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Abstract

Current text recognition systems, including those for
handwritten scripts and scene text, have relied heavily on
image synthesis and augmentation, since it is difficult to re-
alize real-world complexity and diversity through collect-
ing and annotating enough real text images. In this paper,
we explore the problem of text image generation, by taking
advantage of the powerful abilities of Diffusion Models in
generating photo-realistic and diverse image samples with
given conditions, and propose a method called Conditional
Text Image Generation with Diffusion Models (CTIG-DM
for short). To conform to the characteristics of text im-
ages, we devise three conditions: image condition, text con-
dition, and style condition, which can be used to control
the attributes, contents, and styles of the samples in the im-
age generation process. Specifically, four text image gen-
eration modes, namely: (1) synthesis mode, (2) augmen-
tation mode, (3) recovery mode, and (4) imitation mode,
can be derived by combining and configuring these three
conditions. Extensive experiments on both handwritten and
scene text demonstrate that the proposed CTIG-DM is able
to produce image samples that simulate real-world com-
plexity and diversity, and thus can boost the performance
of existing text recognizers. Besides, CTIG-DM shows its
appealing potential in domain adaptation and generating
images containing Out-Of-Vocabulary (OOV) words.

1. Introduction

Text recognition has been an important research topic
in the computer vision community for a long time, due
to its wide range of applications. In the past few years,
numerous recognition methods for scene and handwritten
text [3,16,43,57,58,65,69,72] have been proposed, which
have substantially improved the recognition accuracy on
various benchmarks. The volume and diversity of data are
crucial for high recognition performance, but it is extremely
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Figure 1. Handwritten text image samples from [AM [46] or gen-
erated by our proposed CTIG-DM. On the left, the handwriting
styles of the same word “and” written by different writers are con-
siderably different, indicating the diversity of handwritten text and
the challenge of handwritten text recognition. On the right, two
images out of four in each row are written by the corresponding
writer on the left. Can you distinguish them from the generated
samples? (The answer will be revealed in the next page.)

desserts Share BTN
eLonce| SAPPHIRE EMEENES) 137
o0 s BKindle EEEEIL

(10D
an 12> (13> 14> (15

Figure 2. Scene text image samples from Real-L [5] or produced
by CTIG-DM. Only seven images herein are real. Can you identify
them? (The answer will be revealed in the next page.)

hard, if not impossible, to collect and label sufficient real
text images, so majority of the existing recognition meth-
ods rely heavily on data synthesis and augmentation.
Previously, a variety of data synthesis and augmentation
methods [7, 17, 18,20,25,33,38,44,45,67] have been pro-
posed to enrich data for training stronger text recognition
models. In this paper, we investigate a technique that is
highly related and complementary to such works. Draw-
ing inspiration from the recent progress of Diffusion Mod-
els [15, 48], we propose a text image generation model,
which is able to conduct data synthesis, and thus can boost
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the performance of existing text recognizers.

A recent study [I5] has shown that State-Of-The-
Art (SOTA) likelihood-based models [48] can outperform
GAN-based methods [8, 30, 68] in generating images. Dif-
fusion models [23,48,59] have been becoming increasingly
popular, due to their powerful generative ability in various
vision tasks [2, 10, 11,41,55]. A typical representative of
diffusion models is Denoising Diffusion Probabilistic Mod-
els (DDPM) [23]. It generates diverse samples through dif-
ferent initial states of simple distribution and each transi-
tion. This means that it is challenging for DDPM to con-
trol the content of the output image due to the randomness
of the initial states and transitions. Guided-Diffusion [15]
provides conditions to diffusion models by adding clas-
sifier guidance. UnCLIP [53] further pre-trains a CLIP
model [52] to match the image and whole text, which are
used as the conditions for the diffusion models in image
generation. While these approaches have focused on nat-
ural images, images with handwritten or scene text have
their unique characteristics (as shown in Fig. 1 and Fig. 2),
which require not only image fidelity and diversity, but also
content validity of the generated samples, i.e., the text con-
tained in the images should be the same as specified in the
given conditions.

In this paper, we present a diffusion model based condi-
tional text image generator, termed Conditional Text Image
Generation with Diffusion Models (CTIG-DM for short).
To the best of our knowledge, this is one of the first works to
introduce diffusion models into the area of text image gen-
eration. The proposed CTIG-DM consists of a conditional
encoder and a conditional diffusion model. Specifically, the
conditional encoder generates three conditions, i.e., image
condition, text condition, and style condition (the writing
style of a specific writer). These conditions are proved to
be critical for the fidelity and diversity of the generated text
images. The conditional diffusion part uses these condi-
tions to generate images from random Gaussian noise. As
can be seen in Fig. 1 and Fig. 2, the quality of the images
generated by CTIG-DM is quite high that one can hardly
tell them from real images”. By combining the given con-
ditions, four image generation modes can be derived, i.e.,
synthesis mode, augmentation mode, recovery mode, and
imitation mode. With these modes, various text images that
can be used to effectively boost the accuracy of existing text
recognizers (see Sec. 4 for more details) could be produced.
Moreover, CTIG-DM shows its potential in handling OOV
image generation and domain adaptation.

The contributions can be summarized as follows:

* We propose a text image generation method based on
diffusion models, which is one of the first attempts to
use diffusion models to generate text images.

*In Fig. 1, the real images are the first and last of each row. In Fig. 2,
the real images are even numbered.

* We devise three conditions and four image generation
modes, which can facilitate the generation of text im-
ages with high validity, fidelity, and diversity.

* Experiments on both scene text and handwritten text
demonstrate that CTIG-DM can significantly improve
both the image quality and the performance of previ-
ous text recognizers. Besides, CTIG-DM is effective
in OOV image generation and domain adaptation.

2. Related Work
2.1. Text Recognition

As an important task in computer vision, text recognition
has attracted extensive attention in the community. Specifi-
cally, Scene Text Recognition (STR) and Handwritten Text
Recognition (HTR) are the most popular research direc-
tions [9,37,75].

Scene text images generally contain complex back-
grounds and irregular text arrangements. Early, He et
al. [21] and Shi et al. [57] proposed to model STR as a
sequence-to-sequence mapping issue by combining CNN,
RNN, and CTC [19]. Then, attention-based methods [43,

, 65] gradually emerged and achieved a breakthrough
in irregular text recognition. In recent years, benefit-
ing from the success of Transformer [61], many meth-
ods [12, 16,64, 69] improved the recognizer from the per-
spective of the language model.

Handwritten text images have diverse writing styles and
difficult-to-segment cursive joins. Zhang et al. [74] ad-
dressed the handwriting style diversity problem by domain
adaption. Bhunial et al. [3] employ Model Agnostic meta-
learning algorithm to train writer adaptive HTR network.
Recently, due to the lack of real data, more researchers paid
attention to the fields of text data augmentation and synthe-
sis, thereby improving the performance of handwritten text
recognizers [1,6,17,27,44,45].

2.2. Text Image Augmentation and Synthesis

Wigington et al. [67] and Bhunia et al. [6] built grids on
the original images and hidden features, respectively, and
then augmented them by adding random perturbations. Luo
et al. [45] proposed a learnable augmentation method to ob-
tain more controllable samples. These methods have made
significant progress in improving the performance of text
recognizers. However, they fail to create OOV samples and
thus the diversity is limited by the training set.

There are many GAN-based handwritten text image
synthesis methods. Fogel et al. [17] presented a semi-
supervised approach that can generate images of words with
a variable length. Kang et al. [27] generated credible hand-
written word images by adjusting calligraphic style features
and textual contents. Luo et al. [44] proposed a style bank
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Figure 3. The overall architecture of the proposed CTIG-DM.

and dual discriminators to solve the issues of style repre-
sentation and content embedding. However, GAN-based
methods are generally difficult to train and require careful
design of hyper-parameters, otherwise, it is easy to fall into
mode collapse [15]. Besides, most of the above data syn-
thesis methods are only experimented on handwritten Latin
text without exploring generalization to other types of texts,
such as scene text or handwritten Chinese text.

2.3. Diffusion Models

Recently, a category of deep generative models, named
diffusion models [59], has achieved impressive results in
computer vision tasks, outperforming GAN-based methods
in the diversity of generated images [|5]. Inspired by the
non-equilibrium thermodynamics theory [59], Ho et al. [23]
learned to model the Markov transition from noise to data
distribution, enabling unconditional image generation. Luh-
man et al. [42] focused on online handwriting and gener-
ated point sequences based on diffusion models. Prafulla et
al. [15] introduced additional classifiers to provide condi-
tions for the diffusion models. Nichol et al. [49] explored
diffusion models for text-conditional image synthesis with
classifier-free guidance. Ramesh et al. [53] proposed a two-
stage model, i.e., a prior that generates a CLIP image em-
bedding given a text caption, and a decoder that generates
an image conditioned on the image embedding.

Unlike general image generation, text image generation
requires more unique contexts and textural features at the
character-level. This inspires us to use a text recognizer to
obtain conditions related to text images.

3. Methodology
3.1. Conditional Encoder

As illustrated in Fig. 3, the outputs of the conditional
encoder consist of an image condition c¢;, a text condition
¢, and a style condition c,. Specifically, ¢; represents the
unique visual characteristics of input images. ¢, indicates
the semantic characteristics of input contexts. ¢, describes

the information about the writer styles, which are only used
in the handwritten text generation.

Image condition. Different from the patterns of natu-
ral images, the rich visual information of text images con-
centrates on the characters. Therefore, we propose to use
the encoder of a pre-trained text recognizer to obtain im-
age condition that can better express general features (e.g.,
textural and colors) rather than the noisy features (e.g. the
backgrounds). The background information comes from the
training data and is encoded in the trained diffusion models.
Given the input image I, the generation process of the im-
age condition can be formulated as

¢; = AttnPool(Fen.(I) + Emb(P;)), (1

where F.,. is the feature extractor of the pre-trained text
recognizer. P; denotes the index of encoded image patches,
and Emb is the embedding function which encodes P; to
obtain position embedding. AttnPool represents the atten-
tion pooling [34] to customize visual representations. The
image condition is an image-level representation, which is
an aggregation of patch-level features.

Text condition. Text condition specifies the contents of
the generated text images and represents the unique contexts
among chars, which is critical for the proposed CTIG-DM.
Although the pre-trained word embedding [14] is widely
used in the natural language processing field, it cannot han-
dle the text image generation of OOV words. Therefore,
we adapt the classifier weights W, of the pre-trained text
recognizer described above to encode text condition. The
generation process of text condition can be described as

Ct = P’I’Oj(WCT + Emb(Pt))7 2

where T' and P, represent the one-hot encoding and the in-
dex of characters in the text string label. A linear projection
layer Proj is applied to unify the dimensionality with the
text condition.

Style condition. The style condition is particularly de-
signed for text generation of HTR, which contains the writ-
ing characteristics (e.g., character slants, cursive joins, and
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stroke widths) of a specific writer. In other words, the style
condition represents personal style rather than image style.
The generation of style condition can be represented as

Cs = Prog(Emb(S)), 3)

where S is the writer ID. Overall, the combination of ¢;, ¢,
and ¢, is fed into the conditional diffusion model to generate
text images.

3.2. Conditional Diffusion Model

Different from natural image generation in vanilla dif-
fusion models [15, 23, 48], the proposed CTIG-DM intro-
duces expert knowledge related to text image, i.e., image
condition, text condition, and style condition. As shown in
Fig. 3, following [23], the conditional diffusion model is
implemented by UNet [56], which contains two processes,
i.e., the diffusion process and the generation process.

Diffusion process. In the diffusion process, by continu-
ously adding Gaussian noise to an initial image, the charac-
teristics of the initial image will gradually disappear, and the
image eventually becomes standard Gaussian noise. Specif-
ically, as illustrated in Fig. 3, at the diffusion step n, the next
noisy image I, can be obtained by

In+1 = In + €, (4)

where e denotes the Gaussian noise. Then the next noisy
image and the proposed conditions are fed into the UNet to
predict the distribution of the noise, which is supervised by
the squared error loss

L= He_69([Ciactacs]?l’ﬂ+1)”2' (5)

eg and [-] represent the parameters of UNet and the concate-
nation process respectively. Specifically, given the diffu-
sion step, L can be directly calculated by the original image
rather than the intermediate status [23].

Generation process. During the generation process,
the image is finally generated by gradually denoising the
random initial Gaussian noise. Specifically, at the genera-
tion step n’, the current denoising image I,,» and proposed
conditions are fed into UNet to predict the noise. Then the
next denoising image I, is the minus between predicted
noise and the current denoising image, as follows,

In’+l = dn’ = EQ(C»In’)- (6)

¢ stands for the different settings of proposed conditions.
Benefiting from the input of various conditions, we propose
four image generation modes, i.e., synthesis mode, augmen-
tation mode, recovery mode, and imitation mode. Tab. 1
shows the details for each generation mode. In empirical
experiments, the text condition determines the diversity and
is helpful for OOV image generation, while the image con-
dition and style condition influence the fidelity. More de-
tails can be found in Sec. 4.3.

Table 1. The combination of conditions for each generation mode.

Generation Modes c¢; c¢; g
Synthesis v
Augmentation v
Recovery Va4
Imitation v v oV

4. Experiments
4.1. Datasets

Handwritten text datasets. IAM [46] contains more
than 115,000 words written in English by 657 different writ-
ers. RIMES [32] contains more than 60,000 words writ-
ten in French by over 1,000 authors. IAM and RIMES
are widely used in previous methods [0, 17,44,45,60] and
can serve for a variety of handwritten recognition tasks.
CVL [32] contains seven different handwritten texts (one in
German and six in English) written by 311 different writers.
We use the English part for the experiment of domain adap-
tation. CASIA-HWDB 1.0-1.1 [36] consists of 2,678,424
images of offline handwritten Chinese characters. We use it
for OOV handwritten Chinese characters generation.

Scene text datasets. We use MJSynth [24,25], Synth-
Text [20], and Real-L [5], as training data. The test datasets
consist of regular datasets, i.e., III'T SK-Words (IIIT) [47],
Street View Text (SVT) [63], ICDAR 2003 (IC03) [40]
and ICDAR 2013 (IC13) [29], and irregular datasets i.e.,
ICDAR 2015 (IC15) [28], Street View Text-Perspective
(SVTP) [50] and CUTESO (CUTE) [54]. Details of these
datasets can be found in previous works [69].

4.2. Implementation Details

Handwritten text. Similar to previous work [17,44] on
the IAM, RIMES, and CVL datasets, the height of the train-
ing images is resized to 64 pix and the width is calculated
with the original aspect ratio (up to 256 pix). The evalua-
tion criteria of recognition performance are Word Error Rate
(WER %) and Character Error Rate (CER %). The WER re-
spects the ratio of the error at the word level, and the CER
corresponds to the edit distance between the recognition re-
sult and ground-truth, normalized by the length of ground-
truth. With respect to the generation quality, FID [22],
GS [31], SSIM, RMSE and LPIPS [73] are introduced to
our experiments. Lower values of WER, CER, FID, GS,
RMSE and LPIPS, and higher value of SSIM are preferable.

Scene text. When combined with previous methods, all
experimental settings are kept the same for the sake of fair
comparison, except that generated data from the proposed
CTIG-DM is used.

Network. The pre-train text recognizer uses CRNN ar-
chitecture [57] and the diffusion models follow the DDPM
architecture [23,48]. Specifically, the proposed conditions,
whose dimensionality is set to 512, are concatenated to the
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Figure 4. Visualization of handwritten text images and their text strings and different generation modes.

time-step embedding described in GLIDE [49].

To avoid

spectively. Specifically, since the synthesis mode only de-

the proposed CTIG-DM over-relying on any condition, we
randomly set the ¢;, ¢, and ¢, to a learnable embedding
20%, 10%, and 20%, respectively, of the time.

Optimization. We use the AdamW [39] as the optimizer
with the settings of 51 = 0.9, 8> =0.999, and weight_decay
= (0.2. The learning rate is 0.0001 with cosine annealing.
The batch size is set to 64 for training recognizer and 256
for training diffusion models. All experiments are con-
ducted on NVIDIA Tesla V100 GPUs.

4.3. Ablation Study

In this subsection, we conduct ablation study on the [AM
dataset. Concretely, we explore the role of various condi-
tions obtained by the conditional encoder in the diffusion
process and show visualizations of each generation mode
during the generation process.

As presented in Tab. 2, the trends of different metrics
are consistent. First, the baseline is built without any con-
ditions, which performs a large FID score of 33.42. Then,
we add ¢; and ¢; respectively, and find that both FID scores
are significantly improved, which indicates that the image
and text features have critical supports for text image gen-
eration. Besides, by comparing the above two experiments,
we find that ¢; has a greater impact on the quality of image
generation. When both ¢; and ¢, are added, the FID further
decreases to 9.76. Moreover, we add ¢, to further guide the
proposed CTIG-DM to present specific handwriting styles
that can be easily identified. Finally, with all conditions, our
method achieves the best FID of 9.34.

Table 2. Effectiveness of different conditions in diffusion process.

¢ ¢ ¢ FID| SSIMT RMSE| LPIPS|
3342  0.5346 0.2195 0.4144

v 1336  0.6476 0.1994 0.2337
v 1092  0.7077 0.1738 0.1349

v v 9.76 0.7241 0.1697 0.1132
v v v 934 0.7374 0.1501 0.0936

Benefiting from the input of diverse conditions, Fig. 4
and Fig. 5 illustrate the image visualizations of different
generation modes for handwritten text and scene text, re-

pends on the ¢;, we observe that its generated images have
rich diversity. As presented in Fig. 4 (b) and Fig. 5 (b),
handwritten text images exist in a variety of character slants,
ink blots, cursive joins, stroke widths, and paper back-
grounds, while scene text images are diverse in text rota-
tions, backgrounds, blur noise, and fonts. Correspondingly,
the ¢; is more critical for the fidelity of the generated im-
ages. In augmentation mode, we find that the generated im-
ages are similar in overall appearance to the original images,
but part details are lost in the specific characters. As shown
in Fig. 4 (c¢) and Fig. 5 (c), images are more likely to gen-
erate wrong characters when the c¢; is used solely. This is
because only the image attributes are included in ¢; and the
unique contexts among characters included in c¢; are miss-
ing. After adding c;, the generated images in Fig. 4 (d) and
Fig. 5 (d) rarely have wrong characters and contain diver-
sity at the same time. Finally, when ¢, designed for hand-
written text is added, the fidelity of the generated images
in Fig. 4 (e) improves further, indicating that cs plays an
important role in image generation. In Sec. 4.6, we will
demonstrate the effect of c; on the style control of gen-
erated text images. Since the synthesis mode and the im-
itation mode (recovery mode in scene text) have the best
diversity and fidelity, respectively, the generated data (de-
noted as MIX) we use in Sec. 4.4 are derived from an equal-
proportion mixture of these two modes.

4.4. Recognition Performance

For text recognition tasks, the ultimate purpose of gener-
ating images is to augment the training set and improve the
performance of the recognizers. Therefore, we conduct ex-
periments on multiple types of text recognition, including
English handwritten text recognition, French handwritten
text recognition, and scene text recognition, to demonstrate
the validity of the generated data on the recognizers.

4.4.1 Handwritten Text Recognition

Following the settings of previous works [6,44,45], we use
CRNN [57] as the recognizer. Fig. 6 illustrates the effec-
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Figure 5. Visualization of scene text images and their text strings and different generation modes.
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Figure 6. Effectiveness of our generated data (denoted as MIX) on
IAM and RIMES (denoted as Real). The horizontal and vertical
axes represent the amount of MIX used and the recognition per-
formance (lower values are preferable), respectively.

tiveness of our generated data. The horizontal line on each
subfigure indicates the baseline where the real training set
is used solely. Specifically, for IAM dataset, about 200K
generated data can achieve comparable performance as the
baseline. Simultaneously, as the amount of MIX gradually
increases, CER and WER are steadily decreasing, and real-
ize the best results, i.e, CER of 5.60% and WER of 14.03%,
at 900K. The experiment results on RIMES dataset show
similar trends. Moreover, as described in the purple line
in Fig. 6, the recognizer performance can be further im-
proved when using both real and generated data. Finally,
compared with the baseline, on the IAM dataset, WER and
CER decrease by 4.78% and 1.87%, respectively, and on
the RIMES dataset, WER and CER decrease by 5.20% and
1.52%, respectively. This indicates that in HTR with a lim-
ited real training set, the generated data of our method can
significantly improve the recognizer performance, which
demonstrates the validity of the proposed CTIG-DM.

Table 3. Comparison of recognition performance with previous
methods on the IAM and RIMES datasets. The numbers of “A”
denote the improvements from the baseline to our method. “Aug*”
represents the random geometric augmentation of [45].

IAM RIMES
WER CER WER CER
Sueiras et al. [60]  23.80  8.80 1590 4.80
Alonso et al. [1] - - 11.90 4.03
Zhang et al. [74] 22.20 8.50 - -
Bhunia et al. [0] 17.19  8.41 1047 644
ScrabbleGAN [17] 23.61 13.42 11.32  3.57
Kang et al. [27] 17.26 6.75 - -
Luo et al. [45] 14.04 5.34 9.23 2.57
SLOGAN [44] 1497  5.95 11.50  3.35
Baseline 18.15  7.06 13.44  4.05
Ours 13.37 5.19 8.24 2.53
A +4.78 +1.87 +5.20  +1.52
Ours + Aug* 12.01  4.67 6.89 1.98

We compare our method to SOTA methods in Tab. 3. For
a fair comparison, note that methods using additional real
data or language models are outside the scope of this study.
It can be seen that the proposed CTIG-DM outperforms pre-
vious methods for data augmentation and data synthesis.
Moreover, we integrate our method with data augmentation
by using the open-source toolkit’ and performing random
geometric augmentation [45] on the generated samples. Fi-
nally, adding data augmentation to our method can further
improve the performance, which suggests that the proposed
CTIG-DM is complementary to previous works.

4.4.2 Scene Text Recognition

Different STR methods may adopt different backbones, data
processing, training policies, etc. Therefore, for a fair com-
parison, we reproduce two representative works CRNN and
ABINet to evaluate the effectiveness of our algorithm. As
shown in Tab. 4 (a), when combined with our generated
data, the performance of CRNN is improved by an aver-
age of 1.7% on the six test datasets and that of ABINet is

Thttps://github.com/Canjie-Luo/Text-Image-Augmentation
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Table 4. Comparison of recognition performance with previous methods on STR datasets. MIX represents our generated data and we note
its amount in parentheses. The numbers of “A” in green and blue denote the improvements over each dataset and average, respectively.

Methods Training Dataset IC13 SVT IIIT IC15 SVTP CUTE Average
CRNN [57] ST 86.7 80.8 782 - - - -
TBRA [4] MJ+ST 93.6 875 879 776 7192 740 84.6
ESIR [71] MJ+ST 913 902 933 769 796 833 87.1
MORAN [43] MJ+ST 924 883 912 688 76.1 77.4 83.3
ASTER [58] MJ+ST 91.8 895 934 761 785 795 86.4
SAM [35] MJ+ST 953 90.6 939 773 822 878 88.3
SE-ASTER [51] MJ+ST 928 89.6 938 800 814 836 88.3
TextScanner [62] MJ+ST 929 90.1 939 794 843 83.3 88.5
DAN [65] MJ+ST 93.9 892 943 745 80.0 844 87.2
RobustScanner [70] MJ+ST 948 88.1 953 77.1 795 903 88.4
SRN [69] MJ+ST 955 915 948 827 851 87.8 90.4
VisionLAN [66] MJ+ST 957 917 958 837 860 885 91.2
ABINet [16] MJ+ST 974 935 962 860 89.3 89.2 92.6
CRNN (Baseline) ST 87.8 809 857 630 663 708 772
CRNN (Ours) ST+MIX (15M) 89.7 816 871 650 678  75.0 78.9
A - +1.9 +0.7 +14 +2.0 +1.5 +4.2 +1.7
(@) ABINet (Baseline) MJ+ST 973 935 963 86.1  89.1 89.2 92.7
ABINet (Ours)  MJ+ST+MIX 30M) 98.1 942 96.6 867 89.6  91.7 93.2
A - +0.8 +0.7 +0.3 +0.6 +0.5 +2.5 +0.5
CRNN (Baseline) Real-L 86.6 77.1 840 61.1 627 642 75.0
CRNN (Ours) Real-L+MIX 2M) 89.0 81.1 881 67.8 688 722 79.9
A - +24 +4.0 +4.1 +6.7 +6.1 +8.0 +4.9
(b)  ABINet (Baseline) Real-L 957 935 966 869 865  94.1 92.8
ABINet (Ours) Real-L+MIX 2M) 972 960 97.0 89.0 902  95.8 94.3
A - +1.5 +25 +04 +2.1 +3.7 +1.7 +1.5

boosted by an average of 0.5%, which is considerable.

By comparing Tab. 3 and Tab. 4 (a), we observe that the
improvements of CTIG-DM in STR are not as obvious as
that of HTR. This is probably because most STR methods
are trained on synthesized data only, and the training set has
about 14M images, which is two orders of magnitude larger.
Both the diversity and fidelity of the proposed CTIG-DM
are partially limited by the synthesized training set. How-
ever, CTIG-DM can still bring performance improvements
to the advanced recognizer without making any changes to
the network. Further, we evaluate the effectiveness of our
method on the real dataset Real-L, whose scale is about
270K. As shown in Tab. 4 (b), our generated data brings
significant improvements of 4.9% and 1.5% to CRNN and
ABINet, respectively. It proves that the proposed CTIG-
DM is able to produce valid image samples that simulate the
complexity and diversity of the real world, which can better
improve the performance of existing text recognizers.

4.5. Quality of Generated Images

In this subsection, we compare with previous methods in
terms of image generation quality. Similar to the settings
in [44], FID is calculated with 25k real and 25k generated
images, while GS is calculated with 5k real and 5k gener-

Table 5. Comparison of image generation quality with previous
methods on HTR datasets. Lower values are preferable.

RIMES IAM
FID GS FID GS

Alonsoetal. [I] 2394 8.58x10 % - -
ScrabbleGAN [17] 23.78 7.60x10% 2072 2.56x1072

HiGAN [18] - - 17.28 -

CG-GAN [33] 19.03 -
HWT [7] - - 19.40 1.01x10—2
Davisetal. [13] 2372 7.19x10~! 20.65 4.88x102

SLOGAN [44] 1206 5.59%x10~% - -
Ours 975 6.23x10° 934 591x10°°

ated images. As illustrated in Tab. 5, benefiting from the
proposed various condition and powerful generative ability
of the diffusion models, our method outperforms the SOTA
methods by a notable margin in all metrics on both datasets,
which indicates the advancement of CTIG-DM.

4.6. Generating Out-of-Vocabulary Images

As described in Sec. 3.2, the proposed synthesis mode
only depends on the text condition. Therefore, by chang-
ing the input text, we can generate images containing OOV
text. In this subsection, we explore the OOV image gen-
eration quality of the proposed CTIG-DM. Since previous
works [7, 26, 33, 44] generate OOV images with the spec-
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ified styles, for a fair comparison, we use text condition
and style condition as the input conditions. As presented
in Tab. 6, compared with previous methods, the proposed
CTIG-DM significantly boosts the OOV image generation
quality. Fig. 7 shows the visualization of images gener-
ated by CTIG-DM, which suggests the controllability of our
method over the styles and text of the generated images.
Table 6. Comparison of OOV image generation quality with pre-
vious methods on the IAM dataset.

Method FID
GANwriting [26]  125.87
HWT [7] 109.45
SLOGAN [44] 97.81
CG-GAN [33] 104.81
Ours 25.52
Styles Generated images with OOV text

fouich | Similar cloud feroic 7o

Clever Sendors peCieve naocod

Figure 7. Visualization of images generated by CTIG-DM accord-
ing to the specified styles and OOV text. Note that none of the
words on the right appear in the training set.

4.7. Domain Adaptation

Table 7. Comparison of domain adaptation capacity with previous
methods on the CVL dataset. SYN represents our generated data
using the lexicon of the CVL training set.

Method Training Data WER CER
Baseline IAM 42.64 18.49
ScrabbleGAN [17] IAM+GAN (100K) 3598 17.27
SLOGAN [44]  TAM+GAN (100K) 34.98 14.10
Ours IAM+SYN (100K) 26.24 10.89

In this subsection, we investigate the domain adaptation
capacity of our method. Following the settings of the previ-
ous works [17,44], we first train CTIG-DM with the IAM
training set and then generate 100K samples using the lex-
icon of the CVL training set. Finally, combining the IAM
training set and generated samples to train the recognizer,
we evaluate the performance on the test set of CVL. We re-
peat the training five times and report the averages. As illus-
trated in Tab. 7, the performance improvements brought by
our generated data far exceed that of the previous methods.
Concretely, compared with the baseline, WER and CER are
decreased by 16.40% and 7.60%, respectively, indicating
the superior validity and diversity of our generated data.

T R
IS @L%%, AEREER
ane 2] e ] Wmﬂﬂm

=0 18R | (%8 4
€)

Figure 8. Visualization of (a) non-existing handwritten Chinese
characters (radical sequences are presented in the first column) and
(b) ancient rare characters.

4.8. Applications

The above experiments already show that CTIG-DM can
advance Latin text image generation. In this subsection, we
explore the applications of CTIG-DM in other scenarios,
e.g., the generation of OOV handwritten Chinese and an-
cient characters, to illustrate the potential of our method.

OOV handwritten Chinese characters generation.
Compared with Latin characters such as English and
French, Chinese characters are more complex in structure
and contain more information. Therefore, in order to make
full use of the Chinese character prior, we decompose the
Chinese characters into radical sequences as text condi-
tions. Similar to generating OOV words in English, we can
construct radical sequences that are not in the training set
to generate OOV Chinese characters or create non-existing
handwritten Chinese characters. Fig. 8 (a) shows some vi-
sualizations where the characters are not in the training set
or are even nonexistent. Specifically, the characters shown
in the last line are typos, which may come into play in sce-
narios where typo recognition is required.

Ancient characters generation. Ancient text recogni-
tion has great significance in the inheritance of historical
knowledge, literature, and art. One of its main difficulties is
the long-tailed distribution, i.e., it lacks training samples for
rare characters. Therefore, we can use CTIG-DM to gener-
ate rare characters (shown in Fig. 8 (b)). In addition, since
rare characters generally have an extremely small number of
samples, the method of combining CTIG-DM and radicals
for characters generation is also promising.

5. Conclusion and Future Work

We have presented a text image generation method,
called CTIG-DM, based on diffusion models. To adapt
to the nature of text images, we devise three conditions
and four generation modes. Extensive experiments have
demonstrated the effectiveness and advantage of CTIG-
DM. Specifically, it can be used to boost the performance
of existing text recognizers. In the future, we will explore
more generation modes on more types of text images, and
generate text images with the styles of unseen writers.
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