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Abstract

Although DETR-based 3D detectors simplify the detec-
tion pipeline and achieve direct sparse predictions, their
performance still lags behind dense detectors with post-
processing for 3D object detection from point clouds. DE-
TRs usually adopt a larger number of queries than GTs
(e.g., 300 queries v.s. ∼40 objects in Waymo) in a scene,
which inevitably incur many false positives during infer-
ence. In this paper, we propose a simple yet effective sparse
3D detector, named Query Contrast Voxel-DETR (Con-
QueR), to eliminate the challenging false positives, and
achieve more accurate and sparser predictions. We observe
that most false positives are highly overlapping in local re-
gions, caused by the lack of explicit supervision to discrimi-
nate locally similar queries. We thus propose a Query Con-
trast mechanism to explicitly enhance queries towards their
best-matched GTs over all unmatched query predictions.
This is achieved by the construction of positive and negative
GT-query pairs for each GT, and a contrastive loss to en-
hance positive GT-query pairs against negative ones based
on feature similarities. ConQueR closes the gap of sparse
and dense 3D detectors, and reduces ∼60% false positives.
Our single-frame ConQueR achieves 71.6 mAPH/L2 on the
challenging Waymo Open Dataset validation set, outper-
forming previous sota methods by over 2.0 mAPH/L2. Code

1. Introduction
3D object detection from point clouds has received much

attention in recent years [7, 32, 34, 47, 52] as its wide ap-
plications in autonomous driving, robots navigation, etc.
State-of-the-art 3D detectors [7,31,33,53] still adopt dense
predictions with post-processing (e.g., NMS [2]) to obtain
final sparse detections. This indirect pipeline usually in-
volves many hand-crafted components (e.g., anchors, center
masks) based on human experience, which involves much
effort for tuning, and prevents dense detectors from being

(a) Voxel-DETR (b) ConQueR

Figure 1. Comparison of our baseline Voxel-DETR and ConQueR.
GTs (green) and predictions (blue) of an example scene in the
WOD is visualized. Sparse predictions of Voxel-DETR still con-
tain many highly overlapped false positives (in the red dashed cir-
cle), while ConQueR can generate much sparser predictions.

optimized end-to-end to achieve optimal performance. Re-
cently, DETR-based 2D detectors [3, 39, 49, 57] show that
transformers with direct sparse predictions can greatly sim-
plify the detection pipeline, and lead to better performance.
However, although many efforts [1, 26, 27] have been made
towards direct sparse predictions for 3D object detection,
because of the different characteristics of images and point
clouds (i.e., dense and ordered images v.s. sparse and irreg-
ular points clouds), performance of sparse 3D object detec-
tors still largely lags behind state-of-the-art dense detectors.

To achieve direct sparse predictions, DETRs usually
adopt a set of object queries [1, 3, 27, 39, 49, 57], and re-
sort to the one-to-one Hungarian Matching [17] to assign
ground-truths (GTs) to object queries. However, to guaran-
tee a high recall rate, those detectors need to impose much
more queries than the actual number of objects in a scene.
For example, recent works [1, 27] select top-300 scored
query predictions to cover only ∼40 objects in each scene
of Waymo Open Dataset (WOD) [36], while 2D DETR de-
tectors [3,39,49,57] use 10× more predictions than the av-
erage GT number of MS COCO [22]. As shown in Fig. 1(a),
we visualize an example scene by a baseline DETR-based

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9296



3D detector, named Voxel-DETR, which shows its top-300
scored predictions. Objects are generally small and densely
populated in autonomous driving scenes, while 3D DETRs
adopt the same fixed top-N scored predictions as 2D DE-
TRs, and lack a mechanism to handle such small and dense
objects. Consequently, they tend to generate densely over-
lapped false positives (in the red-dashed circle), harming
both the accuracy and sparsity [29, 39] of final predictions.

We argue the key reason is that the Hungarian Match-
ing in existing 3D DETRs only assigns each GT to its best
matched query, while all other unmatched queries near this
GT are not effectively suppressed. For each GT, the one-
to-one matching loss solely forces all unmatched queries to
predict the same “no-object” label, and the best matched
query are supervised without considering its relative rank-
ing to its surrounding unmatched queries. This design
causes the detectors to be insufficiently supervised in dis-
criminating similar query predictions for each GT, leading
to duplicated false positives for scenes with densely popu-
lated objects.

To overcome the limitations of current supervision, we
introduce a simple yet novel Query Contrast strategy to ex-
plicitly suppress predictions of all unmatched queries for
each GT, and simultaneously enhance the best matched
query to generate more accurate predictions in a contrastive
manner. The Query Contrast strategy is integrated into our
baseline Voxel-DETR, which consists of a sparse 3D con-
volution backbone to extract features from voxel grids, and
a transformer encoder-decoder architecture with a bipar-
tite matching loss to directly generate sparse predictions.
Our Query Contrast mechanism involves the construction
of positive and negative GT-query pairs, and the contrastive
learning on all GT-query pairs to supervise both matched
and unmatched queries with knowledge of the states of their
surrounding queries. Such GT-query pairs are directly cre-
ated by reusing the Hungarian Matching results: each GT
and its best matched query form the positive pair, and all
other unmatched queries of the same GT then form nega-
tive pairs. To quantitively measure the similarities of the
GT-query pairs, we formulate the object queries to be the
same as GT boxes (i.e., using only box categories, loca-
tions, sizes and orientations), such that GTs and object
queries can be processed by the same transformer decoder,
and embedded into a unified feature space to properly cal-
culate their similarities. Given the GT-query similarities,
we adopt the contrastive learning loss [5, 12, 54] to effec-
tively enhance the positive (matched) query’s prediction for
each GT, and suppress those of all its negative queries at
the same time. Moreover, to further improve the contrastive
supervision, we construct multiple positive GT-query pairs
for each GT by adding small random noises to the original
GTs, which greatly boost the training efficiency and effec-
tiveness. The resulting sparse 3D detector Query Contrast

Voxel-DETR (ConQueR) significantly improves the detec-
tion performance and sparsity of predictions, as shown in
Fig. 1(b). Besides, ConQueR abandons the fixed top-N pre-
diction scheme and achieves dynamic prediction numbers
across scenes. ConQueR reduces∼60% false positives and
sets new records on the challenging Waymo Open Dataset
(WOD) [36]. Contributions are summarized as bellow:

1. We introduce a novel Query Contrast strategy into
DETR-based 3D detectors to effectively eliminate
densely overlapped false positives and achieve more
accurate predictions.

2. We propose to construct multi-positive contrastive
training, which greatly improve the effectiveness and
efficiency of our Query Contrast mechanism.

3. Our proposed sparse 3D detector ConQueR closes the
gap between sparse and dense 3D detectors, and sets
new records on the challenging WOD benchmark.

2. Related Works
End-to-End 2D Object Detection. End-to-end object de-
tection aims to generate final sparse predictions without
non-differentiable components like NMS. RelationNet [14]
proposes an object relation module and DETR [3] greatly
simplifies the detection pipeline by removing many hand-
crafted components like anchors, NMS, etc. DETR intro-
duce a set of object queries and resorts to the Hungarian
Matching to associate each GT with the query predictions
of minimal matching cost, and selects top-N scored pre-
dictions for inference. [39, 42] also reveal that one-to-one
matching is the key to achieve sparse predictions. Follow-
ing works [16, 19, 19, 25, 43, 57] improves DETR in many
aspects including query design, convergence speed, and per-
formance, surpassing CNN-based dense detectors [8,51,56]
by a large margin. However, they still need to select a fixed
number of predictions as final results, no matter how many
objects are there in an image. Recently, DINO-DETR [49]
introduces a “contrastive” denoising training strategy. It
creates positive and negative GTs conceptually, and super-
vise these GTs with different targets separately, which has
no relation with contrastive learning.

3D Object Detection from Point Clouds. State-of-the-
art 3D detectors usually adopts voxel-based [31–33, 47],
range-view [38,40] or point-based [7,45] paradigms to con-
vert raw point clouds into dense feature representations, fol-
lowed by detection heads to generate dense predictions and
resort to NMS to filter out low-quality predictions. Many
attempts have also been made to incorporate transformer
architectures [24, 30, 37, 53] into 3D object detection, but
they still rely on post-processing. Others [1,27] make a step
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Figure 2. Overall pipeline of the proposed ConQueR. It consists of a 3D Sparse ResNet-FPN backbone to extract dense BEV features,
and a transformer encoder-decoder architecture with one-to-one matching. Top-k scored object proposals from a class-agnostic FFN form
the object queries to input to the transformer decoder. During training, GTs (noised) are concatenated with object queries to input to the
transformer decoder to obtain unified embeddings, which are then used for Query Contrast at each decoder layer. During inference, Top-
scored predictions from the last decoder layer are kept as final sparse predictions. “VFE” denotes the voxel feature extractor in [44,47,55].

further to use the one-to-one matching loss to achieve di-
rect sparse 3D predictions. [27] proposes Box-Attention, a
variant of deformable attention to better capture local infor-
mations and applies it to 3D object detection. [1] introduce
image features into a decoder-only architecture to enhance
query features. However, their performance still largely lags
behind state-of-the-art dense 3D detectors.

Contrastive Learning for Object Detection. Contrastive
learning aims to learn an embedding space such that simi-
lar data pairs stay close while dissimilar ones are far apart.
[10] proposes to learn representations by contrasting pos-
itive pairs against negative ones. The popular InfoNCE
loss [28] uses categorical cross-entropy loss to learn such
an embedding space. Following works [4, 5, 12] demon-
strate the superiority of contrastive learning on providing
pre-trained weights for downstream tasks (e.g., 2D detec-
tion). Few works explore the use of contrastive loss in ob-
ject detection. [18] introduces semantically structured em-
beddings from knowledge graphs to alleviate misclassifica-
tions. [46] conducts contrastive distillation between differ-
ent feature regions to better capture teacher’s information.
As far as we know, we are the first to introduce the con-
trastive learning process into DETR-based detectors.

3. Query Contrast Voxel-DETR (ConQueR)

State-of-the-art 3D detectors usually generate dense ob-
ject predictions, which require many hand-designed com-
ponents (e.g., anchors, box masks) based on prior knowl-
edge, and resort to post-processing to filter out low-quality

and duplicated boxes. This indirect pipeline hinders the de-
tectors from being optimized end-to-end and achieving op-
timal performance. 3D DETRs aim at streamlining these
hand-crafted modules, and directly generating sparse pre-
dictions via the transformer architecture and one-to-one
matching loss, but they still cannot compete with state-of-
the-art dense 3D detectors and face the problem of highly
overlapped false positives, as shown in Fig. 1(a). To solve
these challenges, we first introduce our competitive DETR-
based 3D framework, named Voxel-DETR in Sec. 3.1, and
present the Query Contrast strategy to tackle with the du-
plicated false positives and further improve the detection
performance in Sec. 3.2.

3.1. Voxel-DETR

As illustrated in Fig. 2, Voxel-DETR consists of a
3D backbone, an encoder-decoder transformer architecture,
and a set-matching loss to achieve direct sparse predictions.
Backbone. Point cloud is rasterized into sparse voxel grids
and fed into a 3D Sparse ResNet [13] backbone network to
extract sparse 3D features. These features are transformed
into dense Bird Eye View (BEV) feature maps, followed by
an FPN [20] to extract multi-scale features.
Transformer. The encoder-decoder transformer is similar
to the two-stage Deformable-DETR [57]. The 8× down-
scaled BEV features from the FPN are input to the trans-
former encoder, which consists of 3 encoder layers. Consid-
ering the characteristics of 3D detection from point clouds
(i.e., all objects are relatively small and densely distributed),
we adopt BoxAttention [27], which applies spatial in-box
constraints to Deformable Attention [57], to perform lo-

9298



gt feature embeddings

query feature embeddings

query boxes

GT boxes

positive pairs

negative pairsgradients

Contrastive
Loss

Decoder
Layer

Decoder
Layer

EMA

Projector

GT

Queries

BEV Feature Map

GT

Matched
Query

Unmatched
Queries

Query Embeddings

GT Embeddings

Matched
(Pos) Pairs

Unmatched
(Neg) Pairs

Figure 3. Illustration of Query Contrast. Given the GT (green),
Hungarian Matching gives its best matched (blue) and all other
unmatched (gray) object queries. Query embeddings are projected
by an extra MLP to align with GT embeddings. The contrastive
loss is applied to all positive and negative GT-query pairs based on
their feature similarities.

cal self-attention. A class-agnostic feed-forward network
(FFN) head is used to generate initial object proposals from
encoder features. Top-k scored box proposals are selected
as object queries to input to the 3-layer transformer decoder.
Decoder layers conduct inter-query self-attention and cross-
attention between query and encoder features, followed by
prediction heads to perform iterative box refinement [57].
Predicted query boxes from the previous decoder layer’s
FFN head are transformed by a 3-layer MLP and added with
the updated query features (initialized as zero) from the pre-
vious decoder layer.
Losses. During training, all FFN prediction heads use the
Hungarian Matching to assign GTs to object queries. The
detection loss Ldet consists of a focal loss [21] for clas-
sification, a smooth L1 loss and a 3D GIoU loss for box
regression:

Ldet = αLfocal + βLl1 + γLGIoU, (1)

where α, β, γ are hyper-parameters to balance the loss
terms. During inference, top-N scored predictions from the
last decoder layer are kept as the final sparse detections.

3.2. Query Contrast

Although Voxel-DETR already achieves satisfactory per-
formance, its top-N scored predictions still suffer from
densely overlapped false positives (as shown in Fig. 1(a)).
To tackle this problem, we present a novel Query Contrast
mechanism (depicted in Fig. 3) to explicitly enhance each
GT’s best matched query over unmatched ones. We first
construct positive and negative GT-query pairs for each GT,
which are then processed by each decoder layer to generate
aligned GT and query embeddings. To promote the positive
queries’ similarity towards a GT against negative ones, the
contrastive loss is applied at each decoder layer.

Construction of positive/negative GT-query pairs. To
determine queries to be enhanced or suppressed for each
GT, we first construct positive and negative GT-query
pairs by reusing the Hungarian Matching results (used for

Eq.(1)), which is naturally compatible with our Voxel-
DETR framework. Given a GT, the query with the minimal
matching cost forms a positive pair with the GT, all other
queries and this GT then form negative GT-query pairs.
These GT-query pairs help to identify the object queries
that need to be further enhanced or suppressed in our Voxel-
DETR. Motivated by the SwAV [4] that incorporates mul-
tiple image crops to form multiple positive pairs to boost
the training process, we further add small noises of differ-
ent magnitudes on each GT to generate multiple noised GT
copies. The multiple noised GT copies then form additional
GT-query pairs with the same positive/negative query parti-
tions as original GTs.

In practice, if a noised copy deviates too much from
its original GT, the noised GT-query pairs would harm the
contrastive training process. However, finding proper noise
magnitudes is rather laboursome and cannot generalise well
across scenarios. We thus add an auxiliary GT de-noising
loss similar to that in DN-DETR [19] to obligate the de-
tector to recover the original GT from its noised versions,
which ensures that the noised GT copies would not di-
verge. Note that the “noising-denoising” step alone only has
marginal effects to detection performance, while our multi-
positive Query Contrast based on the noised GT copies
leads to superior detection performance, as shown in our
ablation studies.

Contrast positive pairs against negative pairs. Before
applying supervisions to the positive and negative GT-query
pairs, we need to quantitatively measure the similarities of
these pairs. However, simple geometric metrics (e.g., IoU)
cannot sufficiently model the similarities between GTs and
queries (i.e., category, appearance, location, size, etc.). We
thus propose to embed GTs and queries into a latent space
for comprehensive similarity measurement. In our Voxel-
DETR, object queries are formulated as proposal boxes (i.e.
object category, box location, size, and orientation). There-
fore, the transformer decoder can naturally be used to en-
code both GTs and queries into feature embeddings at a
chosen layer. We simply select the output layer of the
FFN prediction head after each decoder layer (as shown in
Fig. 2), followed by a shared MLP for similarity estimation.

However, we observe that the distributions of GT objects
and query boxes can be quite different: GTs have no over-
lap with each other and generally distribute following the
roadmap layouts, while queries might correspond to densely
overlapped boxes and show up at random locations. As the
transformer decoder utilizes self-attention to capture inter-
box relations, the different distributions of GTs and query
boxes would greatly affect estimation of their similarities.
To mitigate the distribution gap, we adopt an extra MLP to
project query features to align with GTs’ latent space (the
“Projector” in Fig. 3). With the aligned GT and query em-
beddings, we estimate all positive and negative GT-query
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pairs’ similarities with cosine similarity metric, and adopt
the InfoNCE loss [28] to encourage the best matched query
to generate more accurate predictions towards its assigned
GT, and force all other unmatched queries to deviate away.
Moreover, to obtain more stable GT representations for su-
pervising queries, we adopt an exponential moving average
(EMA) copy for each decoder layer to embed GTs, which
is shown to be effective in our ablations.

Assume that for the i-th GT in a point cloud scene, we
add T different noises and denote the noised GT embed-
dings as {b1i , b2i , ..., bTi }, and denote K query embeddings
as {q1, q2, ..., qK}. Suppose that the Hungarian Matching
assigns the i-th GT to the j-th query, then our Query Con-
trast loss for the i-th GT LQC

i can be formulated as

LQC
i = −

T∑
t=1

log

(
exp(cos(bti, g(qj))/τ)∑K
k=1 exp(cos(b

t
i, g(qk))/τ)

)
, (2)

where τ is the temperature coefficient, and g(·) denotes the
extra MLP projector to align query features to GTs’. As
shown in Fig. 2, the Query Contrast loss is adopted at every
decoder layer.

During inference, we abandon the widely adopted top-N
scored prediction strategy and use a score threshold (e.g.,
0.1) to filter out low-quality query predictions. Query Con-
trast works quite well on suppressing similar query predic-
tions in local neighborhoods, as shown in Fig. 1(b). Con-
QueR greatly boosts the detection accuracy, and reduces up
to ∼60% false positives.

Discussion: Why does Query Contrast improve DETR-
based 3D detectors? As discussed in Sec. 1, current de-
tection losses (i.e., focal loss for classification, smooth L1
and GIoU loss for regression) supervise each query without
considering its surrounding queries, which lack supervision
to train detectors to discriminate similar object queries espe-
cially in local regions. The proposed Query Contrast strat-
egy tackles this issue by constructing a contrastive objec-
tive to supervise all queries simultaneously. As suggested
in Eq.(2), for each GT object, the detector is instructed to
identify the best matched query, and is forced to learn to dif-
ferentiate it from all other unmatched counterparts, even if
some of them are highly overlapping with the best matched
query. As a result, all unmatched queries are trained to de-
viate from the GT, thus the duplicated false positives in our
baseline Voxel-DETR can be effectively suppressed.

Another core design of our Query Contrast is to encode
the GTs and queries into a unified learnable latent space.
GT objects are encoded to provide better forms of super-
vision for both matched and unmatched queries. Previous
works [11,50] in 2D object detection also show that encod-
ing labels into feature embeddings to serve as extra super-
vision can perform better than the common hand-designed

learning targets (i.e., classification logits and regression off-
sets), but they generally work in a knowledge distillation
(KD) manner, which cannot be utilized to supervise nega-
tive queries. In contrast, our contrastive loss does not force
matched queries to approach GTs directly, but encourages
them to be “closer” to their corresponding GT embeddings
than other close-by duplicated queries. Note that in our
Query Contrast mechanism, GT embeddings are processed
in an off-line manner and encoded into a unified space as
queries’, which serve as a type of supervision and force the
detector to generate more similar query features as GTs’.

According to our experiments, the proposed Query Con-
trast strategy can not only suppress those duplicated false
positives, but also contribute to better detection perfor-
mance, which are consistent with the above discussions.

4. Experiments
ConQueR is mainly evaluated on the Waymo Open

Dataset [36] (WOD) benchmark using the official detection
metrics: mAP and mAPH (mAP weighted by heading) for
Vehicle (Veh.), Pedestrian (Ped.), and Cyclist (Cyc.). The
metrics are further splitted into two difficulty levels accord-
ing to the point numbers in GT boxes: LEVEL 1 (>5) and
LEVEL 2 (≥1). We conduct ablation studies on the valida-
tion set, and compare with state-of-the-art detectors on both
validation and test set.

4.1. Implementation Details

Training. We follow common practice as previous voxel-
based methods [31–33, 47] to use point cloud range of
[−75.2m, 75.2m] × [−75.2m, 75.2m] × [−2.0m, 4.0m]
with voxel size [0.1m, 0.1m, 0.15m] in x, y, and z-axes re-
spectively. The same set of augmentations (i.e., GT-Aug,
flip, rotation, scaling) are adopted following the previous
works [47]. We follow [1, 41] to use the “fade-strategy” to
drop GT-Aug at the last epoch to avoid overfitting. Both
our baseline Voxel-DETR and ConQueR are trained for
6 epochs unless otherwise specified. We use the OneCy-
cle [35] learning rate scheduler and AdamW [23] optimizer
with maximal learning rate 0.001.
Network. For the 3D backbone in Fig. 2, we use the same
architecture as ResNet-18 [13] but use sparse 3D convolu-
tions [9] to replace the 2D ones. No pre-trained weights
are used. The same FPN structure as RetinaNet [21] is
used to obtain multi-scale BEV features. For simplicity, we
only use the 8× downscaled features as input to the trans-
former, which adopts 3 encoder layers and 3 decoder lay-
ers for computation efficiency. We select top-1000 scored
query predictions from the encoder’s class-agnostic predic-
tion head as object queries. We adopt top-N (e.g., 300)
scored predictions, or score threshold (e.g., ≥ 0.1) during
inference. We set α = 1, β = 4, γ = 2 in Eq. (1). For the
proposed Query Contrast, we use τ = 0.7 in Eq. (2), and
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Methods
mAP/mAPH

L2
Vehicle 3D AP/APH Pedestrian 3D AP/APH Cyclist 3D AP/APH

L2 L2 L1 L2 L1 L2 L1

Dense Detectors
CenterPointts [47] -/67.4 -/67.9 -/- -/65.6 -/- -/68.6-/- -/-
PV-RCNN [32] 66.8/63.3 69.0/68.4 77.5/76.9 66.0/57.6 75.0/65.6 65.4/64.0 67.8/66.4
AFDetV2 [15] 71.0/68.8 69.7/69.2 77.6/77.1 72.2/67.0 80.2/74.6 71.0/70.1 73.7/72.7
SST TS [6] -/- 68.0/67.6 76.2/75.8 72.8/65.9 81.4/74.1 -/- -/-
SWFormer [37] -/- 69.2/68.8 77.8/77.3 72.5/64.9 80.9/72.7 -/- -/-
PillarNet-34 [31] 71.0/68.5 70.9/70.5 79.1/78.6 72.3/66.2 80.6/74.0 69.7/68.7 72.3/71.2
CenterFormer [53] 71.2/69.0 70.2/69.7 75.2/74.7 73.6/68.3 78.6/73.0 69.8/68.8 72.3/71.3
PV-RCNN++ [33] 71.7/69.5 70.6/70.2 79.3/78.8 73.2/68.0 81.3/76.3 71.2/70.2 73.7/72.7

Sparse Detectors
BoxeR-3D [27] -/- 63.9/63.7 70.4/70.0 61.5/53.7 64.7/53.5 -/- 50.2/48.9
TransFusion-L [1] -/64.9 -/65.1 -/- -/63.7 -/- -/65.9 -/-
Voxel-DETR (ours) 68.8/66.1 67.8/67.2 75.4/74.9 69.7/63.1 77.6/70.5 69.0/67.9 71.7/70.5
ConQueR (ours) 70.3/67.7 68.7/68.2 76.1/75.6 70.9/64.7 79.0/72.3 71.4/70.1 73.9/72.5
ConQueR †(ours) 73.1/70.6 71.0/70.5 78.4/77.9 73.7/68.1 80.9/75.2 74.5/73.3 77.3/76.1
ConQueR ‡(ours) 74.0/71.6 71.0/70.5 78.4/77.9 75.8/70.1 82.4/76.6 75.2/74.1 77.5/76.4

Table 1. Performances on the WOD validation split. All models take single-frame input with the same range, no pre-training or ensembling
is required. † denotes using the 2× wider ResNet [48] with 1/4 downscaled BEV feature map in our backbone. ‡ denotes conducting NMS
on pedestrians and cyclists. Bold denotes the best entries, and underline denotes the second-best entries. ts denotes the two-stage model.

adopt T = 3 noising groups with a maximal box noise ratio
of 0.4 [19], and label noise ratio of 0.5 [19]. Category labels
are simply encoded as one-hot embeddings rather than the
learnable embeddings in DN-DETR [19].

4.2. Main Results

For fair comparison, all methods included use the same
point cloud input range, do not use any pre-trained weights,
test-time augmentation or model ensembling.

Performance. As shown in Table 1, state-of-the-art 3D
detectors are divided into dense and sparse categories ac-
cording to whether they can directly generate sparse detec-
tions. Our sparse detector ConQueR sets new records on all
categories of the WOD validation set. ConQueR with di-
rect sparse predictions (the second-last entry) achieves ∼1.0
mAPH/L2 higher than the previous best single-frame model
PV-RCNN++ [33], and is over 3.0 mAPH/L2 higher than
the popular anchor-free CenterPoint [47]. Notably, Con-
QueR demonstrates overwhelming performance on pedes-
trians and cyclists, outperforming previous best methods
by ∼2.0 APH/L2, which shows the effectiveness of our
Query Contrast strategy especially for densely populated
categories. The significant performance improvements can
also be validated on the WOD test set in Table 2. More-
over, ConQueR surpasses previous best sparse detectors
TransFusion-L by ∼6.0 mAPH/L2, closing the performance
gap between sparse and dense 3D detectors. When com-
pared with our baseline Voxel-DETR, the proposed Query
Contrast mechanism brings over 1.6 mAPH/L2 without any
extra inference cost. Besides, our baseline Voxel-DETR
with only 6 epochs of training outperforms previous sparse
3D detectors, and achieves comparable performance with

Methods All Veh. Ped. Cyc.
CenterPoint [47] 69.0 71.9 67.0 68.2
PV-RCNN++ [33] 70.2 73.5 69.0 68.2
AFDetv2 [15] 70.0 72.6 68.6 68.7
PillarNet-34 [31] 69.6 74.7 68.5 65.5
ConQueR (Ours) 72.0 73.3 70.9 71.9

Table 2. Single-frame performance comparisons on the WOD test
set. APH/L2 results are reported.

CenterPoint (36-epoch training) with only 1/6 GPU hours.
In addition, ConQueR has an inference latency of 70ms
(46ms for CenterPoint)1.

Although ConQueR with direct sparse predictions al-
ready achieves state-of-the-art performance, we find that
applying NMS onto ConQueR’s sparse predictions can fur-
ther improve small and densely populated categories such
as pedestrians, while NMS causes ∼1.2 APH/L2 perfor-
mance drop on the well-trained vehicles (as shown in Ap-
pendix. A). This is also the case with our baseline Voxel-
DETR. We speculate this is caused by the learning difficul-
ties inherent in the data for extremely similar queries (as
shown in Fig. 1(b)) . We thus report ConQueR’s perfor-
mance after conducting NMS on pedestrians and cyclists
(the last entry of Table 1).

Sparsity. Apart from the performance improvements on
the WOD official metrics, ConQueR shows great poten-
tial in reducing false positives and improving the sparsity
of final predictions. We list the average number of predic-
tions per scene for different 3D detectors in Table 3. For
the baseline Voxel-DETR, thresholding according to scores
helps to reduce ∼25% predictions per sample with slightly

1Latency is measured with batch size 1 on NVIDIA A100 GPU.

9301



Methods Preds/Scene Veh. Ped. Cyc.
CenterPointnms 192 66.4 62.9 67.9
TransfusiontopN 300 65.1 63.7 65.9

Voxel-DETRtopN 300 67.1 63.0 67.8
Voxel-DETRscore 222 67.2 63.1 67.9

ConQueRtopN 300 68.0 64.6 70.0
ConQueRscore 131 68.2 64.7 70.1
ConQueRscore † 122 70.5 68.1 73.3

Table 3. Sparsity of final predictions. APH/L2 results are re-
ported on the WOD validation set. The subscripts of each en-
try denotes the way they obtain final predictions. For exam-
ple, CenterPointnms uses NMS to filter out duplicated boxes, and
Voxel-DETRtopN denotes it uses top-N scored proposals as final
predictions, while ConQueRscore denotes that using score thresh-
olding to generate final sparse predictions. † denotes our best
model in Table 1.

better performance. With the help of Query Contrast, Con-
QueR further reduces the number of predictions substan-
tially by ∼60%. Besides, as the performance of ConQueR
continually improves (the last two lines), the sparsity of fi-
nal predictions steadily improve as well. When we adopt the
same top-300 predictions as baseline Voxel-DETRtopN for
evaluation, ConQueRtopN still improves the detection per-
formance significantly. This indicates the Query Contrast
mechanism contributes to generating more accurate predic-
tions from best matched queries. Furthermore, our Con-
QueR can achieve much sparser predictions even compared
with NMS-based dense detectors such as CenterPoint.

4.3. Ablation Study

Components of Query Contrast. We deduce the compo-
nents of ConQueR to baseline Voxel-DETR by gradually re-
moving multi-positive pairs, auxiliary de-noising loss, and
contrastive loss in Table 4. Compared to ConQueR (the first
row), removing the multiple noised copies of GTs from con-
trastive learning (the second row) causes over 0.6 mAPH/L2
performance drop. If we further remove the auxiliary de-
noising loss (the third row), performances of vehicles and
pedestrians classes even become slightly better, indicating
that the auxiliary denoising loss alone is not the key for per-
formance improvements. Moreover, we can find that Query
Contrast with only original GTs (the second last entry) al-
ready improves over the baseline (the last entry) dramat-
ically especially on pedestrians and cyclists. Overall, the
Query Contrast scheme brings 1.1, 1.7, 2.3 APH/L2 im-
provements for vehicles, pedestrians and cyclists.

Effects of different supervisions or similarity metrics
for GT-query pairs. We demonstrate the effects of dif-
ferent type of supervision or similarity metrics applied to
GT-query pairs in Table 5. As discussed in Sec. 3.2, sim-
ple geometric relations like GIoU cannot sufficiently mea-
sure the similarities between GTs and queries because they
cannot take the appearance information into account, thus

InfoNCE
Loss

Aux
DN

Multi
Pos

APH/L2
Veh. Ped. Cyc.

✓ ✓ ✓ 68.2 64.7 70.1
✓ ✓ 67.4 (-0.8) 64.1 (-0.6) 69.6 (-0.5)
✓ 67.5 (+0.1) 64.2 (+0.1) 69.3 (-0.3)

67.1 (-0.4) 63.0 (-1.2) 67.8 (-1.5)

Table 4. Effects of components in Query Contrast. The numbers in
brackets denotes the performance drop (red) or increase (blue) for
each component. Both the multi-positive contrastive loss (Multi-
Pos) and the InfoNCE loss (Eq. (2)) from only original GTs have
deep impact on performance, while the auxiliary denoising loss
(Aux-DN) only has marginal effects.

Methods Veh. Ped. Cyc.
Voxel-DETR 67.1 63.0 67.8
ConQueRKD−MSE 68.1 63.4 68.2
ConQueRQC−GIoU 66.6 63.6 68.4
ConQueRQC−Cos 68.2 64.7 70.1

Table 5. Effects of different supervisions or similarity metrics ap-
plied to GT-query pairs. APH/L2 results are reported. QC−Cos

denotes our default Query Contrast with the cosine similarity met-
ric, while QC−GIoU denotes using GIoU as the similarity mea-
surement of GT-query pairs. KD−MSE indicates replacing Query
Contrast with Knowledge Distillation MSE loss to supervise posi-
tive GT-query pairs only.

only have marginal effects compared to our baseline Voxel-
DETR. If we replace Query Contrast with the MSE loss in
knowledge distillation (KD) to supervise positive GT-query
pairs, performance of vehicles is still comparable with our
Query Contrast strategy (the last entry), but it cannot handle
densely populated categories like pedestrians and cyclists,
indicating the importance of suppressing negative GT-query
pairs in our Query Contrast strategy.

Number of positive pairs. We present the results of using
different numbers of noised GT copies in Table 6. We ob-
serve that using 3 groups of noised copies without original
GTs (default setting) achieves the best performance. More-
over, incorporating original GT into the multi-positive con-
trastive loss harms the performance. The first two entries
show that using single noised copies of GTs is better than
using the original GTs. We conjecture this is caused by the
lack of training for original GT boxes. The detector is only
trained to recover from noised GTs, while having no idea
how to deal with perfectly located original GTs.

Query-GT feature alignment. We demonstrate the im-
portance of aligning query embeddings to GTs’ with an
extra MLP in Table 7. Removing the MLP for query em-
beddings alignment (the first row) or applying the MLP
alignment for both GT and query embeddings (the last row)
causes ∼1 APH/L2 performance drop, indicating the im-
portance of the asymmetric alignment design to mitigate the
distribution gap between GT and query embeddings.
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Original GTs # Noised GT Groups Veh Ped Cyc
✓ 0 67.5 64.2 69.3

1 67.9 64.4 69.6
2 68.2 64.3 69.9

✓ 2 67.8 64.4 68.8
3 68.2 64.7 70.1

✓ 3 68.0 64.3 69.9
4 67.7 64.4 70.1

Table 6. Number of positive pairs in the contrastive loss. APH/L2
results are reported on the WOD validation split. ✓ denotes in-
cluding the original GT group into Eq. (2).

Projection Veh. Ped. Cyc.
67.2 64.2 69.3

Q 68.2 64.7 70.1
G&Q 67.3 64.1 68.9

Table 7. Design choices of the asymmetric feature alignment.
APH/L2 results are reported. ‘G’ and ‘Q’ denotes GT and query
embeddings respectively from the selected layer in detector or pre-
diction heads.

Layer to Contrast Veh. Ped. Cyc.
Lastdecoder 68.1 63.9 69.7
LastFFN 68.2 64.7 70.1
SecondLastFFN 67.4 64.6 69.6

Table 8. Layers to conduct Query Contrast. Results are the
APH/L2 reported on the WOD validation split. Lastdecoder and
LastFFN denotes the output layer of each decoder layer and FFN
prediction head respectively, while SecondLastFFN indicates the
second-last layer of each FFN prediction head is chosen to con-
duct Query Contrast.

Neural Layers for conducting Query Contrast. We
compare 3 layer alternatives to conduct Query Contrast in
Table 8: the output layer of each decoder layer, the output
layer of each FFN prediction head, and the second-last layer
of each FFN prediction head. The Query Contrast scheme
can bring consistent improvements for all layer choices, and
the features from the last layer of FFN prediction head per-
forms the best, indicating that directly regulate the detection
outputs via the contrastive loss can achieve the “enhance-
suppress” effects onto queries to the utmost.

Generalisation ability w.r.t. query numbers. We ver-
ify the generalization ability of Query Contrast by varying
query numbers in Table 9. By default we adopt top-1000
scored proposals as initial queries to input to the transformer
decoder. The performance gain of Query Contrast is rela-
tively stable when we gradually reduce query numbers to
500 and 300.

EMA coefficients for generating GT embeddings. Here
we show results of different momentums of our EMA de-
coder, which is used to embed GT boxes, in Table 10. The
performance of using the same decoder as queries (the first
line) already achieves satisfactory results, while introducing
a more stable decoder for GT boxes can further improve the

Methods #Query Veh. Ped. Cyc.
Voxel-DETR 300 66.3 62.0 66.5
ConQueR 300 67.0 (+0.7) 63.6 (+1.6) 68.9 (+2.4)
Voxel-DETR 500 66.9 62.8 67.3
ConQueR 500 67.8 (+0.9) 64.4 (+1.6) 69.0 (+1.7)
Voxel-DETR 1000 67.1 63.0 67.8
ConQueR 1000 68.2 (+1.1) 64.7 (+1.7) 70.1 (+2.3)

Table 9. Improvements of Query Contrast under different query
numbers. APH/L2 results are reported. The blue numbers in
brackets indicates the performance gains.

Momentum Veh. Ped. Cyc.
0.000 67.9 64.4 69.0
0.900 67.6 64.3 69.1
0.990 68.0 64.5 69.2
0.999 68.2 64.7 70.1

Table 10. Effects of EMA momentum coefficient.

τ Veh. Ped. Cyc.
1.0 67.9 64.2 69.8
0.7 68.2 64.7 70.1
0.5 67.6 64.5 69.7

Table 11. Effects of τ . APH/L2 results are reported.

performance especially on categories with fewer instances
(i.e., cyclists).

Temperature coefficient in Eq. (2). We shown the effects
of different τ in Table 11. τ controls the contrastive learning
difficulty of the GT-query similarities, and we find τ = 0.7
leads to the best performance.

5. Conclusion
DETR-based sparse 3D detectors faces the problem of

duplicated false positives caused by dense similar queries,
and lags in detection performance. In this paper, we solve
these challenges with our simple yet effective Query Con-
trast Voxel-DETR (ConQueR). Based on our sparse 3D
detection framework Voxel-DETR, we propose a Query
Contrast strategy to explicitly suppress densely overlap-
ping false positives, and simultaneously promote the best
matched queries towards their assigned GTs in a contrastive
manner. ConQueR reduces ∼60% false positives in the fi-
nal sparse predictions, closes the gap between sparse and
dense 3D detectors, and surpasses previous state-of-the-art
3D detectors by a large margin on the challenging WOD
benchmark.
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