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Abstract

Continual learning aims to incrementally learn novel
classes over time, while not forgetting the learned knowl-
edge. Recent studies have found that learning would not
forget if the updated gradient is orthogonal to the feature
space. However, previous approaches require the gradient
to be fully orthogonal to the whole feature space, leading to
poor plasticity, as the feasible gradient direction becomes
narrow when the tasks continually come, i.e., feature space
is unlimitedly expanded. In this paper, we propose a space
decoupling (SD) algorithm to decouple the feature space
into a pair of complementary subspaces, i.e., the stability
space I, and the plasticity space R. I is established by
conducting space intersection between the historic and cur-
rent feature space, and thus I contains more task-shared
bases. R is constructed by seeking the orthogonal comple-
mentary subspace of I, and thus R mainly contains task-
specific bases. By putting distinguishing constraints on R
and I, our method achieves a better balance between sta-
bility and plasticity. Extensive experiments are conducted
by applying SD to gradient projection baselines, and show
SD is model-agnostic and achieves SOTA results on publicly
available datasets.

1. Introduction

Deep neural networks (DNNs) have achieved promis-
ing performance on various vision tasks, including im-
age classification, object detection, and action recognition
[3, 9, 32, 34, 36]. However, DNNs are typically trained of-
fline on a fixed dataset, and therefore the models are not
able to incrementally learn novel concepts (novel classes),
which has become an emerging need in many real-world
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Figure 1. Left: Recent gradient projection methods. All of them
constrain the gradient to be fully orthogonal to the feature space.
Right: We propose a space decoupling (SD) algorithm to decouple
the feature space into a pair of complementary subspaces, i.e., the
stability space I, and the plasticity space R. To balance stability
and plasticity, more bases are preserved in I, and less in R, while
stricter gradient constraints are put on I and looser on R.

applications [11, 16, 21, 26, 30].
In this context, continual learning (CL) [14] is proposed,

aiming to continually learn novel concepts, i.e., a series
of learning tasks, while not forgetting the learned knowl-
edge [1, 4, 6, 10, 15, 39]. Recent studies have found that
learning would have less impact on old tasks if the direc-
tion of the gradient is orthogonal to the space spanned by
the features from old tasks [18, 23, 31, 38]. With this mo-
tivation, a couple of continual learning methods referring
to feature space methods have been proposed and can be
generally divided into two classes: (a) Orthogonal based
methods; (b) Null-space based methods.

Orthogonal based methods like GPM [31] and TRGP
[23] calibrate the gradient in the direction fully orthogo-
nal to the feature space, while Null-space based methods
like Adam-NSCL [38], AdNS [18] train the model in the
null space of input features. It is easy to prove that these
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two classes of approaches are equivalent and hold a unified
training paradigm: 1) construct a matrix using the features
from old tasks, e.g., concatenate; 2) utilize this matrix to
approximate a feature space; 3) project the gradient of the
new task to the orthogonal direction of the feature space.

However, we find all the mentioned approaches strictly
require the gradient to be fully orthogonal to the whole fea-
ture space, shown in the left of Figure 1. As the number
of training tasks increases, feature space is unlimitedly ex-
panded which will heavily limit the model updating and
lead to poor plasticity. Therefore, feature space methods
are facing a dilemma in balancing stability and plasticity
[27–29, 33, 40], despite their varied attempts in this issue.

Motivated by this insight, we propose a space decoupling
(SD) algorithm, shown in the right of Figure 1. We decou-
ple the whole feature space into a pair of orthogonal com-
plementary subspaces, i.e., the stability-correlated space I,
and the plasticity-correlated space R. In our implementa-
tions, I is established by conducting space intersection be-
tween the historic feature space and current feature space,
and thus I contains more bases shared by old tasks. R is
constructed by seeking the orthogonal complementary sub-
space of I, and thus R mainly contains task-specific bases.
As we can see, the update on I would significantly incur
forgetting, and the update on R would have less impact on
old tasks. Our empirical study also supports this claim by
finding that gradient updates within subspace I do more in-
terference on old tasks than R (please refer to Section 3.2).

Finally, in the stability-correlated space I, where a slight
change would bring about tremendous forgetting, we pay
more attention to stability by putting more strict constraints
on it. In the plasticity-correlated space R which will have
less impact on old knowledge, we stress plasticity and allow
the model to be updated in a looser way here. Finally, with
SD, the performance of several state-of-the-art gradient pro-
jection methods is improved by a large margin. Below, we
summarize our contributions:

(1) We generalize recent gradient projection methods
[18,23,31,38] into a unified paradigm, under which we give
a new viewpoint about their stability-plasticity dilemma.

(2) We propose a novel Space Decoupling (SD) al-
gorithm to split the whole feature space into stability-
correlated space and plasticity-correlated space. By putting
distinguishing constraints on these subspaces, our method
achieves a better balance between stability and plasticity.

(3) We apply SD to various gradient projection baselines
and show our approach is model-agnostic and effective.
Extensive experiments on benchmark datasets demonstrate
state-of-the-art performance achieved by our approach.

2. Related Work and Preliminaries
To reduce the interference to old tasks, recent studies

[18,23,31,38] have focused on leveraging the feature space

Algorithm 1: Subspace Intersection
Input: P = span{P },Q = span{Q}, where

P ∈ Rd×k1 ,Q ∈ Rd×k2

Output: Subspace intersection I = span{I}, where I ∈ Rd×k

1 A← [P ,−Q] ∈ Rd×(k1+k2)

2 Solve homogeneous linear equation A ·X = 0

and get basic solutions N ∈ R(k1+k2)×k

3 I ← P ·N [0 : k1] ∈ Rd×k

4 Return I = span{I}.

to modify the gradient, such that the parameter update is
along the direction with less impact on old task. Represen-
tative works including Orthogonal based methods which
constrain the gradient to be orthogonal to the feature space,
i.e., GPM [31] and TRGP [23], and Null-space based meth-
ods which update the model in the null space of the fea-
tures’ uncentered covariance, i.e., Adam-NSCL [38] and
AdNS [18]. It can be easily proved that updating the model
in the null space is equivalent to updating the model in the
direction orthogonal to the feature space (please refer to
supplementary materials), thus all of our subsequent dis-
cussions are based on the orthogonal algorithm. In what
follows, we will briefly introduce the notations and prelim-
inaries used in this paper.

2.1. Notations

Continual Learning. In continual learning, a network f
parameterized by W = {θl}Ll=1 is sequentially trained on
a stream of tasks T = {t}Tt=1. Each task t has a dataset
Dt = {(xt,i, yt,i)}nt

i=1 of size nt, where xt,i denotes the
input vector and yt,i denotes the label. The learnt model af-
ter training the t-th task is parameterized by Wt = {θl

t}Ll=1.
The feature for layer l is represented as xl

t,i and x1
t,i = xt,i.

Denote Lt = Lt(W,Dt) (e.g., cross-entropy loss) as the
loss function for task t.

Feature Subspace. We use S = span{B} to rep-
resent a subspace in a d-dimensional space, where B =
[b1, b2, · · · , bk] ∈ R(d×k) is the bases for S. In the context
of continual learning, we use Sl

t to denote the feature sub-
space spanned by the inputs of task t for layer l. It is clear
that xl

t,i ∈ Sl
t . And, for any matrix A whose row vector is

d-dimensional, the projection of A onto S is defined as:

ProjS(A) = AB(BT). (1)

2.2. Subspace Intersection and Sum

Consider two subspaces P = span{P },Q = span{Q}
in a d-dimensional space, the intersection and sum between
P and Q [35, pg.459-460] are mathematically defined as:

P ∩Q = {α|α ∈ P,α ∈ Q} (2)
P +Q = {α+ β|α ∈ P,β ∈ Q}.
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Algorithm 2: Subspace Sum
Input: P = span{P },Q = span{Q}, where

P ∈ Rd×k1 ,Q ∈ Rd×k2

Output: Subspace sum S = span{S}, where S ∈ Rd×k

1 Q̂← Q− (PPT )Q

2 Orthogonalize Q̂ using SVD.
3 S ← [P , Q̂]
4 Return S = span{S}.

The solution for seeking the intersection of two subspaces
can be reduced to solve a homogeneous linear equation,
while to find the subspace sum, GPM [31] gives a simple
yet effective projection solution. Here we directly give Al-
gorithm 1 and Algorithm 2 to briefly summarize these pro-
cesses. The proof is presented in supplementary materials.

3. Method
In this section, we first show that existing feature space

methods can be summarized in a generalized training
paradigm. By deeply analyzing, we find there are critical
parameters influencing stability and plasticity, and therefore
propose a new decoupling algorithm.

3.1. Feature Space Continual Learning Paradigm

Let us start from GPM [31], a representative feature
space method. When learning the t-th task, GPM updates
the model Wt−1 = {θl

t−1}Ll=1 by projecting the gradient
∇θlLt onto the orthogonal direction of {Sl

j}
t−1
j=1 using Eq.

(1). Let xl
j,i denote the features extracted from the j-th task

(where j < t), and ∆θl
t−1 denote the parameter changes

after learning the t-th task. Then we have:

θl
tx

l
j,i = (θl

t−1 +∆θl
t−1)x

l
j,i

= θl
t−1x

l
j,i +∆θl

t−1x
l
j,i

= θl
t−1x

l
j,i.

(3)

The above equation implies that old tasks suffer from no
interference after the gradient projection.

As is shown in Figure 2, by carefully analyzing the gra-
dient constraints of feature space [18,23,31,38], we find all
of them can be generalized into a unified paradigm despite
their own small modifications (Please refer to supplemen-
tary materials for detailed analysis and proof). Some critical
common steps are listed as follows:

1) Feature Matrix Construction. At the end of task t,
feature space methods obtain layer-wise feature matrix M l

t

by using the data from the current task with a construction
strategy P:

M l
t = P(Dt;Wt) (4)

where P refers to random selection for [23, 31] and uncen-
tered covariance for [18, 38]. For example, GPM [31] and

Task t-1 Task t

Gradient 𝚫𝑾
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Figure 2. Feature Space Continual Learning Paradigm. (1) Con-
struct feature matrix M after the training of the old task. (2) Ap-
proximate M and obtain the feature subspace St−1. (3) Project
new gradients to the orthogonal direction of the whole feature
space S̄(t− 1). We demonstrate that the feature space dimension
parameter ϵ and the gradient projection degree parameter ζ would
influence stability and plasticity. Here the historic space S̄(t) is
the whole space of learned tasks, later defined in Eq.(6).

TRGP [23] randomly select n samples from Dt and concate-
nate the input features together to obtain the feature matrix
M l

t = [xl
t,1, x

l
t,2, · · · , xl

t,n].
2) Subspace Approximation. Then, an approximation

strategy A with hyper-parameter ϵ is adopted to obtain bases
for the t-th task feature subspace Bl

t:

Bl
t = A(M l

t; ϵ). (5)

The t-th feature subspace is then represented as Sl
t =

span{Bl
t}. The strategy A usually represents Singular

Value Decomposition (SVD). Suppose M l
t ∈ Rm×n, by

performing SVD on M l
t, we have M l

t = U lΣl(V l)T ,
where U l ∈ Rm×m and V l ∈ Rn×n are orthogonal, and
Σl ∈ Rm×m contains the sorted singular values along its
main diagonal [7]. GPM [31] and TRGP [23] pick k sin-
gular vectors with the top-k largest singular values in U l

to form Bl
t such that

∥∥∥(Σl)k

∥∥∥2
F
≥ ϵ ·

∥∥∥Σl
∥∥∥2
F

holds, where

(Σl)k ∈ Rk×k contains the top-k largest singular values
along its main diagonal and ∥·∥F is the Frobenius norm.
As a result, the larger ϵ is, the higher the dimension of the
feature space is obtained.

3) Gradient Projection. After subspace approximation,
the whole feature space can be represented as:

S̄l(t) = Sl
1 + Sl

2 + · · ·+ Sl
t. (6)

Then the layer-wise gradient ∇wlLt+1 is constrained by a
projection strategy C with hyper-parameter ζ to avoid for-
getting:

∇wlLt+1 = C(∇wlLt+1; ζ, S̄l(t)). (7)
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Figure 3. Left: Our proposed Space Decoupling (SD) algorithm. We decouple the whole feature space to a pair of complementary
subspaces, i.e., stability space I and plasticity space R. I mainly contains task-shared bases, while R mainly contains task-specific
bases. Right: We put distinguishing constraints on I and R. For I more bases are preserved and the gradient restriction is stricter, which
guarantees stability; For R fewer bases are preserved and the gradient restriction is looser, which guarantees plasticity.
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Figure 4. Accuracy of the t-th task on the t-th incremental session
(At,t) of GPM [31] on 10-split-CIFAR100 with varied ζ. It is
shown that a slight angle ζ implies higher plasticity.

Under the guidance of Eq.(3) [18,23,31,38], the gradient
is restricted to be fully orthogonal to S̄l(t). Here we set ζ
as a hyper-parameter to control the degree of orthogonality.
For example, the gradient could be instantiated as:

∇wlLt+1 = ∇wlLt+1 −∇wlLt+1(1− ζ)S̄l(t)(S̄l(t))T

(8)
where ζ is zero, i.e., a full orthogonality in previous works.
In subsequent discussions, we remove the layer-wise nota-
tion for simplicity of expression.

Balancing between Stability and Plasticity. From this
paradigm, we can easily find that there exist two factors that
influence stability and plasticity. Firstly, ϵ at the approx-
imation stage controls the dimension of the feature space.
GPM [31] speculates that the higher dimension of approxi-
mated feature space is, the better the stability and the worse
the plasticity will be. Secondly, ζ controls the degree of
orthogonality. Although recent feature space methods con-
strain the updates in a fully orthogonal manner, we argue
that a slight angle ζ would be a better choice as a full orthog-
onal manner is too strict and severely harms the model’s
plasticity, shown in Figure 4.

From the above analysis, we can observe one major defi-
ciency that all of the gradient projection approaches treat the
task-specific feature subspaces St in the same manner (uni-
form ϵ and ζ), but, as we can see, the stability and plasticity
largely depend on the learned feature space . Therefore, in

the next, we will give a new viewpoint about stability and
plasticity from a feature space decoupling perspective.

3.2. Space Decoupling: Stability and Plasticity

As is shown in the left of Figure 3, we find two sub-
spaces, namely intersection and residual subspaces in fea-
ture space S̄(t) play a very important role for stability and
plasticity. Formally, the intersection subspace is defined as
the sum of all the intersection subspaces, i.e.,

I(t) =
∑

1<i≤t

S̄(i− 1) ∩ Si. (9)

Residual subspace is the orthogonal complement space of
I(t), and therefore we have S̄(t) = I(t) +R(t), and I(t)
and R(t) are orthogonal.

We say I(t) is the intersection subspace as it contains
the bases shared by multiple old tasks, while we say R(t)
is the residual subspace as it mainly contains task-specific
bases. From this perspective, we can see I(t) has more
correlation to stability since the update on I(t) would sig-
nificantly incur forgetting, and R(t) is more correlated to
plasticity since the update on R(t) would have less impact
on old tasks.

Experimental Evidence. We conduct a simple experi-
ment to clearly show the rationality of the decoupling strat-
egy. To be specific, we compare the mean interference on
old knowledge caused by updates in I(t) and R(t). Ac-
cording to [18, 23, 31, 38], gradient updates within the fea-
ture space would do interference to old knowledge. Here
we quantify this interference caused by the gradient g of a
new task t+ 1 as

ω(g) =

t∑
j=1

∥∥∥ProjSj (g)
∥∥∥2
F

(10)

where Sj is the feature subspace for task j. Obviously we
have

ω(g) = ω[ProjS̄(t)(g)] = ω(gI) + ω(gR) (11)
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Figure 5. Mean knowledge interference of I(t) and R(t).

where gI = ProjI(t)(g) and gR = ProjR(t)(g). As a result,
the mean knowledge interference of I(t) and R(t) can be
defined as

Ω(I(t)) =

∑
i

ω(gIi )

dim(I(t))
(12)

and

Ω(R(t)) =

∑
i

ω(gRi )

dim(R(t))
(13)

where dim(·) is the dimension of space and i represents
the index of data point in task t + 1. Ω(·) could eliminate
the influence of the dimension of subspace and reflect the
degree of interference on old tasks.

By calculating Ω(I(t)) and Ω(R(t)) on CIFAR100 and
MiniImageNet under 20-split setting, we obtain results
shown in Figure 5. We can easily find that gradient updates
within subspace I(t) do significantly more interference on
old tasks in the dimensional-average sense, which supports
our claim. As a result, when leveraging feature space to
balance stability and plasticity in continual learning, more
stability should be taken into consideration for I(t), while
more plasticity can be reserved for R(t).

3.3. ϵ and ζ on Stability / Plasticity Decoupling

Motivated by our decoupling strategy, we propose to
differentially approximate these two kinds of feature sub-
spaces. Shown in the right of Figure 3, for I(t) more bases
should be reserved for stability and the gradient constraint
should be stricter, thus larger ϵ and smaller ζ should be
leveraged; while for R(t) more plasticity can be reserved,
thus smaller ϵ and larger ζ is adopted. By performing such
a refined balancing, we achieve higher accuracy and lower
forgetting. Next, we give the detailed implementations.

I / R Construction. Obtaining R(t) and I(t) remains a
challenging problem. To achieve this, we first establish the
whole feature space i.e., S̄(t) = span{S̄(t)} for the first
t tasks as Eq.(6) suggested. After constructing the feature
matrix M t of task t by Eq.(4), we first orthogonalize M t

with SVD to obtain the task-specific feature subspace St.
Then to find the shared feature spaces, we use a recurrent
formulation:

I(t) = I(t− 1) + F (14)

where F = S̄(t − 1) ∩ St is the intersection between the
historic feature space and current feature space. After that,

the historic feature space can be updated as

S̄(t) = S̄(t− 1) + St (15)

In this way, I(t) is updated task by task. In our implemen-
tation, we maintain these two subspaces i.e., S̄(t) and I(t)
for efficient training.

After that, the orthogonal complement space R(t) =
span{R(t)} can be calculated by:

R(t) = S̄(t)− ProjI(t)(S̄(t)). (16)

In fact, we abuse the notation of R(t) here because it may
contain duplicate bases, but we have noticed this simplifi-
cation would not influence the subsequent procedures.

I / R Approximation. Based on previous discus-
sions, we approximate I(t) and R(t) with different strength
ϵI and ϵR to obtain the decoupled feature space Î(t) =

span{Î(t)} and R̂(t) = span{R̂(t)}, i.e.,

Î(t) = A(I(t); ϵI) (17)

and
R̂(t) = A(R(t); ϵR) (18)

where ϵI , ϵR are hyper-parameters predefined, and ϵI >
ϵR. Here A is the approximation strategy defined in Sec-
tion 3.1. Note that here we still have Î(t)⊥R̂(t), since
Î(t) ⊂ I(t) and R̂(t) ⊂ R(t). As a result, the approxi-
mated feature space Ŝ = span{[Î(t), R̂(t)]} is the actual
feature space leveraged to constrain the gradient update.

I / R Projection. Another critical hyper-parameter ζ
also significantly influences the performance. Similar to ϵ,
for the intersection space Î(t) and the residual space R̂(t),
we put distinguishing constraints on the degree of orthogo-
nality between new gradients and the feature space. Thus,
the constraint function is modified as:

∇θLt+1 = C(∇θLt+1; {(Î(t), ζI), (R̂(t), ζR)}) (19)

where ζI , ζR are hyper-parameters predefined, and ζI <
ζR. Specifically, when projecting new gradient ∇θLt+1

onto the orthogonal direction of Ŝ(t) using Eq.(1), the con-
straint is modified as

∇θLt+1 =∇θLt+1

−∇θLt+1(1− ζI)Î(t)(Î(t))T

−∇θLt+1(1− ζR)R̂(t)(R̂(t))T

(20)

Note that here [(1− ζI)Î(t)Î(t)T + (1− ζR)R̂(t)R̂(t)T ]
can be calculated before the training of every task, thus
no extra time consumption is introduced to the optimiz-
ing stage compared to former methods [18, 23, 31, 38]. The
above training procedures are summarized in Algorithm 3.
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Algorithm 3: Feature Space Decoupling
Input: Datasets {Dt} for task t ∈ {t}Tt=1, network f parameterized by

W = {θl}Ll=1
1 Initialize S̄ = ∅, I = ∅

2 for task t ∈ {t}Tt=1 do
3 if t > 1 then
4 Construct Mt−1 using Eq.(4)
5 Compute St−1 using Eq.(5)
6 Compute F = S̄ ∩ St−1 using Algorithm 1
7 Update I = I + F using Algorithm 2
8 ComputeR using Eq.(16)
9 Compute Î and R̂ using Eq.(17) and Eq.(18)

10 update S̄ = S̄ + St−1 using Algorithm 2

11 while not converged do
12 Sample a batch {x,y} from Dt

13 Compute f(W; {x,y}) and get backward gradient g
14 Compute restricted gradient ĝ using Eq.(20)
15 Update W with ĝ

4. Experiments

In this section, we conduct extensive experiments to ver-
ify the effectiveness of the proposed method. We apply our
Space Decoupling algorithm (SD) to representative feature
space based methods, such as GPM [31], TRGP [23] and
Adam-NSCL [38] and show our method is model-agnostic
and effective in balancing stability and plasticity. Next, we
will introduce our experimental setups, main results, and
ablation studies and show some visualization results.

4.1. Experimental Setting

Datasets. We evaluate our approach on CIFAR100 [19]
and MiniImageNet [37]. CIFAR100 is labeled as a sub-
set of 80 million tiny image datasets. It contains 60,000
RGB images over 100 classes, with 500 images per class
for training and 100 images per class for testing. Each im-
age has a size of 32 × 32. MiniImageNet [37] is a 100-
class subset of the original ImageNet [8] dataset. Each class
contains 500 training images and 100 test images. the im-
ages are in RGB format of the size 84 × 84. Under contin-
ual learning setting, CIFAR100 and MiniImageNet are split
into 10-split-CIFAR100, 20-split-CIFAR100 and 20-split-
MiniImageNet, where the dataset is divided into 10, 20 and
20 tasks, respectively.

Implementation Details. Our SD algorithm is applied
to GPM [31], Adam-NSCL [38] and TRGP [23]. All the
implementations are consistent with the original paper dur-
ing training and evaluation in our experiments. For exam-
ple, when applying SD to GPM, we use a 5-layer AlexNet
[20] as the backbone for 10-split-CIFAR-100 and 20-split-
CIFAR-100, and ResNet18 [12] for 20-split-MiniImageNet.
The initial learning rate is 0.01 for 10-split-CIFAR-100 and
20-split-CIFAR-100, and 0.1 for MiniImageNet. The batch
size is set to 64 for all datasets. We perform grid-search on
a validation set obtained by sampling 5% from the training

set, and set ϵI = 0.99, ϵR = 0.94 in I/R Approximation
and ζI = 1e − 6, ζR = 5e − 5 in I/R Projection. We
compare SD with the baselines over 5 runs. Other details
are presented in supplementary materials.

Compared Methods. We compare our approach with
various representative continual learning methods, includ-
ing LWF [22], EWC [17], MAS [2], MUC-MAS [24],
GEM [25], A-GEM [5], AdNS [18] and OWM [41]. All
of them are published in recent years and are relevant to our
work. LWF leverages knowledge distillation [13] to pre-
serve learned knowledge of previous tasks. EWC, MAS
and MUC-MAS store important weight in memory. GEM,
A-GEM and OWM focus on designing network training al-
gorithms to overcome forgetting. AdNS leverages feature
null space to guide the direction of gradient updates.

Evaluation Metrics. We employ average accuracy
(ACC) and backward transfer (BWT) as our evaluation met-
rics, which are proposed in [25]. ACC is the average accu-
racy on the test dataset of all seen tasks, and BWT is the av-
erage drop in the accuracy of the network for the test dataset
of previous tasks after learning the current task. Models
with higer ACC and BWT are better.

4.2. Main Results

Table 1 shows the main results of our method compared
with other SOTA approaches in terms of ACC and BWT.
It appears that Space Decoupling (SD) can effectively im-
prove the performance on all three datasets. On 20-split-
CIFAR-100, GPM+SD, TRGP+SD and Adam-NSCL+SD
improves ACC by 3.18%, 3.16% and 0.69% respectively;
While on 10-split-CIFAR-100, GPM+SD, TRGP+SD and
Adam-NSCL+SD improves ACC by 1.05%, 1.04% and
1.00% respectively. On 20-split-MiniImageNet, GPM+SD,
TRGP+SD and Adam-NSCL+SD improves ACC by
1.98%, 2.29% and 1.31% respectively.

Besides, we can see the application of SD will not bring
any extra forgetting in terms of BWT compared with the
original methods. On 20-split-CIFAR-100 and 20-split-
MiniImageNet, our approach even evidently improves this
metric for GPM and TRGP. The reason might be our decou-
pling strategy divides the feature space into two subspaces,
where different constraints on them enable us to find a better
balance between stability and plasticity.

On 20-split-MiniImageNet, TRGP+SD achieves the
highest ACC and BWT, which arrives at 65.8% and
−0.49% respectively. The performance surpasses other
methods by a large margin. On 20-split-CIFAR-100,
TRGP+SD also achieves the highest ACC and BWT. All
other methods like MAS and LWF fail to achieve compa-
rable results as our TRGP+SD. On 10-split-CIFAR-100,
Adam-NSCL+SD achieves the second-best ACC, a slight
1.24% lower than AdNS. However, AdNS requires to train
another copy of the network, which results in tremendous
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Model Venue 20-split-MiniImageNet 20-split-CIFAR-100 10-split-CIFAR-100
ACC(%) BWT(%) ACC(%) BWT(%) ACC(%) BWT(%)

LWF [22] PAMI’17 57.63 -8.72 74.38 -9.11 70.7 -6.27
EWC [17] PANS’17 52.01 -12 71.66 -3.72 70.77 -2.83
MAS [2] ECCV’18 50.12 -5.82 63.84 -6.29 66.93 -4.03
MUC-MAS [24] ECCV’20 46.24 -3.79 67.22 -5.72 63.73 -3.38
GEM [25] NIPS’17 - - 68.89 -1.2 49.48 2.77
A-GEM [5] ICLR’18 57.24 -12 61.91 -6.88 49.57 -1.13
∗AdNS [18] ECCV’22 60.82 -4.24 77.33 -3.25 77.21 -2.32
OWM [41] NMI’19 47.48 -8.57 68.47 -3.37 68.89 -1.88
GPM [31] ICLR’21 60.41± 0.61 -0.7±0.4 77.53±0.83 -0.97±0.59 72.48±0.4 -0.9±0
Adam-NSCL [38] CVPR’21 59.07±1.1 -4.9±1.32 75.81±0.93 -3.98±0.85 74.97±1.15 -2.64±0.91
TRGP [23] ICLR’22 63.51±0.74 -0.76±0.25 80.68±0.7 -0.87±0.46 74.46±0.32 -0.9±0.01
GPM+SD 62.39±0.56 -0.61±0.11 80.71±0.82 -0.73±0.27 73.53±0.44 -0.83±0.31
Adam-NSCL+SD 60.38±0.75 -4.81±1 76.5±1.02 -3.99±0.96 75.97±0.66 -2.88±0.89
TRGP+SD 65.8±0.16 -0.49±0.08 83.84±0.12 -0.72±0.2 75.5±0.35 -0.96±0.09

Table 1. Quantitative results on various benchmark. Red and blue values denote the best and secondary performance. Methods that require
to train another copy of the network is denoted by ∗.

Model I/R-A I/R-P ACC(%) BWT(%)

GPM

77.53±0.83 -0.97±0.59
✓ 79.99±0.48 -0.7±0.45

✓ 78.41±1.3 -1.44±0.65
✓ ✓ 80.71±0.82 -0.73±0.27

TRGP

80.68±0.7 -0.87±0.46
✓ 83.21±0.36 -0.4±0.02

✓ 81.15±1.22 -1.24±0.71
✓ ✓ 83.84±0.12 -0.72±0.2

Table 2. Ablation study of I/R Approximation (I/R-A) and I/R
Projection (I/R-P) on 20-split-CIFAR-100.

memory and training time increase.

4.3. Ablation Studies

In this part, we will analyze the characteristic of our
space decoupling strategy and demonstrate the effectiveness
of each component in our approach.

Ablation on Approximation and Projection. As in-
troduced in Section 3.3, we differently impose constraints
on the feature subspaces I(t) and R(t), namely I/R Ap-
proximation (I/R-A), and I/R Projection (I/R-P). To ver-
ify their effectiveness, we perform experiments on 20-split-
CIFAR-100 by selectively adding them to both GPM and
TRGP. Table 2 shows the ablation results. It is observed that
both I/R-A and I/R-P improve the ACC (i.e., improves
plasticity), due to the distinct constraints on I(t) and R(t).
However, I/R-P would slightly degrade the BWT, indicat-
ing that a slight angle would slightly harm the stability but
would remarkablely enhance the plasticity. In particular, by
combining I/R-A and I/R-P together, we obtain a decent
improvement in terms of ACC and BWT.

Ablation on the Feature Space Dimension. I/R Ap-
proximation would reduce the dimension of feature space
by selecting singular vectors using hyper-parameter ϵ. With
different strengths, the “reduced” dimension mainly comes
from subspace R, which has less impact on old tasks. To
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Figure 6. Comparison of feature space dimension, BWT and ACC
of GPM and GPM+SD on different datasets. The feature space
dimension is calculated by averaging the dimension of all layer-
wise feature spaces.

verify this point, as is shown in Figure 6, the first row indi-
cates the mean dimension (average the dimensions of layer-
wise subspaces) expands as the incremental learning con-
tinues. Due to different ϵ, the dimension in SD increases
much more slowly than GPM. The second and third rows
show the changes of BWT and ACC, as the incremental
tasks increase. It turns out that the mean accuracy of our ap-
proach is significantly increased due to the improved plas-
ticity, while BWT keeps stable.

We also perform an experiment to force the feature space
of GPM to have the same dimension as SD. This is achieved
by selecting k bases with the top-k largest singular values
to reconstruct the subspace in GPM. The result is shown in
the left of Figure 7. It seems that by applying the SD al-
gorithm to GPM, ACC first decreases, and then improves
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sion with GPM+SD. Right: Comparisons with different subspaces
construction. “manual” indicates manually forming I and R ac-
cording to the singular value of bases. Experiments are conducted
on 10-split-CIFAR-100 and 20-split-CIFAR-100 respectively.

as the mean dimension of the feature space decreases. On
the contrary, BWT keeps stable by our approach while de-
creases sharply by GPM.

Ablation on the Subspace Construction. In Section
3.3, we propose to use Eq.(14) and Eq.(16) (subspace in-
tersection) to establish I(t) and R(t). To illustrate its ef-
fectiveness, we perform an experiment to compare another
construction strategy which also divides the feature space
into two subspaces. Concretely, at the end of task t, we
manually select k bases with the top-k largest singular val-
ues to form a subspace, where k is consistent with the di-
mension of I(t). This subspace is used to replace I(t) and
R(t) is established in the same way. We say this construc-
tion strategy as manual.

The results on 20-split-CIFAR-100 are shown in Figure
7. As we can see, GPM suffers from severe forgetting while
the performance of SD remains stable. That indicates our
decoupling algorithm grasps the essence of stability and
plasticity, and therefore yields better performance.

4.4. Model Analysis

Stability and Plasticity Analysis. Next, we explore the
effect of {ϵI , ζI} and {ϵR, ζR} by varying their values. We
perform experiments on 10-split-CIFAR-100 and present
the results in Figure 8. We can draw two conclusions from
the results. Firstly, the increase of ϵ or the decrease of
ζcould improve the model’s stability and lowers the plastic-
ity; Secondly, the change of {ϵI , ζI} results in tremendous
fluctuation in model’s stability compared to {ϵR, ζR}. For
example, by fixing other hyper-parameters and tuning ζR to
5e−4, BWT falls to −1.34%. While the same change in ζI

results in a significantly larger drop to −2.88%. The above
phenomenon supports our Space Decoupling (SD) theory
that I has a higher correlation to old knowledge.

Computational Complexity. Memory: In terms of
memory, the major difference is that Space Decoupling
(SD) algorithm requires additional memory to store the in-
tersection subspace I. However, since the dimension of I
would never overtake the dimension of the feature space,
and is negligible compared to the memory of the network,
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Figure 8. Stability and Plasticity analysis. Experiments are con-
ducted by GPM+SD on 10-split-CIFAR-100. Red and blue values
denote the comparison between R and I.

Datasets Methods
GPM GPM+SD TRGP TRGP+SD Adam-NSCL Adam-NSCL+SD

10-split-CIFAR-100 0.25 0.27 0.41 0.45 2.71 2.93
20-split-CIFAR-100 0.31 0.36 0.48 0.53 4.14 4.53
20-split-MiniImageNet 0.58 0.66 0.81 0.92 11.28 12.95

Table 3. Comparison of training hours of different methods on all
three datasets under the same environment.

the memory increase can be seen as zero.
Training time: We compare the training time of the

above baselines before and after adding our SD algorithm
under the same environment. Shown in Table 3, the training
time increase is limited to a very small margin.

5. Conclusion

In this paper, we demonstrate the poor plasticity of recent
gradient projection methods which is caused by constrain-
ing the gradient to be fully orthogonal to the whole feature
space. Thus, we propose a Space Decoupling (SD) algo-
rithm to decouple the feature space into stability-correlated
space and plasticity-correlated space. By putting distin-
guishing constraints on the decoupled feature space, a better
balance between stability and plasticity is achieved. Ex-
tensive experiments show that our proposed algorithm is
model-agnostic and achieves SOTA performance on pub-
licly available datasets.
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