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Abstract

Few-shot class incremental learning (FSCIL) aims to
address catastrophic forgetting during class incremental
learning in a few-shot learning setting. In this paper, we
approach the FSCIL by adopting analytic learning, a tech-
nique that converts network training into linear problems.
This is inspired by the fact that the recursive implemen-
tation (batch-by-batch learning) of analytic learning gives
identical weights to that produced by training on the en-
tire dataset at once. The recursive implementation and the
weight-identical property highly resemble the FSCIL setting
(phase-by-phase learning) and its goal of avoiding catas-
trophic forgetting. By bridging the FSCIL with the ana-
Iytic learning, we propose a Gaussian kernel embedded an-
alytic learning (GKEAL) for FSCIL. The key components
of GKEAL include the kernel analytic module which allows
the GKEAL to conduct FSCIL in a recursive manner, and
the augmented feature concatenation module that balances
the preference between old and new tasks especially effec-
tively under the few-shot setting. Our experiments show that
the GKEAL gives state-of-the-art performance on several
benchmark datasets.

1. Introduction

Class-incremental learning (CIL) [20] can continuously
absorbs new category knowledge in a phase-by-phase man-
ner with data coming separately in each phase, after training
a classification network. This is important as data can be
scattered at various times and locations in a non-identical
independent way. The few-shot class incremental learning
(FSCIL) [23] further imposes an inefficiency constraint on
the data availability. That is, only a few data samples, i.e.,
few-shot, for each new class is allowed, leading to a more
challenging incremental learning problem.

The major challenge for FSCIL follows from the CIL’s,
namely the catastrophic forgetting. The performance on old
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Figure 1. The resemblance between the analytic learning (recur-
sive form) [33] and incremental learning. We want to build a
bridge between these two fields to take advantage of the analytic
learning for addressing the FSCIL.

(base) tasks is tremendously discounted after learning new
tasks. This is caused by the lack of training data for old
tasks, tricking models to focus only on new tasks. The for-
getting issue is also referred to as task-recency bias, in favor
of newly learned tasks in prediction. The forgetting issue in
FSCIL manifests more quickly due to over-fitting than that
in the conventional CIL setting as the training samples be-
come scarce for new tasks.

To handle the forgetting, conventional CIL sparks
various contributions, which mainly include the Bias
correction-based CIL [1,9], Regularization-based CIL [1 1,

] and Replay-based CIL [17,20]. They work well in ad-
dressing the catastrophic forgetting in CIL. However, the
few-shot constraint in FSCIL renders the CIL solutions ob-
solete (see [23] or our experiments). There have been sev-
eral works [22,23,31] taking into account the few-shot con-
straint, outperforming the conventional CIL. These FSCIL
techniques take inspirations from existing CIL variants [22]
or the few-shot learning angle (e.g., prototype-based [31])
to present catastrophic forgetting.
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In this paper, inspired by analytic learning [33,

]—a technique converting network training into linear
problems—we approach the FSCIL in an unique angle by
incorporating traditional machine learning techniques. The
analytic learning allows the training to be implemented in
a recursive manner where training data are scattered into
multiple batches. Yet the weights trained recursively are
identical to those trained by pouring the entire data in one
go [33]. We may call this weight-invariant (or weight-
identical) property. Such recursive form and its weight-
invariant property highly resemble the incremental learning
paradigm and its objective of avoiding (catastrophic) for-
getting respectively (see Figure 1). Following this intuition,
we propose a Gaussian kernel embedded analytic learning
(GKEAL) for FSCIL. The GKEAL adopts traditional ma-
chine learning tools such as least squares (LS) and matrix
inverse to avoid forgetting. The key contributions are sum-
marized as follows.

e We introduce GKEAL by treating the FSCIL as a re-
cursive learning problem to avoid forgetting. We prove that
the GKEAL in the FSCIL setting follows the same weight-
invariant property as that in analytic learning.

e To bridge analytic learning into the FSCIL realm, the
GKEAL replaces the classifier at a network’s final layer
with a kernel analytic module (KAM). The KAM contains
a Gaussian kernel embedding process for extracting more
discriminative feature, and an LS solution that allows the
GKEAL to learn new tasks in a recursive manner.

e To mitigate the data imbalance between the base and
new tasks, an augmented feature concatenation (AFC) mod-
ule is introduced, which effectively balances the network’s
base-new task preference.

e Experiments on benchmark datasets show that the
GKEAL outperforms the state-of-the-art methods by a con-
siderable margin. Ablation study is also provided, giving
thorough analysis of the hyperparameters introduced, as
well as strong supports to our theoretical claims.

2. Related Works

Class-Incremental Learning. Existing CIL methods
mainly include three categories, namely Bias correction-
based CIL, Regularization-based CIL and Replay-based
CIL. The bias correction-based CIL aims to address the
task-recency bias. The end-to-end incremental learning
(EEIL) [1] introduces a task balance stage in order to re-
duce the bias. In [27], the bias is corrected by introducing
an additional trainable layer. The method named LUCIR [9]
replaces the softmax layer with a cosine normalization alter-
native to reduce target-recency bias.

The regularization-based CIL imposes certain con-
straints on the objective functions in order to prevent for-
getting. In [11], the elastic weight consolidation (EWC)
estimates the importance with a Fisher information matrix

and constrains those weights. The EWC is later enhanced
by [15] which seeks a better Fisher matrix approximation.
In [13], the learning without forgetting method refrains the
activations of old tasks from changing too much while ab-
sorbing new tasks.

The relay-based CIL has recently become the favored
CIL branch due to its competitive performance to resist the
catastrophic forgetting by allowing a small mount of his-
torical data. The incremental classifier and representation
Learning (iCaRL) [20] introduced such a setting. Following
the iCaRL, the PODNet proposed in [4] employs a spatial-
based distillation component, achieving relatively outstand-
ing results especially for large-phase CIL. The AANets [17]
balances the stability and plasticity with a stable block and a
plastic block. The reinforcement memory management [ | 8]
handles the forgetting issue adopting reinforcement learn-
ing, and plugging it into PODNet and AANets leads to bet-
ter performance.

Few-shot Learning. The few-shot learning (FSL) ad-
dresses the scenario where each category/task is given only
a few training samples. Existing FSL methods are mainly
optimization-based [5, 10, 16] and metric-based [6, 28, 29].
Optimization techniques allow a fast adaptation to new few-
shot tasks by learning an optimization algorithm. Metric-
based methods alleviate distance metrics, e.g., DeepEMD
[30], in order to measure the deviation between samples.

Few-shot Class-Incremental Learning. The FSCIL [2,

, 32] jointly incorporates the settings of CIL and FSL by
performing CIL tasks with each phase containing limited
samples for new tasks. The topology-preserving knowl-
edge Incrementer (TOPIC) framework [23] mitigates the
forgetting issue by stabilizing a neural gas network’t topol-
ogy. In [31], the continually evolved classifier (CEC) sepa-
rates each class with an independent classifier, and adopts a
graph model to propagate context information between clas-
sifiers. The F2M [22] overcomes the catastrophic forgetting
via finding flat minima. This is achieved by injecting noise
during base training, suggesting to take the focus of FSCIL
back in the base training stage.

Analytic Learning. The analytic learning is developed to
avoid the limitations imposed by back-propagation (BP) so
that the training can be completed within one epoch. It is
also know as pseudoinverse learning [7] due to adopting
matrix inverse. The analytic learning begins in the shallow
learning. For instance, the radial basis network [19] trains
the parameters using an LS estimation in the final layer after
conducting a kernel transformation in the first layer. Ana-
Iytic learning with multiple layers [24, 26, 34] usually con-
verts the nonlinear layers into linear segments, so that LS
solutions can be employed in a one-epoch training style. To
address the memory issue in analytic learning, the block-
wise recursive Moore-Penrose learning (BRMP) [33] is de-
veloped, allowing analytic learning to stream new samples
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without forgetting the impact of previous learned knowl-
edge. This coincides well with the incremental scenarios
and it is introduced to CIL realm in the analytic class-
incremental learning (ACIL) [36] which has state-of-the-
art performance via a frozen backbone and linear classifier
trained by analytic learning. These become the key inspira-
tions for the proposed GKEAL.

3. The Proposed Method

In this section, algorithmic details of the proposed
GKEAL are provided. Firstly, the GKEAL adopts a clas-
sifier re-training phase on the base task, in which the last-
layer classifier is replaced by the KAM. Subsequently the
FSCIL tasks are conducted in a recursive manner. The FS-
CIL discussed in this paper is restricted to classification
problems. An overview of GKEAL is depicted in Figure
2.

3.1. Base Training

Base Training via BP. Prior to FSCIL, the network is first
trained with BP on the base task (see Figure 2(a)). Here
we discuss a commonly seen CNN structure consisting a
stack of CNN layers (or known as CNN backbone) as fea-
ture extractor followed by a fully-connected network (FCN)
as classifier. Let Wenn and Ween represent the weights for
the CNN backbone and the FCN classifier. Given an input
X € R¥*h*3 (e g., color image as an example), the output
of the network is

Y = foofimax (fra(fonn (X, Wenn)) Ween)

where fonn (X, Wenn) indicates the output of the CNN
backbone after feeding the input X; fy, is a flattening op-
erator, which flattens an m—D tensor into a 1-D vector;
Ssoftmax 18 the softmax function.

Analytic Initialization. With the network trained on base
dataset, the GKEAL seeks to detach the CNN backbone,
and attach it with the KAM (see Figure 2(b)). Specifically,
the KAM is a 2-layer shallow network with the first layer
conducting a kernel embedding for further feature extrac-
tion, and the second layer being a linear FCN layer. For
convenience, the re-training can be referred to as Analytic
Initialization (Alnit).

Prior to more developments, some definitions related to
FSCIL must be presented. Suppose that the FSCIL asks for
a K-phase learning with each phase (e.g., phase k) given
training data D" ~ {Xin ywrink (b = 1 ... K) of
disjoint classes. X[in ¢ RNexwxhx3 (g0 images with
a shape of w x h x 3) and Y, € RVs*duy (with phase
k including d,, classes) are stacked Nj-sample input and
label (one-hot) tensors. The objective of FSCIL at phase k
is to train networks given D" and test them on DS (with
DIt ~ { X, Y }) consisting of all the seen classes in

Dan - Specifically, Di*m ~ { X Y ™"} represents the
base training set.

The first step of Alnit is to obtain embedding from the
detached CNN backbone, shown as follows.

XE™ = fau(fonn (XE, Wenn)) (D

where X (™ € RNoxdem is the embedding of X", Sub-
sequently, we conduct a Gaussian kernel embedding (GKE)
process to obtain kernelized embedding X, (()ke), i.e.,

X(()ke) = g{cl,..-,CI}(X(()mn)) 2
where ¢ indicates the GKE module. The j® row of X(Ske)
writes

X)), = eI Kbl
e AIXE el ool Xa e (3)
where {c1,...,cs} is a set of center vectors randomly se-
lected from the rows of X ™, and 3 is a width-adjusting
parameter. Next, the kernelized embedding X (()ke) is mapped

onto the label matrix Y™ using a linear regression proce-
dure via solving

argmin

. 2 2
T e
WeeN F F

where ||-||  indicates the Frobenius norm, and -y regularizes
the objective function, with an optimal solution

WF(gI)\I _ (X(()ke)TX(()ke) + ,YI)le(()ke)Tlfotrain (5)
where VA[/'F(&)\I indicates the estimated weight of the FCN
layer, and -T is the matrix transpose operator.

3.2. Few-shot Class Incremental Learning

Upon completing the Alnit process, the FSCIL begins.
Let

Yt 0 0 ... 0 X
. 0 Y™ 0 ... 0 o X
rain —_ rain —
YI):Z‘*I - : 7X0:]<:71 - .
. .k
0 0 0 .. Yy xe

where the structure of Y% | is sparse due to disjoint tasks,
and X;ke) is the 7" embedding via

X;'ke) = g{cl,...,CI}(fCNN(X;'ramv Wenn))- (6)

Without loss of generality, the learning problem in (4) given
Dgar | can be expanded to
. train wain k=) 12 (e=1)||>
argmin || ¥, — XG5"  Ween P + 7| Ween P ™)

(k—1)
Ween
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Figure 2. An overview of the proposed GKEAL. (a) The network is first trained on the base task for M epochs, which is then re-trained
for 1 epoch adopting the KAM (a two-layer network including a kernel embedding process and an analytic LS classifier). (c,d) The FSCIL
begins by adopting the pre-trained CNN backbone as feature extractor. The new tasks are learned in a recursive manner. In particular, the
AFC module (with a parameter C') is adopted to balance base-new task preference.

which leads to

3 (k—1 - rain
Wien ) = (X005 XG0 49D T X0 Yo @)

Our objective of FSCIL is to further learn new tasks on
D" given a network pre-trained on Dg3" ;. Let Ry, =
(XIIT X&) 1 4 T)~1, the FSCIL can be solved via the fol-
lowing Theorem.

Theorem 3.1. Given D" R, ; and W\iy" in (7).

WF(& can be obtained recursively via

WF((IZGI)\I _ W]-ZCCT\} _ RkXI(Cfe)TXI(Cfe)W]fC—I\Il RkX](CkE)TYk[rain (9)

old tasks new tasks

where
Ri.=Ri1 — R XTI+ XPR 1 XN 1 X R, ;. (10)
Proof. See Supplementary material. O

Theorem 3.1 has indicated that the FSCIL through a re-
cursive implementation based on Dgai“ can reproduce the
same weight obtained with a joint computation based on
Dgf‘li“ in (7). That is, our proposed method as a FSCIL tech-
nique also possesses the same weight-invariant property as
that in analytic learning [33].

As shown in (9), the solution expresses FSCIL in two
folds: 1) The right part of weight is built for new tasks by
taking only new information (i.e., Ry, X ,gke)T and Yk""‘i“).
2) The left part absorbs both new (i.e., Ry and X ,(Cke)T) and
base (i.e., VAVF(SI; 1)) knowledge. This pattern makes sense as
the incremental learning should preserve the learned knowl-

edge while accepting the new information’s influence.

Why KAM and LS solution. The KAM and its LS solution
are essential in terms of handling data-inefficiency scenar-
ios where the FSCIL naturally belongs. The LS solution
has anti-over-fitting nature [34], which is useful given very
limited data during each incremental phase. The GKE pro-
cess also tends to give good performance with small data
availability [35].

Freezing the Backbone. As shown in (6), the kernelized
embedding is obtained by feeding the input through the
CNN backbone trained on the base dataset. That is, the
backbone’s parameters are not trainable during the FSCIL.
Such a freezing action prevents the network from updat-
ing itself with new class features. This seems to result in
certain performance decline, which is true in the traditional
CIL case. However, in the few-shot scenario, data from new
classes are scarce compared with that of the base training.
These scarce samples are less likely to make vital contribu-
tions in improving the backbone’s feature extraction power
during the FSCIL. Such a decision (i.e., freezing the back-
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bone) also happens in many other FSCIL methods (e.g.,
CEC [31]). It is a reasonable call to free the backbone in
exchange for GKEAL’s no-forgetting property for FSCIL.

3.3. Augmented Feature Concatenation For New
Tasks

Theorem 3.1 has given an overview of the proposed
GKEAL. However, unlike conventional incremental learn-
ing, FSCIL has the issue of sample imbalance. That is, the
learning favors the base classes as the base samples are vis-
ited more frequently. Here we mitigate the imbalance via
an augmented feature concatenation (AFC) process by am-
plifying the impact of new tasks. )

In (9), instead of directly adopting X,(:e), the AFC pro-
cess augments and concatenates the feature by

g{cl,,..,c,}(fCNN(Al(X;Sa?n%WCNN)) th,'“f"
_ 9ierert (foan (A2(XH), Wenn)) | _ Yprain
X o [l S e R (1)
9ierert (fonn (Ao (X M), Wenn)) Y, frain

where we use < to re-define X ,(Cfe) and Yklrain for conve-

nience. Here A, (X ") indicates the ¢ data augmentation
on X" We use commonly seen augmentation techniques
such as random horizontal flip, random cropping and nor-
malizing. C here is referred to as the augmentation count.
Note that the output }_’k“ai“ is a concatenated matrix stacked
C times with the original label. This resembles the multi-
epoch training where data for each epoch are augmented
randomly, but is not the same since the AFC process up-
dates the weights “in one go” after concatenating the aug-
mented features. Here C' € Z is an additional hyperparam-
eter balancing the knowledge between old and new tasks.
This rewrites (9) as

W& = [Wa! - R XOWE RXTRE]L (12)

By augmenting the few-shot data of new tasks, the
solution can avoid being too focused on base classes.
For demonstration purpose, we have X,(Cfe)TXge) ~
CXPTx xkoTywmin ~ ox*Tywmin (qugmented
features are quite similar), which rewrites (12) as

Wie ~ | Win' - CRXTXEWEL CRXTyen | (13)

C'=>gain reduced C'=>"gain amplified

The update formula with AFC process points out that the
output channels for new tasks (i.e., right-side weight in
(13)) are amplified up to C' times while the gains for old
tasks are cut down (i.e., left-side weight in (13)). This anal-
ysis can later be supported in experiments (see Figure 4(d)).

The AFC works similarly to a regular data augmenta-
tion technique, but differs in that it augments the features
and labels in matrix form and participates the calculation
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Figure 3. Average accuracy Ay w.rt. each phase on (a) CIFAR-
100, (b) CUB200-2011 and (c) mini-ImageNet. Details can be

found in Table 1, Table 2 and Table 3.

in a single shot. This allows certain interpretability such
as that in (13). Regular data augmentation joins the calcu-
lation in a mini-batch form in a sequential manner, whose
interpretability is buried during the iterations. We summa-
rize the proposed GKEAL in Algorithm 1.

Algorithm 1 GKEAL

Require: Data Dgf‘}?, number of kernel vectors I, regular-

ization parameter -, width parameter /3, augmentation
count C.

1: BP-based base training: Train networks with BP on
the base dataset.

2: Analytic initialization (with Dgai“): i) Obtain ker-
nelized embedding with (2) and (1); ii) Obtain base
weight W%, with (5). iii) Obtain and store Ry =
(X(()ke)TX(()ke) D),

3 for k =1 to K (with D, Wi Y and R;,_1) do

: 1) Obtain augmented kernelized embedding with
(11);

5. ii) Update Ry with (10);

6 iii) Update weight W), with (12);

7: end for

4. Experiments

In this section, we compare the proposed GKEAL with
several state-of-the-art methods, including CIL-converted
methods (i.e., iCaRL [20], EEIL [1], LUCIR [9]) and tech-
niques specifically designed for FSCIL (i.e., TOPIC [23],
CEC [31], F2M [22], MetaFSCIL [3] and Entropy-reg [ 14]).
In addition, ablation study and parameter analysis are also
included to reveal the contributions of GKEAL’s compo-
nents.

4.1. Experimental Setup

Dataset and Data Split. We evaluate the performance
of GKEAL by training ResNet [8] on CIFAR-100 [12],
CUB200-2011 [25] and mini-ImageNet [21], which have
100, 200 and 100 image classes respectively. These bench-
mark Data have image sizes of 32 x 32, 224 x 224 and
84 x 84 respectively. All compared methods follow the
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Table 1. The accuracy among the compared methods on mini-ImageNet.

Phase: 0 1 2 3 4 5 6 7 8 PD|
iCaRL [20] 61.31 46.32 4294 37.63 3049 24.00 20.89 18.80 17.21 44.10
EEIL [1] 61.31 46.58 44.00 37.29 33.14 27.12 2410 21.57 19.58 41.73
LUCIR [9] 61.31 47.80 3931 3191 2568 2135 18.67 17.24 14.17 47.14
TOPIC [23] 61.31 50.09 45.17 41.16 37.48 35,52 32,19 2946 2442 36.89
CEC [31] 72.00 66.83 6297 5943 56.70 53.73 51.19 49.24 47.63 2437
F2M [22] 72.05 67.47 63.16 59.70 56.71 53.77 51.11 49.21 47.84 2421
MetaFSCIL [3] 72.04 6794 63.77 60.29 57.58 55.16 529 50.79 49.19 2285
Entropy-reg [14] 71.84 67.12 6321 59.77 57.01 5395 5155 49.52 4821 23.63
GKEAL (I, 8,C = 10k, 10, 200) 73.59 68.90 6533 62.29 59.39 56.70 54.20 52.59 5131 22.28
Table 2. The accuracy among the compared methods on CIFAR-100
Phase: 0 1 2 3 4 5 6 7 8 PD|
iCaRL [20] 64.10 53.28 41.69 34.13 2793 25.06 2041 1548 13.73 50.37
EEIL [1] 64.10 53.11 43.71 35.15 2896 2498 21.01 17.26 15.85 48.25
LUCIR [9] 64.10 53.05 4396 3697 31.61 2673 2123 16.78 13.54 50.56
TOPIC [23] 64.10 55.88 47.07 45.16 40.11 3638 3396 31.55 2937 34.73
CEC [31] 73.07 68.88 65.26 61.19 58.09 5557 5322 51.34 49.14 2393
F2M [22] 71.45 68.10 6443 6080 57.76 5526 53.53 51.57 4935 22.06
MetaFSCIL [3] 74.50 70.10 66.84 62.77 59.48 56.52 5436 5256 4997 2453
Entropy-reg [14] 74.40 70.20 66.54 6251 59.71 56.58 54.52 5239 50.14 24.26
GKEAL (Z, 8, C' = 5k, 10, 200) 74.01 7045 67.01 63.08 60.01 57.30 55.50 5339 5140 2261

split in [23].

The dataset is partitioned into a base train-

tains much less data samples compared with those on

ing set (i.e., phase #0) and a sequence of incremental sets
containing few-shot samples. For CIFAR-100 and mini-
ImageNet, the base training set includes 60 classes. For
CUB200-2011, the number of classes in the base training
set is 100. The FSCIL is conducted in a 5-way 5-shot (5
classes with 5 samples in each class for each phase) manner
for CIFAR-100/mini-ImageNet (total of 8 phases excluding
the base training) and a 10-way 5-shot manner for CUB200-
2011 (total of 10 phases excluding the base training).

Implementation details. For the training on the base
dataset, we allow various training strategies for compared
methods to achieve their desired performances. For in-
stance, on CIFAR-100 F2M [22] requires 240 epochs for
base training while the CEC [31], MetaFSCIL [3] and
Entropy-reg [14] needs 100. For our GKEAL, for CIFAR-
100 and mini-ImageNet, we train ResNet-20 and ResNet-18
on base datasets for 300 epochs with an initial learning rate
of 0.1. The learning rate is then divided by 10 at 150, 225
and 275 epoch. For base training on CUB200-2011, fol-
lowing recent works [22,3 1], we fine-tune a ResNet-18 pre-
trained on ImageNet for 30 epochs with an initial learning
rate of 0.01 which is divided by 10 at 15 epoch.

For hyperparameters, i.e., width parameter S,
number of kernels I and augmentation count C, we
run grid search on (={0.1,1,2,5,8,10,12,15,20,100},
I={1k,2k,5k,8k,10k,12k} (i.e., 1k indicates 1000) and
C={1,50,100,150,200,250,300,350}. In particular, we
adjust the search space of C for CUB200-2011 to
C={1,2,5,8,10,12,15,20} because its base training con-

CIFAR-100 or mini-ImageNet. As the few-shot scenarios
are manually constructed, we use the remaining training
data of the original few-shot classes as validation set. We
report the result on the testing set using the best model
on the validation set after conducting the search. For
the regularization parameter -y, we fix it at v = 1. All
experiments are conducted using one RTX 2080Ti GPU
with the results reported by the average of 3 runs. The
results of compared methods are cited from [23], [31]
and [22].

Evaluation Protocol. Following [23], the performance for
the k™ phase is evaluated by the average accuracy, i.e., the
test accuracy on the seen classes (i.e., Dbef,;), denoted by
Ag. Also, the performance drop rate (PD), i.e., PD =
Ay — Ak, is included for evaluation. Reporting the perfor-
mance drop is meaningful as some methods may give good
results mainly due to a well-trained network on the base
dataset. For results in ablation study and parameter analy-
sis, we report the last-phase accuracy A for convenience.

4.2. Comparison with State-of-the-arts

As an overview, we depict the compared methods’ accu-
racy evolution of CIFAR-100 (Figure 3(a)), CUB200-2011
(Figure 3(b)) and mini-ImageNet (Figure 3(c)) with respect
to (w.r.t.) each phase. All methods experience decreasing
accuracies. The reason behind this degradation is twofold.
Firstly, the network takes in new data classes in each phase,
giving it more choices to distinguish from, naturally lead-
ing to accuracy decrease. The second reason is FSCIL’s
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Table 3. The accuracy among the compared methods on CUB200-2011.

Phase: 0 1 2 3 4 5 6 7 8 9 10 PD|

iCaRL [20] 68.68  52.65 48.61 44.16 36.62 29.52 27.83 2626 2401 23.89 21.16 47.52

EEIL [1] 68.68  53.63 4791 4420 3630 2746 2593 2470 2395 24.13 2211 46.57

LUCIR [Y] 68.68  57.12 4421 2878 26.71 25.66 24.62 21.52 20.12 20.06 19.87 4881

TOPIC [23] 68.68 6249 5481 4999 4525 4140 3835 3536 3222 2831 2626 4240

CEC [31] 75.85 71.94 6850 63.50 6243 5827 57.73 5581 5483 5352 5228 23.57

F2M [22] 7713 7392 7027 6637 6434 61.69 60.52 5938 57.15 5694 55.89 21.24
MetaFSCIL [3] 7590 7241 68.78 64.78 62.96 59.99 5830 56.85 5478 53.82 52.64 23.26
Entropy-reg [14] 7590  72.14 68.64 6376 62.58 59.11 57.82 5589 5492 5358 5239 23.5]
GKEAL (I,3,C = 10k,15,10)  78.88  75.62 72.32 68.62 67.23 64.26 6298 61.89 60.20 59.21 58.67 20.21

main concern, i.e., catastrophic forgetting, causing accuracy
drop . As observed in the Figure 3, the CEC and F2M are
giving similarly competitive results, outperforming iCaRL,
EEIL, LUCIR and TOPIC by large margins. This is a rea-
sonable observation as the iCaRL, EEIL and LUCIR are not
specifically designed for FSCIL tasks, so they suffer rather
significantly from over-fitting. For instance, the iCarL, a
rather strong baseline in traditional CIL, achieves the av-
erage accuracy below 20%. The TOPIC is the first FS-
CIL baseline, giving a slightly better performance over that
of the CIL methods, but cannot compete with the recent
FSCIL techniques (e.g., CEC and F2M). For the most re-
cent FSCIL teniques like MetaFSCIL and Entropy-reg, they
slightly outperforms CEC and F2M.

Our GKEAL even outperforms the results of MetaFS-
CIL and Entropy-reg by a considerable amount (see gaps
between the red curves and the second best curves in Fig-
ure 3), showing improved accuracy in each phase on all
three datasets. The hyperparameters selected for CIFAR-
100, CUB200-2011 and mini-ImageNet are {I,5,C =
5k, 10,200}, {I,8,C = 10k,15,10} and {I,8,C =
10k, 10,200} respectively. For convenience, the detailed
results on mini-ImageNet are tabulated in Table 1 as a fur-
ther support. The GKEAL achieves a 51.31% accuracy at
the last phase, overtaking the second best result (MetaFS-
CIL’s 49.19%) by 2.12%. In particular, the PD score of
GKEAL is 22.28%, which is also the lowest, indicating a
less forgetting among the compared methods. The detailed
results for CIFAR-100 and CUB200-2011 are shown in Ta-
ble 2 and Table 3, where the results show similar patterns.

4.3. Ablation Study and Parameter Analysis

Ablation Study. Here we conduct an ablation study to jus-
tify the contributions of the GKE module and AFC module.
Both modules are important to GKEAL. In particular, the
GKE gives a critical contribution. As shown in Table 4 (first
2 rows), the analytic learning does not work with the orig-
inal extracted features by the BP algorithm. That is, lack-
ing the GKE module results in catastrophic accuracy loss
(e.g., a drop of last-phase accuracy from 51.21% to 7.22%).
This is surprising as a mere linear layer tuned by BP can
have reasonable achievement. This is because the matrix

%)
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(a) Effect of GKE parameter (b) Effect of width parameter  (c) Effect of AFC parameter  (d) Performance trade-off

Figure 4. Performance with various (a) GKE parameter I, (b)
width parameter 8 and (¢) AFC parameter C. (d) The performance
on base and new classes under various C' values.

inverse experiences ill-conditioned scenario, leading to a
breakdown of the solution. On the other hand, the AFC also
contributes significantly. It improves the last-phase accu-
racy by 6.42% from 43.79% to 51.21%. However, the AFC
alone cannot help improve the performance. This is be-
cause without the GKE, the analytic learning itself might go
wrong (performance drop from 74.80% to 13.20%), AFC’s
new-old task balancing advantage is not demonstrated as
a plug-in to our GKEAL. When GKE is applied, the AFC
works effectively. As shown in Figure 4(d), the knowledge
of base (old) classes and new classes are balanced by tuning
the hyper-parameter C'. Larger C' emphasizes/weakens the
base/new class knowledge, which well supports our theoret-
ical claim in Eq. 13.

Hyperparameter Analysis. Upon proving the importance
of the GKE and AFC modules, we further evaluate the im-
pacts of the introduced kernel vector size I, width parame-
ter 8 and augmentation count C'. As shown in Figure 4(a),
in general the GKEAL hungers a quite large /. The best
performing parameters for CIFAR-100, CUB200-2011 and
mini-ImageNet are at I = 8k, 10k, 12k. This is because
the LS solution itself is prone to under-fitting, which can be
compensated by an increased dimensionality. This requires
an increased number of parameters, which is a common lim-
itation of analytic learning. Investigating a more condense
structure is in our future plans.

For parameter /5 in the GKE module, as shown Figure
4(b), there is a comfortable range for 8 at around S € [5, 15]
for CIFAR-100/mini-ImageNet that gives good results, ex-
ceeding either bound would cause performance decay. In
particular, too small or too large /3 values corrupt the train-
ing process (giving very low accuracy performance). For
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Table 4. Ablation study of the GKE (w: I = 5k, w/o: removed) and AFC (w: C' = 200, w/o: C' = 1) modules.

4 5 6 7 8

GKE AFC Phase: 0 1 2
X X 13.20 11.99 11.29 10.01
X v 12.56 10.80 10.29 9.81
v X 74.80  68.98 64.11
v v 74.35 70.32  66.21

59.35 5578 52.28
62.37 60.01 56.98

939 922 881 810 7.99
936 860 8.00 789 7.22
49.08 47.02 43.79
5512 5339 51.21

CUB200-2011, the performance peaks at around 8 = 15.

For parameter C, as shown in Figure 4(c), training
on CIFAR-100/mini-ImageNet achieves the best results at
around C' = 200. Although training on CUB200-2011
prefers a much smaller C' = 10, there is no intrinsic dif-
ference among these datasets. This is because CIFAR-
100/mini-ImageNet has 500 samples per base class while
CUB200-2011 has only 30. The augmentation ratios w.r.t.
the base dataset are 233 = 0.4 for CIFAR-100/mini-
ImageNet and 33 = 0.33 for CUB200-2011, which are
close enough among these three datasets. In particular, we
include the accuracies of CIFAR-100 reported on the base
dataset Df™ and the new class dataset DY, separately (see
the dash lines in Figure 4(d)). We observe a consistent in-
creasing (decreasing) performance pattern for base (new)
classes with a larger C' value, indicating that the AFC in-
deed balances the focus between the base and new classes.

5. Conclusion

In this paper, we propose Gaussian kernel embedded an-
alytic learning (GKEAL) to handle the few-shot class incre-
mental learning task. One key component of GKEAL is the
kernel analytic module, containing a Gaussian embedding
process which re-embeds the feature trained on the base
dataset to produce more discriminative embeddings and a
least-square classifier. The augmented feature concatena-
tion module is another key contribution that balances base-
new knowledge to enhance overall performance. Our exper-
iments have conducted various empirical analysis (e.g., ab-
lation study and parameter analysis), showing outstanding
performance compared with the state-of-the-art methods.

Contributions
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scribed as follows. Huiping Zhuang proposed the idea of
GKEAL and did the experiments with Zhenyu Weng and
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