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Abstract

Considering the ill-posed nature, contrastive regular-
ization has been developed for single image dehazing,
introducing the information from negative images as a
lower bound. However, the contrastive samples are non-
consensual, as the negatives are usually represented dis-
tantly from the clear (i.e., positive) image, leaving the so-
lution space still under-constricted. Moreover, the inter-
pretability of deep dehazing models is underexplored to-
wards the physics of the hazing process. In this paper, we
propose a novel curricular contrastive regularization tar-
geted at a consensual contrastive space as opposed to a
non-consensual one. Our negatives, which provide better
lower-bound constraints, can be assembled from 1) the hazy
image, and 2) corresponding restorations by other existing
methods. Further, due to the different similarities between
the embeddings of the clear image and negatives, the learn-
ing difficulty of the multiple components is intrinsically im-
balanced. To tackle this issue, we customize a curriculum
learning strategy to reweight the importance of different
negatives. In addition, to improve the interpretability in
the feature space, we build a physics-aware dual-branch
unit according to the atmospheric scattering model. With
the unit, as well as curricular contrastive regularization,
we establish our dehazing network, named C2PNet. Ex-
tensive experiments demonstrate that our C2PNet signifi-
cantly outperforms state-of-the-art methods, with extreme
PSNR boosts of 3.94dB and 1.50dB, respectively, on SOTS-
indoor and SOTS-outdoor datasets. Code is available at
https://github.com/YuZheng9/C2PNet.

1. Introduction
As a common atmospheric phenomenon, haze noticeably

degrades the quality of photographed images, severely lim-

iting the performance of subsequent high-level visual tasks

such as vehicle re-identification [7] and scene understand-
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Figure 1. Upper panel: Examination for contrastive regularization

based on three difficulty levels of the negatives in the consensual

contrastive space. Lower panel: Illustration of contrastive samples

in the consensual and non-consensual spaces.

ing [35]. Similar to the emergence of other image restora-

tion task solvers [12,13,39,43], valid image dehazing tech-

niques are required for handling vision-based applications.

Deep learning based methods have achieved tremendous

success in single image dehazing and can be roughly cate-

gorized into two classes: physics-free methods [5,10,17,24]

and physics-aware methods [4,8,11,34]. Regarding the for-

mer, most of them usually use ground-truth images with

predicted restorations to enforce L1/L2 distance-based con-

sistency and also involve various regularizations [29, 42] as

additional constraints to cope with the ill-posed property.

Notice that all of those regularizations ignore the informa-

tion from negative images as a lower bound, contrastive reg-

ularization (CR) [40] is proposed to introduce different hazy
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images as negatives and the ground-truth image as the pos-

itive and further uses contrastive learning [19, 20] to guar-

antee a closed solution space. Moreover, it is shown that

better performances can be achieved when using more neg-

atives since diverse degraded patterns are included as cues.

However, the issue is that the contents of those negatives are

distinct from the positive, and their embeddings may be too

distant, leaving the solution space still under-constricted.

To remedy this issue, a natural idea is to use the negatives

in the consensual contrastive space1 (see the lower panel

in Fig. 1) as better lower-bound constraints, which can be

easily assembled from the hazy input and the corresponding

restorations by other existing methods. In such cases, the

negatives can be “closer” to the positive than those in the

non-consensual space since the diversity of such negatives

is more associated with the haze (or haze residue) rather

than any other semantics. However, an intrinsic dilemma

arises when the embedding of a negative is too close to that

of the positive, as its pushing force to an anchor (i.e., the

prediction) may cancel out the pulling force of the positive.

Such a learning difficulty can confuse the anchor to move

towards the positive, especially in the early training stage.

This intuition is further examined in the upper panel of

Fig. 1. We use FFA-Net [33] as baseline (row (a)) and

SOTS-indoor [28] as the testing dataset to explore the im-

pact of the negatives in the consensual space with diverse

difficulty. Specifically, we define the difficulty of the neg-

atives into three levels: easy (E), hard (H), and ultra-hard

(U). We adopt the hazy input as the easy negative, and use a

coarse strategy to distinguish between the latter two types,

i.e., whether the PSNR of the negative is greater than 30.

First, in the single-negative case (row (b)-(d)), an interesting

finding is that using a hard sample as negative achieves the

best performance compared to the other two settings, and

using an ultra-hard negative is even worse than the base-

line. This reveals that a “close” negative has the potential

to promote the effectiveness of the dehazing model, but not

the closer the better due to the learning difficulty. While

in the multi-negative case2 (row (e)-(g)), we have observed

that comprehensively covering negatives with different dif-

ficulty levels, including ultra-hard samples, can lead to the

best performance. It implies the negatives at different diffi-

culty levels can all contribute to the training phase. These

observations motivate us to explore how to wisely arrange

the multiple negative pairs in a consensual space into the

CR during training.

Moving on to the realm of physics-aware deep models,

1In this space, the contents of the negatives are identical to the positive

sample, except for the haze distribution. Here, we use the terms (non-

)consensual contrastive space and (non-)consensual space interchangeably,

and a negative in the consensual space is denoted as a consensual negative.
2We give each negative the same weight in the regularization under this

case, and we omit the cases of E=0, which would drastically decrease the

performance. We will discuss the reason for this in Sec. 3.

most of them utilize the atmospheric scattering model [31,

32] in the raw space, without fully exploring the benefi-

cial feature-level information. PFDN [11] is the only work

that attempts to express the physics model as a basic unit

in the network. The unit is designed as a shared structure

to predict the latent features corresponding to the atmo-

spheric light and transmission map. Nevertheless, the for-

mer is usually assumed to be homogeneous while the latter

is non-homogeneous, and thus their features cannot be ap-

proximated in the same way. Therefore, it is still an open

problem how to accurately realize the interpretability of the

feature space of the deep network using the physics model,

which is another aspect we are interested in.

In this paper, we propose a curricular contrastive reg-

ularization using hazy or restored images as negatives in

the consensual space for image dehazing to address the first

issue. Informed by our analysis, which suggests that the

difficulty of consensual negatives can impact the effective-

ness of the regularization, we present a curriculum learning

strategy to arrange these negatives to mitigate learning am-

biguity. Specifically, we split the negatives into three types

(i.e., easy, hard, and ultra-hard) and assign different weights

to corresponding negative pairs in CR. Meanwhile, the dif-

ficulty levels of the negatives are dynamically adjusted as

the anchor moves towards the positive in the representation

space during training. In this way, the proposed regular-

ization can facilitate the dehazing models to be stably opti-

mized in a more compact solution space.

We propose a physics-aware dual-branch unit (PDU) re-

garding the second issue. The PDU approximates the fea-

tures corresponding to the atmospheric light and the trans-

mission map in dual branches, respectively considering the

physical characteristics of each factor. The features of the

latent clear image can thus be synthesized more precisely in

line with the physics model. Finally, we establish C2PNet,

our dehazing network that deploys PDUs into a cascaded

backbone with curricular contrastive regularization.

In summary, our key contributions are as follows:

• We propose a novel C2PNet for haze removal that em-

ploys curricular contrastive regularization and enforces

physics-based prior in the feature space. Our method

outperforms SOTAs in both synthetic and real-world

scenarios. In particular, we achieve significant PSNR

boosts of 3.94dB and 1.50dB on the SOTS-indoor and

SOTS-outdoor datasets, respectively.

• The proposed regularization adopts a unique consen-

sual negative-based approach for dehazing and incor-

porates a self-contained curriculum learning strategy

that dynamically calibrates the priority and difficulty

levels of the negatives. It is also proven to enhance the

performance of SOTAs as a generalized regularization

technique, surpassing previous related strategies.

• With careful consideration of the characteristics of fac-
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tors involved, we built the PDU based on an unprece-

dented expression of the physics model. This innova-

tive design promotes feature transmission and extrac-

tion in the feature space, guided by physics priors.

2. Related Work
Single Image Dehazing. Traditional single image de-

hazing methods are mainly based on an atmospheric scat-

tering model [31]. They focus on designing hand-crafted

priors such as the dark channel prior [21] and color attenua-

tion prior [44]. However, these priors may not be powerful

enough to characterize complex scenes in practice. Early

learning-based methods [4, 34] use deep neural networks to

predict the transmission map and atmospheric light in the

physics model to obtain a latent clear image. However, in-

accuracies in the estimations may accumulate, hindering the

reliable inference of the haze-free image. With the advent of

large haze datasets [28], data-driven methods [8, 17, 30, 33]

have been developed rapidly. FFANet [33] introduces fea-

ture attention (FA) blocks that leverage both channel and

pixel attention to improve haze removal. DeHamer [17]

combines CNN and Transformer for image dehazing, which

can aggregate long-term attention in Transformer and local

attention in CNN features. Note that these methods do not

consider the physics of the hazing process. Further, Dong

et al. propose a feature dehazing unit (FDU) [11] derived

based on the physics model. To the best of our knowledge,

this work is the only one that considers the physics model

in the feature space, avoiding the cumulative errors that oc-

cur in the raw space. However, FDU uses a shared struc-

ture to predict those unknown factors without considering

their different physical characteristics. To solve this prob-

lem, we re-understand the physics model and construct a

novel physics-aware dual-branch unit for image dehazing.

Contrastive Learning. In recent, contrastive learning

has been broadly employed in high-level visual tasks [6,16,

18, 20]. The idea behind contrastive learning is to pull an

anchor point closer to a positive point while simultaneously

pushing it away from a negative point through a contrastive

loss. However, there are only a few works that have applied

contrastive learning to low-level vision problems. CR [40]

is one of the representative works, which introduces the

concept of negative points for image dehazing. By con-

sidering the negative information as a lower bound of the

solution space, CR can exploit both positive and negative

information for training. However, most of the negatives are

non-consensual and thus distantly represented from the pos-

itive, resulting in an under-constrained solution space. We

aim to solve this issue with a novel curricular contrastive

regularization approach that uses consensual negatives.

Curriculum Learning. Inspired by the cognitive sys-

tems of humans, Elman [15] emphasizes the importance of

starting small in neural network training, which may be con-

sidered a prototype of curriculum learning. Later, Bengio

et al. [3] formally propose the curriculum learning strat-

egy to arrange the training samples according to their dif-

ficulty. Nowadays, curriculum learning has been success-

fully applied to various cases including vision and language

tasks [14, 25, 36, 41]. Building on our analysis that differ-

ent consensual negatives exhibit varying learning difficulty,

the question arises of how to arrange these samples during

training. We propose to solve this issue via a self-contained

curriculum learning strategy.

3. Method
3.1. Overview

Our goals are two-fold: 1) to promote the interpretabil-

ity of the feature space for haze removal and 2) to es-

tablish a more concise solution space using of contrastive

samples. Fig. 2 illustrates the detailed structure of our

C2PNet. To achieve our first goal, we design a physics-

aware dual-branch unit that is derived from the atmospheric

scattering model. Regarding our second aim, we tailor a

contrastive regularization using consensual negatives, along

with a self-contained curriculum learning strategy to deal

with the learning difficulty. Note that our curricular con-

trastive regularization is network-agnostic, making it appli-

cable to other dehazing networks.

3.2. Physics-aware Dual-branch Unit

The atmospheric scattering model is commonly used to

describe the formation of a hazy image I . It can be mathe-

matically formulated as I(x) = T (x)J(x) + (1− T (x))A,

where J represents the clear image, T is the transmission

map, A indicates the atmospheric light, and x denotes the

index of pixels. As both T and A are unknown, haze re-

moval is a highly ill-posed problem. Raw space based

methods directly estimate the two unknown factors, which

can easily lead to cumulative errors. In contrast, imposing

physics priors in the feature space can encourage the inter-

pretability that aligns with the hazing process, without rely-

ing on the ground truths of T and A. Inspired by FDU [11],

we propose a physics-aware dual-branch Unit (PDU) that

is derived from the physics model in the feature space, as

shown in Fig. 3.

To begin with, we reformulate the physics model to rep-

resent the clear image J as follows:

J(x) = I(x)
1

T (x)
+A(1− 1

T (x)
)

= I(x)
1

T (x)
+A−A

1

T (x)
.

(1)

Then extracting features via kernel k, Eq. (1) can be refor-

mulated as follows:

k � J = k � (I � 1

T
) + k �A− k � (A� 1

T
), (2)
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where � indicates the convolution operator and � denotes

the Hadamard product. Consequently, we respectively in-

troduce the matrix-vector forms of k, J , I , A, 1
T , i.e., K,

J , I , A and D, and Eq. (2) can be rewritten as

KJ = KDI +KA−KDA. (3)

Such a reformulation can be given by a few steps of algebra

operations. Note that the diagonal vector of the diagonal

matrix D corresponds to the vectorized form of 1
T .

Next, we can decompose the matrix KD into a product

of two matrices QK. As K, D and Q are all unknown, im-

plementing this decomposition can be indicated as solving

an underdetermined system of equations, which can guar-

antee the existence of Q. And then, we have

KJ = Q(KI) +KA−Q(KA). (4)

We can denote Ã as an approximation of the features

KA that correspond to the atmospheric light and t̃ as an

approximation of Q, which is associated with the transmis-

sion map. Furthermore, KI and KJ can be viewed as the

extracted features of a hazy image and its corresponding

clear image, respectively. Based on Eq. (4), and assuming

that the channel number of the features t̃ matches that of

the input features M , we can calculate the physics-aware

features J̃ by

J̃ = M � t̃+ Ã− Ã� t̃

= M � t̃+ Ã(1− t̃),
(5)

where 1 indicates a matrix whose elements are all ones.

Note that the second term on the right-hand side of

Eq. (5) involves a synergistic action between Ã and t̃ that

is ignored by FDU. Then we can explicitly build the PDU

based on Eq. (5). One branch in PDU (see the upper part

of Fig. 3) is used to produce Ã. As the atmospheric light is

usually assumed to be homogeneous, we use global average

pooling (GAP(·)) to eliminate unnecessary information in

the feature space. And Ã is produced by

Ã = H(σ(ConvN (ReLU(Conv
N
8 (GAP(M)))))), (6)

where σ(·) is the Sigmoid function, H(·) denotes a replica-

tion operation, ConvN (·) is the convolutional layer with N
kernels, and N is set to 64.

On the other hand, we cannot apply GAP(·) for the ap-

proximation of Q due to a loss of information, as the trans-

mission map is non-homogeneous. Therefore, in the lower

branch in Fig. 3, we choose to extract t̃ using a sequence of

convolutional layers, which is given by

t̃ = σ(ConvN (ReLU(Conv
N
8 (ConvN (M))))). (7)

With the proposed PDU, interpretable features J̃ can

be generated from the input features M for restoring hazy

images. Unlike FDU, which uses a shared structure with

GAP(·) to predict latent features that are simultaneously

correlated to both T and A, the PDU attentively incorpo-

rates the corresponding physical characteristics of these two

factors. This approach allows for more useful features to be

estimated in a dual interactive paradigm.
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3.3. Curricular Contrastive Regularization

Regarding the canonical contrastive regularization for

image dehazing, the anchor is the recovered result by the

dehazing network, the positive is the ground truth, and the

negatives include a hazy input and multiple hazy images

that are non-consensual with the positive. The target of this

regularization R is to minimize the L1 distance between the

embeddings of the anchor and the positive while maximiz-

ing their distance from the negatives, which is given by

R =

n∑

i=1

ξi
||Vi(J)− Vi(f(I, θ))||1∑r

q=1 ||Vi(Uq)− Vi(f(I, θ))||1 + Ei
, (8)

where Ei = ||Vi(I) − Vi(f(I, θ))||1, f(·, θ) indicates the

dehazing network with parameters θ, Vi(·), i = 1, 2, · · · , n
extracts the ith hidden features from the pre-trained VGG-

19 [37], the number of non-consensual negatives {Uq} is

r, and {ξi} is the set of hyperparameters. As illustrated in

Fig. 4, the introduced contrast between the anchor and non-

consensual negatives cannot provide a satisfactory lower

bound of the solution space. The non-consensual negatives

are typically distantly located from the positive, leading to

an under-constricted solution space that limits the quality of

the restorations.

Based on our analysis of Fig. 1, we propose a novel con-

trastive regularization for haze removal that utilizes nega-

tives in the consensual space, which can be restored results

from other dehazing models. Our straightforward aim is

to push the anchor far away from better-quality negatives.

However, two critical problems arise: 1) how to define the

difficulty of different negatives and 2) how to arrange these

negatives according to their difficulty during training.

To solve both issues, we incorporate a curriculum learn-

ing strategy into contrastive regularization. We define the

difficulty of the negatives into three levels: easy, hard, and

ultra-hard. For easy negative, we use the hazy input con-

sistently. The difficulty levels of the other negatives are

dynamically determined during training. Specifically, we

measure the average PSNR performance of the network be-

fore every epoch begins. In the tth epoch, a negative is de-

fined as an ultra-hard sample when its PSNR is higher than

the network performance, or as a hard negative otherwise.
To properly arrange these negatives, we weigh them dif-

ferently according to their difficulty levels. First, the weight
of easy negative is fixed and largest. This is because al-
though hard and ultra-hard negatives may contribute to a
more compact solution space, they can also cause learning
ambiguity. To ensure that the resultant force is towards the
positive such that the anchor is shifted in the desired direc-
tion, we give the easy negative a weight that is large enough.
In practice, we set this weight to the number of the non-easy
negatives z. Second, the weight of a non-easy negative Sq

at the tth epoch is defined as follows:

Wt(Sq) =

{
1 + γ, avgPSNR(f({Ig}, θt−1)) ≥ PSNR(Sq),
1− γ, otherwise,

(9)

where {Ig} denotes the hazy input dataset, q = 1, 2, · · · , z
is the index of the non-easy negatives, and γ is a hyperpa-
rameter. The weights of the hard and the ultra-hard nega-
tives are set to 1 + γ and 1 − γ, respectively. This means
that the weight of a hard negative is larger than that of an
ultra-hard negative, allowing the hard negative to provide
a greater force and alleviating the potential learning ambi-
guity. Furthermore, the flexibility of this strategy in deter-
mining the difficulty levels enables ultra-hard negatives to
become hard ones in the later stage of training (see Fig. 4).
This makes sense because as the quality of the anchor im-
proves, the ambiguity caused by ultra-hard samples is re-
duced, and their importance should be strengthened. In this
way, the hard and ultra-hard negatives can be viewed as bet-
ter lower bounds for effectively constraining the solution
space. Then, our curricular contrastive regularization R∗is
formulated as follows:

R∗ =

n∑
i=1

ξi
||Vi(J)− Vi(f(I, θ))||1∑z

q=1 Wt(Sq)||Vi(Sq)− Vi(f(I, θ))||1 + z · Ei
.

(10)

Finally, our total objective L, which consists of an L1

norm based fidelity term and our contrastive curricular reg-

ularization, is given by

L = ||J − f(I, θ)||1 + λR∗. (11)

3.4. Network Architecture

Our C2PNet adopts an FFA-Net-like backbone because:

1) FFA-Net has a simple structure that cascades several FA

blocks without any other redundant modules, and 2) the FA

block is simple and has been proven to be practical. Since

the proposed PDU mainly focuses on refining spatial infor-

mation, we deploy it into each FA block by replacing the PA

module. In this way, the features are enforced to conform

to the hazing process before being fed into the subsequent

module. Note that all other network parameters of C2PNet

are identical to those of FFA-Net, except for the PDUs.
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Table 1. Quantitative Evaluations with the state-of-the-art methods on the synthetic and real-world datasets.

Method Venue&Year
SOTS-indoor SOTS-outdoor Dense-Haze NH-Haze2

#Params
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DCP [21] TPAMI2010 16.62 0.8179 19.13 0.8148 11.01 0.4165 11.68 0.6475 -

DehazeNet [4] TIP2016 21.14 0.8472 22.46 0.8514 9.48 0.4383 11.77 0.6217 0.01M

AODNet [27] ICCV2017 19.06 0.8504 20.29 0.8765 12.82 0.4683 12.33 0.6311 0.002M

DM2F-Net [9] ICCV2019 34.29 0.9728 34.50 0.9815 14.99 0.5640 20.46 0.8217 92.14M

GCANet [5] WACV2019 30.06 0.9596 22.76 0.8887 12.62 0.4208 18.79 0.7729 0.70M

GDN [29] ICCV2019 32.16 0.9836 30.86 0.9819 14.96 0.5326 19.26 0.8046 0.96M

MSBDN [10] CVPR2020 32.77 0.9812 34.81 0.9857 15.13 0.5551 20.11 0.8004 31.35M

FFA-Net [33] AAAI2020 36.39 0.9886 33.57 0.9840 12.22 0.4440 20.00 0.8225 4.46M

AECR-Net [40] CVPR2021 37.17 0.9901 - - 15.80 0.4660 20.68 0.8282 2.61M

MAXIM-2S [38] CVPR2022 38.11 0.9908 34.19 0.9846 - - - - 14.1M

DeHamer [17] CVPR2022 36.63 0.9881 35.18 0.9860 16.62 0.5602 19.18 0.7939 132.45M

UDN [23] AAAI2022 38.62 0.9909 34.92 0.9871 - - - - 4.25M

C2PNet 42.56 0.9954 36.68 0.9900 16.88 0.5728 21.19 0.8334 7.17M

PSNR / SSIM 18.09/0.7459 31.55/0.9793 34.41/0.9811 36.69/0.9838 37.10/0.9825 41.20/0.9914 ∞/1

Hazy Image AODNet [27] GDN [29] FFA-Net [33] MAXIM [38] DeHamer [17] C2PNet (Ours) GT
Figure 5. Visual results of SOTS-indoor dataset by different methods. (Zoom in for better view.)

4. Experiments

4.1. Experimental Settings

Implementation Details. We implement C2PNet using

Pytorch 1.11.0 on an NVIDIA RTX 3090 GPU. Adam op-

timizer is used with exponential decay rates β1 = 0.9 and

β2 = 0.999. The initial learning rate is set to 0.0001 and is

scheduled by cosine annealing strategy [22]. The batch size

is set to 2. We empirically set the penalty parameters λ to

0.2, and γ to 0.25 for 200 epochs. We follow CR [40] that

set the L1 distance in Eq.(10) after the latent features of the

1st, 3rd, 5th, 9th and 13th layers from the fixed pre-trained

VGG-19, and their corresponding weights ξi, i = 1, · · · , 5
to 1

32 ,
1
16 ,

1
8 ,

1
4 , and 1, respectively.

Datasets. For fair comparisons, we evaluate the pro-

posed method on synthetic datasets and real-world datasets.

RESIDE [28] is a widely used benchmark dataset. Among

the five subsets, we select ITS and OTS as our training

datasets and SOTS-indoor and SOTS-outdoor as our test-

ing datasets for synthetic image dehazing. We also use two

real-world datasets: Dense-Haze [1] and NH-Haze2 [2] for

real image dehazing.

Competitors and Evaluation Metrics. We compare

our method with the prior-based method (e.g., DCP [21]),

physical model based methods(e.g., DehazeNet [4], AOD-

Net [27], and DM2F-Net [9]), and hazy-to-clear image

translation based methods (e.g., GDN [29], GCANet [5],

FFA-Net [33], MSBDN [10], AECR-Net [40], MAXIM-

2S [38], DeHamer [17], and UDN [23]). We utilize the

peak signal-to-noise ratio (PSNR) and structural similarity

(SSIM) to evaluate the performance.

4.2. Comparison with SOTAs

Results on Synthetic Datasets. Regarding the eval-

uation of synthetic datasets, Table. 1 reports the average

PSNR and SSIM values of different competitors for SOTS-

indoor and SOTS-outdoor datasets. Our C2PNet achieves

the best performance on both datasets compared to other

SOTAs, with 42.56dB PSNR and 0.9954 SSIM in SOTS-

indoor, and 36.68dB PSNR and 0.9900 SSIM in SOTS-

outdoor. Specifically, our method outperforms the second-

best method UDN by a significant margin on SOTS-indoor,

i.e., 3.94dB PSNR and 0.0045 SSIM. Moreover, our method

achieves at least 1.50dB PSNR and 0.0029 SSIM perfor-

mance gains on SOTS-outdoor. In addition, we respectively
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PSNR / SSIM 17.16 / 0.8792 23.12 / 0.9598 26.64 / 0.9757 27.39 / 0.9718 29.94 / 0.9758 31.10 / 0.9859 ∞ / 1

Hazy Image AODNet [27] GDN [29] FFA-Net [33] MAXIM [38] DeHamer [17] C2PNet (Ours) GT
Figure 6. Visual results of SOTS-outdoor dataset by different methods. (Zoom in for better view.)

PSNR / SSIM 11.56 / 0.4480 17.81 / 0.5828 19.35 / 0.6666 19.83 / 0.6114 22.82 / 0.6312 22.94 / 0.6776 ∞ / 1

PSNR / SSIM 12.22 / 0.5895 19.30 / 0.7741 18.09 / 0.8145 19.74 / 0.8312 17.21 / 0.7673 20.09 / 0.8281 ∞ / 1

Hazy Image AODNet [27] GDN [29] FFA-Net [33] AECRNet [40] DeHamer [17] C2PNet (Ours) GT
Figure 7. Visual results of Dense-Haze (top) and NH-Haze2 (bottom) datasets by different methods. (Zoom in for better view.)

visualize the recovered images from the SOTS-indoor and

the SOTS-outdoor datasets by different methods in Fig. 5

and Fig. 6. It can be observed that AODNet and GDN fail

to remove most of the haze, while FFA-Net, MAXIM-2S,

and DeHamer suffer from severe color distortion, and their

results still contain some artifacts. Instead, our method gen-

erates the most natural restoration that preserves more de-

tails and involves fewer color distortions. Note that we can

adjust the number of blocks in our network to balance the

performance and the number of parameters. More details

are included in the supplementary.

Results on Real-world Datasets. We also evaluate the

proposed C2PNet on real-world datasets including Dense-

Haze and NH-Haze2 datasets, summarizing the quantita-

tive results in Table 1. It is worth noting that removing

haze from real-world images is much more challenging than

from synthetic images. Nevertheless, our method outper-

forms all the other competitors on both datasets in terms

of PSNR and SSIM. We also visualize the results in Fig. 7.

Despite the reconstructions of all the comparisons generally

being far from good, our method produces the most desired

image that succeeded in removing most of the haze.

4.3. Ablation Study
In this section, we analyze the effectiveness of the

different components of the proposed C2PNet, including

PDU, consensual negatives-based contrastive regulariza-

tion (consensual CR), and curricular contrastive regular-

ization (C2R). Our base network is FFA-Net, and subse-

quently, we establish five variants including 1) base+FDU:

Table 2. Ablation study on C2PNet with different modules and

regularizations on SOTS-indoor dataset.

Model PSNR SSIM

base (FFA-Net) 36.39 0.9886

base+FDU 36.59 0.9894

base+PDU 38.30 0.9914

base+PDU+CR(non-consensual,1:10) 41.32 0.9947

base+PDU+CR(consensual,1:7)+w/o CL 42.09 0.9951

Ours (1:7) 42.56 0.9954

Replacing the PA module with FDU in the FA block.

2) base+PDU: Replacing the PA module with PDU in

the FA block. 3) base+PDU+CR(non-consensual, 1:10):
Adding canonical contrastive regularization to base+PDU,

with the rate between positive and negative samples be-

ing 1:10. 4) base+PDU+CR(consensual, 1:7)+w/o CL:

Adding consensual CR without our curriculum strategy

(CL) to base+PDU, with the rate between positive and neg-

ative samples being 1:7. 5) Ours: The full model of our

C2PNet. We list the results in Table 2, using the ITS dataset

for training and SOTS-indoor for testing.

Effectiveness of PDU. The architecture of PDU is de-

rived from Eq. (5) with a consideration of the physical char-

acteristics of A and T , which introduces a dual-branch inter-

action for the prediction of both factors. Since the features

corresponding to A and T are disentangled by our PDU, the

latent structural feature-level information is excavated more

accurately. As a result, in Table 2 we can see that the PDU
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Table 3. Evaluation of applying curricular contrastive regularization into SOTAs.

Regularization
Metric

Method

CR Space CL Rate GCANet [5] GDN [29] MSBDN [10] FFANet [33] DMTNet [30]

� N/A N/A N/A
PSNR 30.06 32.16 33.79 36.39 28.53

SSIM 0.9596 0.9836 0.9835 0.9886 0.96

� non-consensual � 1:10
PSNR 29.83 33.36 34.74 37.21 30.88

SSIM 0.9611 0.9867 0.9859 0.9920 0.9785

� consensual � 1:7
PSNR 29.91 34.91 34.95 38.93 31.16

SSIM 0.9612 0.9892 0.9865 0.9936 0.9772

� consensual self-paced 1:7
PSNR 30.05 35.20 35.17 38.98 31.56

SSIM 0.9596 0.9889 0.9861 0.9936 0.9776

� consensual ours 1:7 PSNR 30.76 35.46 35.31 39.24 31.63
SSIM 0.9668 0.9880 0.9875 0.9937 0.9791

achieves 1.71dB and 1.91dB gains over base+FDU and the

base network, respectively.

Effectiveness of consensual CR. We follow the same

setting as non-consensual CR that considers at most 10 neg-

atives due to the practicability towards training time and

GPU memory limitations, and we use the optimal num-

bers of negatives for a fair comparison, i.e., 7 (consensual

CR) vs. 10 (non-consensual CR). It can be observed that

consensual CR remarkably boosts the performance against

base+PDU and base+PDU+CR (non-consensual, 1:10) with

PSNR improvements of 3.79dB and 0.77dB, respectively.

Note that our training time is accelerated to 137 hours in

contrast to 200 hours for non-consensual CR (1:10). These

facts reinforce the superiority of consensual CR. More anal-

ysis can be found in the supplementary.

Effectiveness of C2R. Our full network employs the pro-

posed CL strategy into consensual CR during training and

performs the best in comparison with all the variants. Com-

pared to base+PDU+CR(consensual, 1:7)+w/o CL, C2PNet

achieves an increase of 0.57dB in PSNR, revealing the ef-

fectiveness of the proposed C2R.

4.4. Generality Analysis for C2R
To further verify the generality of our C2R, we apply it to

different SOTA methods and compare it with several other

universal regularizations. The results are summarized in Ta-

ble 3. Our method achieves significant improvements in

PSNR and SSIM on all five SOTAs compared to other reg-

ularizations, except for a slight decrease of 0.0012 in SSIM

compared to consensual CR on GDN. Specifically, our C2R

enhances the performances of the five baseline models with

average PSNR improvements of 0.70-3.30dB, and is supe-

rior to CR (non-consensual,1:10) as a regularization term by

average PSNR improvements of 0.93-2.10dB. In particular,

compared to the popular self-paced CL strategy [26], our

CL method yields a maximum increase of 0.71dB in PSNR.

The possible reason is that using the self-paced strategy will

feed the negatives into the regularization stage by stage,

leading to 1) a two-level split of difficulty without consider-

ing the ultra-hard negatives and 2) all the introduced neg-

atives share the same weight. However, as we analyzed

before, both hard and ultra-hard samples can provide use-

ful information for regularization during training, and the

corresponding weights need to be delicately assigned sepa-

rately.

5. Discussion and Limitation
An important advantage of negatives from existing de-

hazing models is the post-dehazing priors embedded in the

recoveries, such as the distribution of the haze residue,

which can indicate a more challenging pattern that is diffi-

cult to remove. This can provide valuable information to the

model during training. However, as most existing methods

perform poorly in real-world scenarios, it is hard to collect

high-quality images as the non-easy (especially ultra-hard)

negatives. This may limit the capacity of our model, despite

achieving promising performance on real-world dehazing.

6. Conclusion
In this paper, we propose a novel C2PNet for single im-

age dehazing. Instead of using non-consensual negatives,

we introduce consensual negatives to construct contrastive

samples and then apply a curricular contrastive regulariza-

tion that considers the difficulty of the negatives to con-

strain a more compact solution space. To enhance the inter-

pretability of the feature space, we further design a physics-

aware dual-branch unit based on the physics model. The

features produced by the unit are enforced to conform with

the hazing process, thus facilitating haze removal. Exten-

sive experiments demonstrate the validity and generality of

the proposed method.
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