again.

4.5. Ablation Study

We use the freezing protocol for ablation studies, where
the feature encoder is frozen, and only the anchor-free tracker
head is trained. Three main-stream datasets, i.e., LaSOT,
TrackingNet, GOT10k, are used for evaluation.

Masking ratio. We pre-train the encoder with different
masking ratios. Tracker training is initialized by these pre-
trained weights. Table 5 shows the influence of the masking
ratio on the tracking performance. The masking ratio of
25% works well for tracking, and we use it as the default
setting in our experiments. The ratios of 50% and 0% also
bring similar good tracking performance. It suggests that

18701



Table 5. A medium-low masking ratio can bring good representa-
tion for tracking. The default ratio is marked in gray .

Masking ratio LaSOT TrackingNet GOT10k
AUC NP AUC NP AO SR0.5

75% 63.7 73.4 76.9 82.6 64.3 75.6
50% 65.6 75.1 78.9 84.4 67.5 78.4
25% 65.2 74.8 79.8 85.2 67.6 78.5
00% 63.5 72.5 79.4 84.4 67.5 77.6

our method prefers a medium-low masking ratio and is tol-
erant of the masking ratio. The 75% masking ratio reduces
the performance by about 2% over all three benchmarks.
Considering that the training samples are not object-centric
images, a high masking ratio can mask out too much target
information, affecting representation learning.

Masking strategy. By default, we use the random mask-
ing strategy, which has shown good performance in both
vision [17] and language [12] tasks. The grid-wise strategy
performs similarly to the random strategy in the original
MAE. It regularly keeps one of every four patches, and this
is equivalent to a 75% masking ratio. We make a comparison
on the masking strategies. Table 7 shows the comparison
results. We can see that the grid-wise strategy also per-
forms similarly to the random strategy in our MAT method.
However, its performance is still lower than that of random
masking on all three datasets.

Component-wise Analysis. We conduct a component-
wise analysis with the ViT-B/16 model and our proposed
tracking method (Table 6). “baseline” indicates that we use
the MAE pre-trained ViT encoder as the baseline that en-
codes the template and search region images separately, i.e.
a common two-stream architecture. “JE (joint encoding)”
indicates that we use the one-stream architecture and en-
code the template and search region jointly. “TD (tracking
data)” indicates that we use all the aforementioned tracking
datasets (i.e. VID, TrackingNet, LaSOT, GOT10k) for model
training. “MAT” indicates that we use the proposed masked
appearance transfer method for representation learning.

“baseline” shows that the ImageNet pre-trained MAE
representation is not suitable for tracking, having poor track-
ing performance. It suggests a gap between the classifi-
cation task and tracking task on representation learning.
By directly loading the MAE weights to the one-stream
architecture for joint encoding, the variant “+JE” obtains
44.2%/47.9%, 62.9%/66.8%, and 43.4%/49.1% perfor-
mance scores. Compared with the baseline, an obvious
performance decline can be observed. It suggests that simply
using a one-stream architecture cannot extract better repre-
sentations for tracking. “+TD” indicates we fine-tune the
MAE weights with the tracking data by using the original
MAE [17] method. The performance decline is because the
object diversity of tracking datasets is less than that of Ima-

Table 6. Component-wise analysis (top block) and studies on some
training settings (bottom block).

LaSOT TrackingNet GOT10k
AUC NP AUC NP AO SR0.5

baseline 55.1 62.8 70.9 76.0 56.1 65.2
+JE 44.2 47.9 62.9 66.8 43.4 49.1
+TD 50.8 52.2 56.5 58.9 36.3 40.5
+TD +JE 61.9 71.7 76.7 82.2 61.9 73.1
+TD +JE +MAT 65.2 74.8 79.8 85.2 67.6 78.5

+LP 65.3 75.0 79.6 84.9 69.4 80.5
-DE 65.3 74.6 79.8 84.9 68.0 78.2
-SJ 64.5 67.4 78.8 84.3 66.4 75.7
-PJ 57.7 59.6 74.3 79.2 58.8 67.7

geNet. Simply tuning with the tracking data can damage the
ImageNet pre-trained representation. “+TD +JE” indicates
that we use the one-stream architecture for joint encoding
and use tracking data to fine-tune this one-stream model.
Here, we do not perform masked appearance transfer, and
the decoder still reconstructs the original input. By capturing
the target-specified correspondence between the template
and search region, joint encoding can improve the tracking
performance effectively. “+TD +JE +MAE” provides better
results. It suggests that the proposed masked appearance
transfer learning objective makes the encoder learn more
discriminative representations, which are more suitable for
tracking.

We also analyze some training settings. We replace the
default sine-cosine position embeddings with learnable em-
beddings “+LP”, and slight gains on GOT10k can be ob-
served. “-DE” denotes we do not tune the decoder, the
lightweight decoder does not affect the performance signif-
icantly. Scale jitter and position jitter are two import data
augmentation methods for tracker training, and we also use
them in the pre-training phase. Here, we study how these
augmentation methods affect representation learning. “-SJ”
and “-PJ” denote the removal of scale jitter and position
jitter from the pre-training phase, respectively. It is obvious
that position jitter plays an important role in our pre-train
method. The randomly positional shift makes appearance
transfer a hard task, which forces the encoder to capture
more discriminative correspondence.

Comparison with different representations. We com-
pare our learned representations with different representa-
tions that were encoded by the original MAE [17] pre-trained
ViT-B/16 and MoCov3 [6] pre-trained ViT-S/16. As the pop-
ular backbone of most visual trackers, ImageNet-supervised
ResNet-501 [19] is also selected as a baseline. For a fair
comparison, we remove the fourth block of ResNet to make
the down-sample stride the same as the ViT model. Thus,
nearly all settings are aligned, except for the type of rep-

1We use the PyTorch pre-trained weights: https://pytorch.org/
vision/stable/models.html

18702



0 1 2 4 6 12
Fine-tuned blocks

56

58

60

62

64

66

68

AU
C 

on
 L

aS
OT

MAT pre-train
MAE pre-train

65.2
66.266.1

67.5 67.1
67.8

55.1

63.5
64.9 65.4

66.1
65.4

(a) Our tracker can achieve 67.8 AUC by fine-tuning
all blocks.

0 1 2 4 6 12
Fine-tuned blocks

72

74

76

78

80

82

AU
C 

on
 Tr

ac
ki

ng
Ne

t

MAT pre-train
MAE pre-train

79.8
80.580.6

81.2 81.3
81.9

70.9

77.3
78.1

79.3
79.9 80.2

(b) Tracking performance is always improved by
tuning more blocks.

0 1 2 4 6 12
Fine-tuned blocks

56
58
60
62
64
66
68
70
72

AO
 o

n 
GO

T1
0k

MAT pre-train
MAE pre-train

67.6
68.7

69.9 70.5 70.5
69.6

56.1

64.7
65.6

68.3
66.9 66.7

(c) Tracker is more likely to overfit on the MAE
representations.

Figure 4. Our learned representations perform better than the original MAE representations under the partial fine-tuning protocol.

Table 7. Comparison of different masking strategies.

LaSOT TrackingNet GOT10k
AUC NP AUC NP AO SR0.5

random 63.7 73.4 76.9 82.6 64.3 75.6
grid-wise 62.4 72.2 75.6 81.1 62.4 73.1

resentations. Because we only train the same tracker head,
the tracking performance totally depends on the quality of
representations.

Table 8 reports the tracking performance on different rep-
resentations, where “+MAT” indicates that we use the pro-
posed MAT learning method to tune the pre-trained weights.
Using the same tracker design, the ResNet50 baseline has
weak tracking performance. Compared with ResNet50,
the “ViT-S/16 +MAT” representations improve tracking
performance by 4.1%/4.8%, 4.2%/4.6%, and 4.7%/4.8%.
The “ViT-B/16 +MAT” representations can improve track-
ing performance by 10.3%/11.6%, 10.9%/11.0%, and
12.5%/13.4%. The proposed method improves the MAE
representations successfully.

By changing the model architecture and initial weights to
ViT-S/16-MoCov3, our method is still effective. It demon-
strates the good generalization ability of our method. These
results also suggest that our tracker design (i.e., simple
matching operator and simple head) is suitable for demon-
strating the representation quality for visual object tracking.

Besides, the tracking performance and ImageNet accu-
racy or model capability have no clear correlation. High ac-
curacy or big model capability does not denote good tracking
performance. It proves the worth of our work that proposes
a tracking-specified representation learning method.

4.6. Partial Fine-tuning
To evaluate the representation, we use the partial fine-

tuning protocol. We still train our tracker using the aforemen-
tioned way. However, we fine-tune the last several encoder
blocks while freezing the others. The learning rate for these
blocks is set to 0.1× base learning rate.

Figure 4 shows that the fine-tuning encoder blocks can
always bring performance gains regardless of the representa-

Table 8. Comparison of different representations.

LaSOT TrackingNet GOT10k ImageNet1K params
AUC NP AUC NP AO SR0.5 Top-1 Acc. (M)

ViT-B/16 +MAT 65.2 74.8 79.8 85.2 67.6 78.5 - -
ViT-B/16 55.1 62.8 70.9 76.0 56.1 65.2 83.6 86
ViT-S/16 +MAT 59.0 68.0 73.1 78.8 59.8 69.9 - -
ViT-S/16 46.5 52.1 63.5 68.4 47.4 55.8 81.4 22
ResNet-50 54.9 63.2 68.9 74.2 55.1 65.1 76.1 25

tion we use. By fine-tuning, our simple tracker can achieve
67.8% AUC, 81.9% AUC, and 70.5% AO on LaSOT, Track-
ingNet, and GOT10k, respectively. The fine-tuning results
outperform the freezing results by 2.2%, 2.1%, and 2.9%,
respectively. Although the fine-tuned encoder blocks can
largely improve the original MAE representations for track-
ing, it is always lower than our method by at least 1.0% when
we fine-tune the same number of blocks. Our learned repre-
sentations perform better over three datasets. The best results
with our learned representations outperform the best results
with the original MAE representations by 1.7%, 1.7%, and
2.2%, respectively. Besides, the frozen MAT representations
can bring comparable performance with the fine-tuned repre-
sentations, suggesting that the MAT-learned representation
is tracking-specified. The partial fine-tuning experiments
show the effectiveness of our method again.

5. Conclusion
In this paper, we present a tracking-specified representa-

tion learning method. We design a special learning objective
that can make the transformer encoder model target-specified
correspondence and learn the tracking-specified represen-
tations by using an autoencoder. We propose a simple and
lightweight tracker that can be used for representation eval-
uation. We conduct extensive experiments on six tracking
datasets. The experimental results show that our representa-
tion learning method is effective, and the proposed tracker
can obtain competitive tracking performance by using the
learned representations.
Acknowledgements The paper is supported in part by Na-
tional Natural Science Foundation of China (Nos.62293542,
U1903215, 62022021), National Key R&D Program of
China (No.2018AAA0102001), and Fundamental Research
Funds for the Central Universities (No.DUT22ZD210).

18703



References
[1] Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi,

and Philip H. S. Torr. Fully-convolutional siamese networks for object
tracking. In Proceedings of the European Conference on Computer
Vision Workshops, pages 850–865, 2016. 1, 2, 3

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte.
Learning discriminative model prediction for tracking. In Proceedings
of the IEEE International Conference on Computer Vision, pages
6181–6190, 2019. 6

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detec-
tion with transformers. In Proceedings of the European Conference
on Computer Vision, pages 213–229, 2020. 2

[4] Boyu Chen, Peixia Li, Lei Bai, Lei Qiao, Qiuhong Shen, Bo Li,
Weihao Gan, Wei Wu, and Wanli Ouyang. Backbone is all your need:
A simplified architecture for visual object tracking. pages 375–392,
2022. 2

[5] Xinlei Chen and Kaiming He. Exploring simple siamese representa-
tion learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 15750–15758, 2021. 2, 4

[6] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study
of training self-supervised vision transformers. In Proceedings of
the IEEE International Conference on Computer Vision, pages 9620–
9629, 2021. 2, 7

[7] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang, and
Huchuan Lu. Transformer tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 8126–
8135, 2021. 2, 3, 4, 5, 6

[8] Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu. Mixformer:
End-to-end tracking with iterative mixed attention. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–12, 2022. 2, 3, 4, 5, 6

[9] Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen. Up-detr:
Unsupervised pre-training for object detection with transformers. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1601–1610, 2021. 2

[10] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael
Felsberg. ECO: Efficient convolution operators for tracking. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6931–6939, 2017. 1

[11] Martin Danelljan, Luc Van Gool, and Radu Timofte. Probabilistic
regression for visual tracking. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7181–7190, 2020.
4, 6

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language
understanding. pages 4171–4186, 2019. 3, 7

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkor-
eit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In Proceedings of the International
Conference on Learning Representations, pages 1–12, 2021. 2, 4

[14] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu,
Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling. LaSOT: A
high-quality benchmark for large-scale single object tracking. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5374–5383, 2019. 2, 4, 5

[15] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva Ramanan,
and Simon Lucey. Need for speed: A benchmark for higher frame rate
object tracking. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1134–1143, 2017. 2, 4

[16] Ruohao Guo, Dantong Niu, Liao Qu, and Zhenbo Li. SOTR: Seg-
menting objects with transformers. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 7157–7166, 2021.
2

[17] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and
Ross B. Girshick. Masked autoencoders are scalable vision learners.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–10, 2022. 1, 2, 3, 4, 7

[18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick.
Momentum contrast for unsupervised visual representation learning.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 9726–9735, 2020. 4

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 770–
778, 2016. 2, 7

[20] Lianghua Huang, Xin Zhao, and Kaiqi Huang. GOT-10k: A large
high-diversity benchmark for generic object tracking in the wild.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(5):1562–1577, 2021. 2, 4, 5

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In Peter L.
Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon
Bottou, and Kilian Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems, pages 1106–1114, 2012. 2

[22] Hei Law and Jia Deng. Cornernet: Detecting objects as paired key-
points. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu,
and Yair Weiss, editors, Proceedings of the European Conference on
Computer Vision, pages 765–781, 2018. 4

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proc. IEEE,
86(11):2278–2324, 1998. 2

[24] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie
Yan. SiamRPN++: Evolution of siamese visual tracking with very
deep networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4282–4291, 2019. 2, 4, 5

[25] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. High
performance visual tracking with siamese region proposal network. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8971–8980, 2018. 2, 3, 4

[26] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Mi-
crosoft COCO: common objects in context. In David J. Fleet, Tomás
Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Proceedings of
the European Conference on Computer Vision, pages 740–755, 2014.
5

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regular-
ization. In Proceedings of the International Conference on Learning
Representations, pages 1–11, 2019. 5

[28] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang.
Hierarchical convolutional features for visual tracking. In Proceedings
of the IEEE International Conference on Computer Vision, pages
3074–3082, 2015. 1

[29] Christoph Mayer, Martin Danelljan, Goutam Bhat, Matthieu Paul,
Danda Pani Paudel, Fisher Yu, and Luc Van Gool. Transforming
model prediction for tracking. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1–18, 2022. 6

[30] Matthias Mueller, Neil Smith, and Bernard Ghanem. A benchmark
and simulator for UAV tracking. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling, editors, Proceedings of the European Confer-
ence on Computer Vision, pages 445–461, 2016. 2, 4

[31] Matthias Müller, Adel Bibi, Silvio Giancola, Salman Al-Subaihi, and
Bernard Ghanem. TrackingNet: A large-scale dataset and benchmark
for object tracking in the wild. In Proceedings of the European
Conference on Computer Vision, pages 310–327, 2018. 2, 4, 5

[32] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster
R-CNN: towards real-time object detection with region proposal net-
works. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 39(6):1137–1149, 2017. 2

18704



[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael S. Bernstein, Alexander C. Berg, and Fei-Fei Li. ImageNet:
Large scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015. 1, 2, 5

[34] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In Yoshua Bengio and
Yann LeCun, editors, Proceedings of the International Conference on
Learning Representations, pages 1–14, 2015. 2

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Atten-
tion is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, editors, Advances in Neural Information Processing
Systems, pages 5998–6008, 2017. 2

[36] Paul Voigtlaender, Jonathon Luiten, Philip H. S. Torr, and Bastian
Leibe. Siam R-CNN: visual tracking by re-detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6577–6587, 2020. 2, 6

[37] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. Visual
tracking with fully convolutional networks. In Proceedings of the
IEEE International Conference on Computer Vision, pages 3119–
3127, 2015. 1

[38] Naiyan Wang, Jianping Shi, Dit-Yan Yeung, and Jiaya Jia. Under-
standing and diagnosing visual tracking systems. In Proceedings
of the IEEE International Conference on Computer Vision, pages
3101–3109, 2015. 1

[39] Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li. Transformer
meets tracker: Exploiting temporal context for robust visual tracking.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1571–1580, 2021. 2, 6

[40] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip
H. S. Torr. Fast online object tracking and segmentation: A unifying
approach. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1328–1338, 2019. 2

[41] Xiao Wang, Xiujun Shu, Zhipeng Zhang, Bo Jiang, Yaowei Wang,
Yonghong Tian, and Feng Wu. Towards more flexible and accurate
object tracking with natural language: Algorithms and benchmark. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 13763–13773, 2021. 2, 4

[42] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan
Cheng, Hao Shen, and Huaxia Xia. End-to-end video instance seg-
mentation with transformers. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8741–8750, 2021.
2

[43] Zhongdao Wang, Hengshuang Zhao, Ya-Li Li, Shengjin Wang, Philip
Torr, and Luca Bertinetto. Do different tracking tasks require different
appearance models? In Advances in Neural Information Processing
Systems, pages 1–15, 2021. 1, 4

[44] Ross Wightman. Pytorch image models. https://github.com/
rwightman/pytorch-image-models, 2019. 4

[45] Fei Xie, Chunyu Wang, Guangting Wang, Yue Cao, Wankou Yang,
and Wenjun Zeng. Correlation-aware deep tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–15, 2022. 2

[46] Yinda Xu, Zeyu Wang, Zuoxin Li, Ye Yuan, and Gang Yu. Siamfc++:
Towards robust and accurate visual tracking with target estimation
guidelines. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 12549–12556, 2020. 2, 6

[47] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and Huchuan Lu.
Learning spatio-temporal transformer for visual tracking. In Proceed-
ings of the IEEE International Conference on Computer Vision, pages
10448–10457, 2021. 2, 3, 6

[48] Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin
Chen. Joint feature learning and relation modeling for tracking: A
one-stream framework. In Proceedings of the European Conference
on Computer Vision, pages 341–357, 2022. 2

[49] Zhipeng Zhang and Houwen Peng. Deeper and wider siamese net-
works for real-time visual tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4591–
4600, 2019. 2

[50] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and Weiming
Hu. Ocean: Object-aware anchor-free tracking. In Proceedings of the
European Conference on Computer Vision, pages 771–787, 2020. 2,
3, 4, 5, 6

[51] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng
Dai. Deformable DETR: Deformable transformers for end-to-end
object detection. In Proceedings of the International Conference on
Learning Representations, pages 1–11, 2021. 2

18705


