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Abstract

Towards stable human pose estimation from monocular
images, there remain two main dilemmas. On the one hand,
the different perspectives, i.e., front view, side view, and
top view, appear the inconsistent performances due to the
depth ambiguity. On the other hand, foot posture plays
a significant role in complicated human pose estimation,
i.e., dance and sports, and foot-ground interaction, but un-
fortunately, it is omitted in most general approaches and
datasets. In this paper, we first propose the Cross-View Fu-
sion (CVF) module to catch up with better 3D intermediate
representation and alleviate the view inconsistency based
on the vision transformer encoder. Then the optimization-
based method is introduced to reconstruct the foot pose and
foot-ground contact for the general multi-view datasets in-
cluding AIST++ and Human3.6M. Besides, the reversible
kinematic topology strategy is innovated to utilize the con-
tact information into the full-body with foot pose regressor.
Extensive experiments on the popular benchmarks demon-
strate that our method outperforms the state-of-the-art ap-
proaches by achieving 40.1mm PA-MPJPE on the 3DPW
test set and 43.8mm on the AIST++ test set.

1. Introduction
Estimating 3D poses from a monocular RGB camera is

significant in computer vision and artificial intelligence, as
it is fundamental in many applications, e.g. robotics, action
recognition, animation, human-object interaction, etc. Ben-
efiting from the dense representation of SMPL models [18],
SMPL-based methods [9–12] have recently dominated the
3D pose estimation and achieved state-of-the-art results.
Although these methods have considerably decreased the
reconstruction error, they still suffer from two main chal-
lenges in pose stability. Thus, in this paper, we focus on
SMPL-based 3D pose estimation and present a method for
reducing the instability in estimation.

* indicates the equal contributions.

(a) Inconsistent performance
from different perspectives.

(b) Inaccurate foot posture and
foot-ground interaction.

Figure 1. Two main challenges towards stable human pose estima-
tion.

The first challenge is the inconsistency performance of
poses from different perspectives. An example is shown
in Figure 1a that the front view projection of the 3D poses
predicted by the model can be well aligned with the picture,
but from its side view, the human poses are oblique. The
difficulty mainly stems from the fact that estimating 3D hu-
man poses requires a model to extract good 3D intermedi-
ate representation from monocular images, which is diffi-
cult due to the lack of depth input. The second challenge
is the stability of the foot posture. As shown in Figure 1b,
the estimated foot posture is inaccurate and does not match
the foot-ground contact. The main reason is that the con-
tact between the foot and the ground and the posture of foot
joints i.e. heels, foot toes, ankles, etc. are omitted in most
work.

In the literature, most SMPL-based methods directly ex-
tract the holistic features from the image and then feed
them to the subsequent regression networks to calculate the
SMPL parameters [9–12]. These holistic methods do not
explicitly model the pose-related 3D features. In addition,
it is also challenging to directly predict the SMPL param-
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Figure 2. The top-down framework for 3D human pose and shape estimation, which consists of three parts, including the vision transformer
encoder, the cross-view attention representation, and the reversible kinematic topology decoder.

eters from the holistic features due to the highly nonlinear
mapping [22]. Our first contribution is that we propose an
intermediate representation architecture called the Cross-
View Fusion module (CVF). It learns a fused 3D interme-
diate representation by supervision over three views: the
front, the side, and the top. Specifically, our method con-
sists of three branches. Each branch learns 2D poses and
features in its corresponding view. Predicting the 2D poses
in side-view and top-view from input images is challenging,
so we design an attention-based architecture that leverages
prior information from the front-view branch to facilitate
the training of side-view and bird-view branches. Thanks to
the better 3D intermediate representation, our method alle-
viates the view inconsistency and outperforms other SMPL-
based methods on 3D pose estimation.

Understanding the foot-ground contact and learning the
inherent dynamic dependencies among joints is the key
to solving the challenge of foot stability. However, most
datasets lack the annotation information of foot-ground
contact. For this reason, we propose a method based
on multi-view optimization to add foot-ground annota-
tions to some public datasets, i.e., Human3.6M [7] and
AIST++ [16]. Different from the previous optimization-
based methods ( e.g., SMPLify [1]), our method utilizes
multi-view images, which can deal with the severe joints
occlusion, and thus obtain better foot joint annotations and
foot-ground contact annotations. To the best of our knowl-
edge, our work is the first to perform unified foot-ground
contact annotations on multiple existing large-scale 3D pose
datasets. We believe these additional annotations will fur-
ther improve the human pose estimation task in the future.

Inspired by [32], we further propose a Reversible Kinematic
Topology Decoder (RKTD) that can dynamically adjust the
predicted order of individual lower limb joints according to
the state of foot-ground contact.

Our method achieves state-of-the-art performance on
multiple 3D human pose estimation benchmarks. On the
3DPW [31] dataset, it achieves 2.7mm improvement com-
pared to the best art D&D [14]. Although our method
is trained on single-frame images, it does achieve bet-
ter results than existing video-based methods, such as
MAED [33] and D&D [14]. We annotated foot joint and
foot-ground contact on Human3.6M and AIST++ and then
trained our method on them. Our method reduced MPJPE
by 2mm and 3mm on Human3.6m and AIST++, respec-
tively.

In summary, we make the following four contributions:

• We design a 3D intermediate feature representation
module called Cross-View Fusion to extract the fea-
tures of the key points in the front, side, and bird’s
eye views. By doing this, our method achieves more
consistent performances in different perspectives than
other state-of-the-art methods.

• We design an optimization-based scheme to recon-
struct the foot poses and annotate foot-ground con-
tacts for the commonly-used multi-view datasets, in-
cluding AIST++ and Human3.6M. These new annota-
tions can be used to improve pose stability during the
foot-ground interaction in future work.

• We propose a Reversible Kinematic Topology De-
coder(RKTD) that utilizes the foot-ground contact in-
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formation to dynamically adapt the prediction order of
the joints on the leg limb chain. This strategy improves
the accuracy of pose estimation when there is a foot
touchdown.

• We conduct extensive experiments on the commonly-
used benchmarks, including 3DPW, Human3.6M, and
AIST++. Compared to other existing methods, our
method achieves state-of-the-art performance quanti-
tatively. The qualitative comparison shows that our
method estimates more stable poses, i.e., the perfor-
mances are more consistent under different views with
more accurate foot-ground contacts.

2. Related Work
2.1. 3D Pose and Shape Estimation

The existing 3D human pose and shape estimation meth-
ods widely adopt the parametric 3D mesh models, such
as SMPL [18]. HMR [9] is the first SMPL-based method
that uses a CNN-based backbone to extract image fea-
tures and then regress the pose and shape coefficients
of SMPL. Subsequently, some works follow the HMR’s
framework and carry forward this framework, such as SPIN
and VIBE etc. [2, 10–12, 28, 32]. Nikos et al. [12] proposes
a deep network for 3D human pose and shape estimation
through a tight collaboration between a regression-based
and an iterative optimization-based approach. VIBE [10] is
a video-based method aiming at estimating SMPL param-
eters for each video frame by a temporal generation net-
work, which is trained together with a motion discrimina-
tor. Kocabas et al. [11] propose a part attention regressor,
which adds a 2D part prediction branch and designs a part
attention module to fuse part features and image features,
to increase robustness to occlusion. Recently, Li et al. pro-
pose a video-based method to estimate the dynamic cam-
era, which achieves state-of-the-art results [14]. Recently,
ViT [3] has achieved great success in computer vision tasks,
and Xuet al. propose ViTPose [34], which uses vision trans-
former as the backbone and achieves state-of-the-art results
on 2D pose estimation tasks. Therefore, we use ViTPose as
our backbone network to build our proposed method (Sec-
tion 3.3). The above methods commonly ignore the impor-
tance of the overall stability of pose estimation.

2.2. 3D Intermediate Feature Representation

Learning a good 3D feature representation from the
monocular images is non-trivial and helpful for alleviat-
ing view inconsistency. In early SMPL-based methods
[9, 10, 12], a CNN backbone, such as ResNet, is used to ex-
tract the holistic feature from an image. Wan et al. [33] pro-
pose a spatial-temporal attention encoder to learn the spatial
and temporal features simultaneously. These methods do
not explicitly learn the 3D feature representation and thus

suffer from the nonlinear mapping between the input 2D
image and the 3D parameters of SMPL. Using 2D informa-
tion as an intermediate supervision is a common approach
to alleviate the gap between image and 3D coefficients of
SMPL [21,23,35]. Pavlakos et al. [23] extract intermediate
2D keypoints and silhouette features to alleviate this prob-
lem. Omran et al. [21, 35] use semantic body part segmen-
tation as an intermediate representation to reduce the inter-
ference of environment and clothing information in images
and improve 3D inference. However, the intermediate fea-
tures they extracted, whether 2D keypoints or segmentation,
are still 2D representations. For building better representa-
tions in the network, Sun et al. [29] propose to simultane-
ously infer the center positions in the front view and the
center depths in the ”bird’s eye view” (BEV) of multiple
people, which alleviates the ambiguity in monocular depth.
Jin et al. [8] decouple the problem into 2D pose regression
and depth regression. They design a 2D Pose-guided Depth
Query Module to enhance the depth prediction with 2D pose
features in a model-free framework. Li et al. [15] propose
HybrIK which predicts the 3D coordinates and partial coef-
ficients of SMPL (i.e., shape parameters and twist angle of
joints) and feeds them into an inverse kinematic module to
solve the pose parameters. Different from supervising 3D
coordinates at an interval stage, our proposed CVF mod-
ule predicts 2D coordinates for three views, whose features
are extracted by three branches respectively. This simple
decomposition strategy (Section 3.4) allows information ex-
change among features of each view, which finally improves
learning view-specific features (Section 4.3).

2.3. Foot-Ground Contact

The foot-ground contact labels are an important refer-
ence in the Inverse Kinematics solution for eliminating foot
sliding when driving avatar [5, 26, 27]. The contact infor-
mation between the human and the ground can also be used
as prior knowledge to help improve the accuracy of human
posture estimation. For instance, Ugrinovic et al. [30] as-
sume that all people are standing on the same ground plane,
and uses this prior to eliminate ambiguities in the body scale
and the relative camera-body translation. HuMoR [24] pre-
dicts foot-ground contacts to constrain pose estimation at
test time. PhysCap [25] exploits foot-ground contact sig-
nals and introduces a real-time physics-based pose opti-
mizer that considers environmental constraints, gravity, and
biophysical plausibility of human poses. Mourot et al. [20]
propose a method for foot contact detection and ground re-
action force estimation. Zou et al. [36] propose an end-to-
end method to combine foot-ground contact estimation with
pose estimation by directly exploiting a zero-velocity con-
straint on the foot joints.

The Kinematic Topology Decoder (KTD) is introduced
in the previous article [33], which takes into account the
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(a) Left: original annotations, right:
revised results.

(b) Left: original annotations, right:
revised results.

Figure 3. Qualitative results of the foot pose annotator.

kinematics tree of the body when estimating the pose of the
body joints. In this paper, we extend KTD to include the
foot part and propose a reversible version of KTD called
Reversible Kinematic Topology Decoder (Section 3.5). Our
method can dynamically adjust the prediction order of the
lower limb joints according to the foot-ground contact.

3. Method

In this Section, we first briefly review the general para-
metric human body model SMPL used in our method. Then
we introduce the pseudo-GT annotators of the foot poses
and foot-ground contacts for the open-source multi-view
datasets by the multi-view optimization. Finally, we repre-
sent our top-down method for 3D human pose and shape es-
timation, which consists of three parts, including the vision
transformer encoder, the cross-view fusion module, and the
reversible kinematic topology decoder (Figure 2).

3.1. SMPL Model

The parametric human body model SMPL takes the body
poses θ ∈ R24×3 and the human shape β ∈ R10 as in-
put, and outputs the 3D human body mesh with the vertices
v ∈ R6890∗3. The body poses θ consists of the global rota-
tion of the root joint, i.e., pelvis, and the 23 local rotations
of the corresponding joints relative to their parents along
the kinematic tree. The k 3D joints can be calculated by
the linear combination of the vertices as j3d = Mv, where
M ∈ Rk×6890.

3.2. Foot Pose and Contact Reconstruction

Foot Poses. Foot poses play a significant role in hu-
man pose estimation and foot-ground contact prediction, es-
pecially in complicated situations (e.g., dance and sports).
However, foot poses are not annotated in most popular
datasets, as shown in Figure 1b. Consequently, the general
evaluation has not considered the foot keypoints. To address
the above problem, we introduce the SMPLify-based [1]
framework to recover the foot poses by multi-view opti-
mization.

(a) The predicted ground. (b) The contact annotations.

Figure 4. Qualitative results of the contact annotator.

We first extract the 2D keypoints for each view sep-
arately using the 2D pose estimator. Then the original
SMPL parameters are optimized under the SMPLify-based
framework with multi-view 2D reprojection constraints. As
shown in Figure 3, we make use of the close relationship be-
tween the foot and the lower leg by jointly optimizing them
in the recovery procedure, which benefits a more natural and
compatible full-body mesh reconstruction and a better foot
pose estimation. The complete optimization is formulated
as follows:

argmin
θlower legs,θfeet

Lproj(θ, β, T, j2D) + Lsmooth(θ), (1)

where θ and β are SMPL parameters that denote the joints’
rotation and human shape separately. T is the camera ex-
trinsic matrix. j2D represents the 2D keypoints obtained by
the 2D pose estimator. Lproj is the projection loss function
that penalizes the misalignment between the re-projected
3D joints from SMPL and the annotated 2D keypoints.

Lproj(θ, β, T, jD) =
1

n

n∑
i∈Ω

(π(j3Di
, T )− j2Di

)2, (2)

where Ω denotes the set of all keypoints, n is the total num-
ber of keypoints, j3D represent the 3D keypoints obtained
by SMPL model with θ and β as input, and π represents the
projection transformation.

Lsmooth is the sequentially-smooth loss function as:

Lsmooth(θ) = θ[1:t−1] −
1

3
(θ[0:t−2] + θ[1:t−1] + θ[2:t]), (3)

where θ[a:b] denotes that the temporal poses within ath
frame to bth frame, t is the total length of the frames.

Foot-ground Contacts. we propose a method to further
obtain the foot-ground contact annotations for the popular
indoor datasets having flat ground. Given a sequence of
SMPL meshes from a video as input, we first set an ini-
tial plane below all the meshes (e.g., y = −10), and then
compute the closest vertex to this plane in each mesh. A
more accurate plane is then estimated by the least square
method using these closest vertices. The above procedure
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is repeated several times to estimate the object plane func-
tion as shown in Figure 4. Consequently, the foot-ground
contact annotations are obtained by:

GC(v)=

{
True if D(v, plane) < δ,

False otherwise,
(4)

where v ∈ R6890×3 is the human body vertices from SMPL.
D represents the Euclidean distance from the point to the
plane. The vertices with vertex-plane distance less than the
height threshold δ are labeled as in contact, i.e., 0.025m in
our method.

3.3. Vision Transformer Encoder

In order to extract more powerful features, we use ViT
[3] as our backbone. Following the ViTPose [34], the in-
put 2D cropped image X ∈ RH×W×3 is firstly embedded
into a sequence of flattened 2D patches via the patch em-
bedding layer F ∈ RH

d ×W
d ×C , where H , W and C repre-

sent the height, width and the channel dimension, and d de-
notes the downsampling ratio of the patch embedding layer.
After that, the embedded patches are processed by several
transformer layers, each consisting of a multi-head self-
attention (MHSA) layer and a feed-forward network (FFN),

F ′
i+1 = Fi + MHSA(LN(Fi))

Fi+1 = F ′
i+1 + FFN(LN(F ′

i+1)),
(5)

where LN denotes the layer normalization. Fi repre-
sents the output of the ith transformer layer and F0 =
PatchEmbed(X) are the output features of the patch em-
bedding layer. The output features of the vision transformer
encoder are denoted as Fout ∈ RH

d ×W
d ×C .

3.4. Cross-View Fusion Module

We use ViT [3] as the backbone to extract features from
the input image, and then, to alleviate the inconsistent per-
formance among the front, side, and top views, we design
a new 3D feature representation architecture called Cross-
View Fusion (CVF). It learns the individual features for
each of the three views and then forms the 3D feature by
fusing the features from each view. As illustrated in Fig-
ure 2, the CVF module consists of three branches for three
views and Cross-View Attention(CVA) blocks. The first
branch is responsible for generating the keypoints from the
front view. It takes the feature Fout as input and outputs the
2D keypoint heatmaps denoted as Jfront ∈ RH×W×k. k is
the number of joints. Without depth information, predicting
the 2D poses in the other two perspectives from the input
image is challenging. Thus, we propose to propagate the
information from the front view to the side and top views
to improve the performance of these two views, as illus-
trated in Figure 2. We use a query block to convert the 2D

heatmaps from the front-view branch into front-view fea-
tures Ffront, and adopt two cross-view attention blocks to
obtain the side-view features Fside and top-view features
Ftop. Then the features of the side view (or top view) can
be obtained as follows:

Fside = F ′
out + MLP(softmax(

QKT

√
dK

)V ) (6)

where F ′
out = Conv3×3(Fout), Q = MLP(Ffront), K =

MLP(F ′
out) and V = MLP(F ′

out). dK denotes the dimen-
sion of K. MLP and softmax represent the MLP layer and
softmax layer. The 2D poses in the side view are obtained
from the feature Fside via several linear layers. The branch
of the top view is the same as the above procedure. Finally,
we add the three features Ffront, Fside, and Ftop to form a
fused feature Ffuse for the regression of 3D poses.

3.5. Reversible Kinematic Topology Decoder

Following the previous works [10,12], the decoder takes
the features as input and estimates the SMPL parameters,
i.e., the human shape, the body joint poses, and the camera
parameters to reconstruct the human mesh. Previous works
ignore the inherent dependence among joints and treat them
with the same importance. KTD [33] is proposed to iter-
atively generate the pose parameters from the root joint to
others in hierarchical order according to the fixed kinematic
tree. Different from the KTD, our Reversible Kinematic
Topology Decoder(RKTD) provides a reversible kinematic
tree based on the foot-ground contact prediction.

Firstly, we decode the camera parameters ϕ ∈ R3 and the
human shape β ∈ R10 of the SMPL parameters by the MLP
layers directly. Then we introduce one branch to predict the
body-scene contacts before the pose regressor. Similar to
[6], the body-scene contacts c ∈ [0, 1]6890×1 are formu-
lated as per-vertex contact states on the human mesh, which
consists of several MLP layers as shown in Figure 2. The
contact prediction is supervised under the pseudo annota-
tions of the contacts in Equation (4) with a BCELoss form.
We further determine the ground-contact foot according to
the foot vertices with a larger number of contact states, i.e.,
the left foot contact states cl =

∑i∈vl
i ci or the right foot

contact states cr =
∑i∈vr

i ci. When a foot hits the ground,
we sequentially estimate the poses of each joint from the
ground-contact foot to the root according to the reverse or-
der in the kinematic tree which is different from the root-
to-leaf order in KTD, since the root is driven by a fixed
grounded foot. The ith child joint pose is based on the input
features F and the poses of the chain of ancestor’s joints
iteratively as

Fi=


CONCAT(F, {θk|k ∈ ancestorl(i)}) if cl > cr > 0,
CONCAT(F, {θk|k ∈ ancestorr(i)}) cr > cl > 0,

CONCAT(F, {θk|k ∈ ancestorp(i)}) otherwise,
(7)
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where θi = MLP(Fi). ancestorl, ancestorl and ancestorp
represent the ancestor joints in the left foot contact kine-
matic tree, the right foot contact kinematic tree, and the
base kinematic tree from root to others used in the KTD,
separately.

3.6. Loss Functions

The loss of the whole method is defined as

L =λ2DL2D + λ3DL3D + λSMPLLSMPL+

λContactLContact,
(8)

where λ2D, λ3D, λSMPL and λcontact are the coefficients
of the loss of each part. The details are as follows:

L2D =
1

n

n∑
i∈Ω

(π(j3Di , T )− jfront2Di
)2) + LCV F , (9)

where Ω denotes the set of all 3D keypoints, n is the to-
tal number of 3D keypoints, j3Di

represents the predicted
position of the ith 3D keypoint in Ω . T means the weak
perspective projection camera parameters, π represents the
weak perspective projection transformation, jfront2Di

denotes
the i-th 2D keypoint annotated in the front view (the input
image). LCV F the loss of the CVF intermediate represen-
tation module, defined as:

LCV F =
1

m

m∑
i∈ω

(j2Di − ĵ2Di)
2 + Ljd(j2D, ĵ2D,m), (10)

Ljd(j2D, ĵ2D,m) =
1

m

m∑
i,j∈ω

∣∣∣||j2Di − j2Dj || − ||ĵ2Di − ĵ2Dj ||
∣∣∣ ,

(11)
where ω represents the set of all 2D keypoints in three
views. m denotes the total number of 2D keypoints in the
set ω. j2Di

represents the position of ith 2D keypoint in
the set ω. If there is not a hat symbol on j2D, it means the
value is predicted by the model, otherwise, it is the ground-
truth. Ljd refers to the previous work [13], which can make
the relative distances between predicted joints match those
between the ground-truth joints. Ljd is beneficial to learn
some high-dimensional semantics, such as the length of
bones and the shape of the overall skeleton pose. In the
front view, the coordinates of j2D are in the image space,
and the ground-truth comes from the 2D annotations of the
input image. In the side and the top view, unlike the front
view, the ground-truth comes from the results of the orthog-
onal projection of the 3D coordinates to the side view and
the top view, and their coordinates are normalized, centered
on the root and range from -1 to 1.

L3D =
1

n

n∑
i∈Ω

((j3Di
− ĵ3Di

)2 + Ljd(j3D, ĵ3D, n), (12)

LSMPL = (β − β̂)2 + (θ − θ̂)2 + ||β||2 + ||θ||2, (13)

where Ω, n, j3Di
are the same as above. Ljd(j3D, ĵ3D, n)

represents a 3D keypoint version of the Ljd, similar to
Equation (11). β and θ are the shape and pose parameter
of SMPL model.

Lcontact = −(c log(ĉ) + (1− c) log(1− ĉ). (14)

Lcontact is about contact signals, where c represents the
predicted body-scene contact state, ĉ represents the corre-
sponding ground-truth.

4. Experiments

4.1. Implementation Details

The following datasets are used: (1) MS COCO [17]
provides in-the-wild 2D keypoints annotation. (2)
3DPW [31] is a widely used in-the-wild dataset for the
3D human pose and shape estimation task. (3) MPI-INF-
3DHP [19] is a multi-person dataset consisting of con-
strained indoor and complex outdoor scenes. (4) Hu-
man3.6M [7] is a commonly used indoor dataset for 3D
pose estimation. Following previous works [9, 10], we
downsample all videos from 50fps to 10fps. It originally
annotated 17 keypoints, excluding the feet. We add 6 feet
2D keypoints annotations on each view and then fit those
corresponding 3D foot poses and keypoints for training and
evaluating the poses of the feet. (5) AIST++ [16] is an in-
door dataset with various dance moves. Similarly, we down-
sample all videos from 50fps to 10fps. For training and
evaluating the poses of the feet, we add 2D foot keypoints
annotations and fit those corresponding 3D foot poses.

Training and evaluation: We first follow the original
ViTPose [34] and train a 2D keypoints estimation model on
MS COCO as our pre-trained model. We use mixed training
sets to train our 3D human pose estimation model, including
Human3.6M, MPI-INF-3DHP, 3DPW, and AIST++. We
build a superset containing all keypoint definitions and the
mappings between each other, just like the previous works,
i.e., VIBE [10]. Since the annotators are proposed for multi-
view indoor data, we do not reconstruct the foot poses and
contacts on the 3DPW dataset. Our RKTD is only applied
to Human3.6M and AIST++. We evaluate our model on the
test sets of 3DPW, Human3.6M, and AIST++. The model
is trained on eight NVIDIA A100 GPUs for 100 epochs.
The mini-batch size is set to 256. The Adam optimizer is
adopted with an initial learning rate of 5 × 10−5, which is
reduced by 0.3 times at the 50th, 70th and 90th epochs.
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Figure 5. Qualitative results on AIST++. From left to right: tri-view 2D joints, tri-view 3D mesh (green for the ground truth and red for
prediction).

4.2. Comparison with state-of-the-arts

We compare our model with the prior arts that focus on
model improvement, including the video-based [2,4,10,14,
33] and the image-based [9, 11, 12, 15, 28] methods, which
exploit the temporal information or not separately. Since
almost none of the previous work evaluates the pose accu-
racy of the foot, we first obtain the 14 LSP joints from the
body mesh by using the same regressor and then compare
their Mean Per Joint Position Error (MPJPE), Procrustes-
Aligned MPJPE (PA-MPJPE) on those test datasets. the re-
sults are summarized in Table 1.

As is shown in Table 1, our model with ViT-Large as
backbone achieves state-of-the-art performances on 3DPW
test datasets, which outperforms D&D with a 2.6mm im-
provement on PA-MPJPE and do not introduce the addi-
tional temporal information. With the lower computation
cost, our model with ViT-Base as backbone performs bet-
ter than most of the prior arts, including Mesh Graphormer
and MAED. As for the Human3.6M evaluation datasets, our
model shows similar performance with other works when
sharing the same implementation details with 3DPW. On
AIST++ test datasets, our model outperforms the Trajec-
tory Optimization physical-based method with a 22mm im-
provement on PA-MPJPE. From the side view comparisons
on 3DPW in Figure 6, our method achieves more stable
meshes than those by MAED. As shown in Figure 5, our
method obtains the more exact global rotation and foot pos-

Figure 6. Qualitative comparison on 3DPW. From left to right:
input images, tri-view results of MAED, tri-view results of our
method.

ture. More comparisons and qualitative results are shown in
Supplementary Materials.

4.3. Ablation Study

The effectiveness of different backbones. We test three
networks, including ResNet50, ViT-Base and ViT-Large, as
the feature extraction encoder for exploring the effective-
ness of the transformer-based model. Following the train-
ing settings in Section 4.1, We use the feature extraction
encoder and independent decoder same as [10]. As is illus-
trated in Tab. 2, ViT-Base outperforms ResNet50 with the
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Method
3DPW Human3.6M AIST++

MPJPE PA-MPJPE MPJPE PA-MPJPE MPJPE PA-MPJPE

Video-Based

TCMR [2] 86.5 52.7 - - - -
VIBE [10] 82.7 51.9 65.6 41.1 - -
MAED [33] 79.1 45.7 56.4 38.7 - -
Trajectory Optimization [4] - - 84.0 56.0 107.0 67.0
D&D [14] 73.7 42.7 52.5 35.5 - -

Image-Based

HMR [9] 130.0 81.3 - 56.8 - -
SPIN [12] 96.9 59.2 - 41.7 107.7 -
HybrIK [15] 80.0 48.8 54.4 34.5 - -
ROMP [28] 76.7 47.3 - - - -
PARE [11] 79.1 46.4 - - - -
Ours-ResNet50 78.8 45.4 - - - -
Ours-Base 77.8 44.7 55.2 38.9 63.2 45.9
Ours-Large 70.8 40.1 52.4 36.6 60.1 43.8

Table 1. Performance comparison between our method and state-of-the-art methods on 3DPW, Human3.6M and AIST++.

Backbone MPJPE PA-MPJPE

ResNet50 84.5 48.5
ViT-Base 82.1 47.8
ViT-Large 76.9 44.5

Table 2. Ablation study of the effectiveness on the backbone.

0.7mm improvement on PA-MPJPE, which denotes that the
transformer-based model is also suitable for 3D human pose
estimation task. When the model goes deeper and wider,
ViT-Large achieves 44.5mm PA-MPJPE on the 3DPW test
set, surpassing most previous works.

The effectiveness of CVF. Table 3 investigates the efec-
tiveness of each part of Our CVF module. All of the ap-
proaches use Human3.6M, MPI-INF-3DHP, and 3DPW as
training sets, and use 3DPW as a test set, with ViT-base as
the backbone. Table 3 summarises the results of: (1) esti-
mating 3D poses directly from backbone features without
any intermediate representation, and estimating with the in-
termediate representations of (2) only the front view, (3) the
front and the top views (4) the front, side and top views
without the cross-view fusion, and (5) the three views with
the cross-view fusion. This result shows that the whole CVF
module achieves an overall improvement of 3.6mm on PA-
MPJPE, with each part contributing partly.

The effectiveness of RKTD. We implement three gener-
ation types of kinematic tree used in the decoder, including
independence which means that the joint does not rely on
any other joints, KTD [33] and proposed RTKD. Follow-
ing the same training implementation on Table 1, we test on
the AIST++ evaluation set. As described in Table 4, RKTD
outperforms KTD by 0.7mm improvement on whole-body
PA-MPJPE, and 1.3mm improvement on foot PA-MPJPE
especially. With the help of RKTD, the output meshes have
more accurate global pose.

Approach MPJPE PA-MPJPE

(1) Baseline 83.1 48.7
(2) Front view 81.7 47.0
(3) Front and top views 79.4 46.1
(4) Three views w/o CVA 80.1 45.9
(5) Three views w/ CVA 79.4 45.1

Table 3. The effectiveness of each part of Our Cross-View Fusion
module. ‘Three views’ indicates our proposed front, side, and top
view representation without the cross-view fusion. ‘CVA’ indi-
cates our Cross-View Attention blocks as shown in Figure 2.

Approach
MPJPE PA-MPJPE

Whole Foot Whole Foot

Indenpendence 53.6 56.2 37.5 35.2
KTD 52.3 55.9 37.1 34.9
RKTD 51.5 54.6 36.4 33.6

Table 4. Ablation study of the effectiveness on RKTD.

5. Conclusion

Although 3D human pose estimation has achieved im-
provement tremendously, there remain several challenges,
e.g., view inconsistency and unnatural foot-ground interac-
tion, when facing more complex body posture in the real
world. In this paper, we propose the Cross-View Fusion
(CVF) module to construct a better 3D intermediate repre-
sentation to alleviate the view inconsistency. Then we in-
troduce the optimization-based method to revise the foot
poses and foot-ground contacts for the general multi-view
datasets. Additionally, the reversible kinematic topology
strategy is innovated to utilize the contact information in
the SMPL regressor. Extensive experiments on the popular
benchmarks demonstrate that our method outperforms the
state-of-the-art approaches by a significant margin.
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